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Instability of the fluid pair structure and the freezing density of liquids
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An instability of the pair-distribution function of the fluid with respect to the diagrammatic iteration
loop has been discovered recently [Phys. Rev. A 43, 6526 (1991)], which correlates well with the freezing
density of the soft inverse-power potentials. The present work extends that study to a large variety of
pair interactions and establishes the general validity and accuracy of this instability as a semiempirical
freezing indicator. Preliminary results for the instability lines for mixtures are also presented that are in
qualitative agreement with freezing densities from thermodynamic calculations and from recent experi-
ments on the phase behavior of mixtures of colloids. The stability analysis of the iteration loop is com-

plicated by the need to go beyond linear order.

PACS number(s): 64.70.Dv, 64.10.+h, 05.70.Fh

I. INTRODUCTION

The hypernetted chain [1] (HNC) and other integral
equation methods, originating from the diagrammatic
low-density expansion in terms of the Mayer f bond,
have led to many advances in the theory of liquids [2,3].
The major present-day approximate theories of the struc-
ture and thermodynamics of simple liquids interpolate
between the standard “ideal-gas,” low-density limit and a
high-density, ‘““ideal-liquid,” limit [4]. The role of the
ideal liquid is played by the asymptotic high-density limit
of the HNC integral equation (also denoted the ‘“Onsager
limit” [4]), which has been proposed as the reference
ideal state (replacing the ideal-gas reference state) for de-
veloping a systematic theory of the liquid structure [4].
Along this line of development it has been recently
discovered [5] that the solution of the HNC integral
equation features an instability with respect to the di-
agrammatic iteration process, which correlates well with
the freezing density.

The stability of the solution of the HNC integral equa-
tion for the pair-correlation function of the fluid, with
respect to its defining diagrammatic iteration loop, was
investigated [S] in one, two, and three dimensions
(D =1,2,3) for the soft (m /D =4) inverse-power poten-
tials, ¢(r)/ky T =I'r ~™, characterized by a single dimen-
sionless coupling parameter I'. Two major results
emerged from that study [5]: (1) The instability parame-
ters ' correlate well with the freezing parameters I'p
for the corresponding systems as obtained from computer
simulations in D =3, as well as with one-phase
Lindemann-type structural freezing criteria in D =1,2,3;
(2) the Onsager limit and the solution of the HNC equa-
tion belong to the same basin of attraction with respect to
the diagrammatic iterative map. A semiempirical con-
nection was thus established [5] between convergence
properties of the diagrammatic low-density Mayer expan-
sion, the asymptotic strong-coupling I' >« ‘““Onsager”
limit of the HNC integral equation, and the freezing den-
sity of simple liquids.

There has been a long and not always successful histo-
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ry of trying to associate divergences in integral equations
with phase transitions, as illustrated by the work of Ko-
zak [6] using the Born-Green-Yvon equation to discuss
both freezing and critical exponents. A major impedi-
ment to progress along these lines has been the discourag-
ing situation that a given process could yield reasonably
accurate freezing parameters for one pair potential while
being completely inaccurate for another. The same situa-
tion now exists for the density-functional theory of freez-
ing [7]. It is well established that the freezing densities of
all simple one-component systems correlate well, e.g.,
with that of the system of hard spheres with “effective”
diameters [8]. “It is not to be expected a priori that a
similar generality applies to a structural criterion within
an approximate theory, as indeed illustrated by previous
integral-equation instabilities. Moreover, when working
with approximate theories the governing equations are
not exact, so that, e.g., the divergence of a particular
iteration scheme need not indicate anything about real
physics. As illustrated for the density-functional theory
of freezing, its accuracy in predicting the fluid-solid tran-
sition is strongly potential dependent [7], and may be for-
tuitous [9]. The results of the HNC instability for the
inverse-power potentials, as presented in Ref. [5], are en-
couraging enough to try and determine what is the real
structural information about freezing hidden within these
equations, which the iteration process uncovers. Prior to
that complicated task (see below), however, and strongly
related to it, we have to establish empirically the validity
of our instability criterion to all types of simple liquids.
The present paper offers an extension of Ref. [5] to a
wider class of pair interactions in three dimensions and to
mixtures, so that together they cover all available simula-
tion data for simple systems. In the class of inverse-
power potentials the results are extended to the impor-
tant case of hard spheres (m =0 ). In order to further
elucidate the roles of the steepness and the range of the
repulsive interaction, the screened-Coulomb (Yukawa) in-
teraction ¢(r)/ky T=(T /r)e ~*"is considered for various
values of the screening parameter a. With a=0 this case
corresponds to the one-component plasma, i.e., also the
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m =1 inverse-power potential. Accurate simulation re-
sults for the freezing of the Yukawa system were obtained
only very recently [10]. In order to see the effect of at-
tractive contributions to the potential, the “canonical”
Lennard-Jones (12-6) potential ¢(r)=4¢e[(a/r)'*—(0/
r)%] is considered down to triple point temperatures. In
this class of “realistic’ pair potentials, the “EXP-6 po-
tential, ¢(r)=e([6/(a—6)]e !~/ —[a/(a—6)](c/
r)%), with parameters (a=13.5) appropriate for helium
and neon is also treated. A general and systematic empir-
ical picture emerges from our study. Preliminary ex-
ploration of the ‘‘instability” densities for mixtures is
presented for binary mixtures of hard spheres and for the
binary ionic mixture. The physical understanding of the
divergence of the iterative process is complicated by the
finding that one must go beyond the standard linear sta-
bility analysis. ] ]

The brief and general description of the calculations as
given in Sec. II intends to be self-contained yet omits
many technical details which can be found in Ref. [5].
The results are presented in Sec. III and are discussed in
Sec. IV. The Appendix provides the Onsager limits for
the Coulomb mixtures and Yukawa potentials which are
used as initial seeds for the iterations.

II. DIAGRAMMATIC-EXPANSION ITERATION LOOP
AND THE HNC INTEGRAL EQUATION

Diagrammatic analysis [1] reduces the exact calcula-
tion of the pair-correlation functions of a classical fluid of
particles interacting by the pair potential ¢(r) to the solu-
tion of the HNC integral equation for an effective poten-
tial ¢ (r)=¢(r)+ B (r)/B, where B is the inverse temper-
ature, B=(kzT)”'. The HNC integral equation is com-
posed of the Ornstein-Zernike relation between the direct
correlation function ¢ (r) and the radial distribution func-
tion g(r)=h(r)—1 and the HNC closure. Recalling the
screening potential, H(r)=h(r)—c(r), the Ornstein-
Zernike relation h(k)=e¢(k)~+ph(k)e(k) has the follow-
ing k-space form:

H(k)=pe2(k)/[1—pe(k)] . (1)
The HNC closure for a potential ¢ 4{7) is
c(r)=exp[ —Bo.r)+H(r)]—1—H(r), (2)

where p is the number density and tildes denote Fourier
transforms. Upon inserting Eq. (1) into Eq. (2) one ob-
tains the HNC integral equation. The bridge function
B(r) may be expanded in diagrams with the A (r) bond
[1,2]. The HNC approximation, i.e., the assumption
B(r)=0, consists of the solution of the HNC equation for
d.g{r)=¢(r), and is the starting point for a systematic di-
agrammatic expansion for B (r).

The diagrammatic expansion corresponding to the
HNC approximation is obtained by the following itera-
tion loop [1]: starting with the Mayer f-bond seed
CMayer () =f (r)=exp[ —B¢(r)]—1 in Eq. (1), the result-
ing H (r) is fed into Eq. (2), which yields the first iteration
for c¢(r), which is then fed again into Eq. (1), and so on.
The numerical solution of the HNC integral equation is
achieved, however, by “relaxation” and ‘Newton-

Raphson” methods [11].

The stability of the solution of the HNC equation is
checked by generating numerically the diagrammatic
iteration loop (1) and (2). Given the pair potential, the
temperature, and the density (and the composition for a
mixture), then two types of calculations were performed,
which differ only in the initial seed, cy(7), to be fed into
Eq. (1) instead of cppyye, (7).

(i) When available, use the asymptotic limit of the solu-
tion of the HNC equation (the “ideal liquid”),
co(r)=cgnc(r), as the initial seed in the iteration loop (1)
and (2).

(i) Obtain first a solution (with some prescribed high
accuracy) to the HNC equation using a standard numeri-
cal method. Use this solution as the initial seed in the
iteration loop (1) and (2).

The computational setup, as governed by a numerical
fast Fourier transform (FFT) procedure, is completely
characterized by the mesh points for describing the corre-
lation functions ([5,11], {h(#;);r;=iAr;i=1,...,N;N
=2M}, (h(k;);k;=iAk;Ak=m/NAr}. The two in-
dependent parameters M and Ar were widely varied, and
it was found that the results are very robust with respect
to the mesh of points. A good compromise turned out to
be N =128, Ar =0.1, with r measured in units of the
Wigner-Seitz radius awg given by p(ays)*=3/47. The
results for the “critical” densities show little sensitivity to
large (up to 16-fold) variations in N and Ar. The mesh
size N defines the dimensionality of the iteration map.
See details in Ref. [5].

At any given iteration step; we found it useful [5] to
define and monitor the following quantities: at the
“series” part of the loop, i.e., Eq. (1), define hg(r) as the
inverse Fourier transform of A (k)=¢(k)/[1—pe(k)],
and in the “parallel” part of the loop, Eq. (2), define
hp(r)=exp[ —B¢(r)+H(r)]—1. At any given iteration
step define u, and u,, the potential energy integrals as ob-
tained from u =(p/2)f[h (r)+1]B¢(r)dr, upon using
h,(r) and h(r), respectively. For the one-component
plasma use 4 (7) instead of A (r)=+1 in the integral. The
corresponding expressions for the HNC free-energy in-
tegrals [4] were similarly monitored [5]. The extension of
these definitions, equations, and numerical procedures to
mixtures is straightforward [12].

III. RESULTS

The first purpose of the present study was to establish
empirically the general properties of the iterations near
their instability and, in particular, to find out whether the
correlations between the instability densities and the
freezing densities are indeed general. Such an accidental
correlation for a limited class of potentials may cast
doubt on the physical meaning of the instability beyond
its mathematical interest. This is not the case with the
HNC instability since the main general results of the
present study are in agreement with those of Ref. [5],
which are thus extended to a large variety of quite
disparate potentials and to mixtures.

The Onsager limit and the solution to the HNC equa-
tion belong to the same basin of attraction with respect to
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the diagrammatic iterative map. In other words, whenev-
er both calculations of type (i) and type (ii) above are
available (Yukawa, Coulomb, and see Ref. [5]) then their
end results are identical.

For all p<pc the calculations always converge to the
solution of the HNC integral equation. As the iteration
number increases for p <pc, the energy integral u, is gen-
erally monotonically decreasing while the energy integral
u, is monotonically increasing, and eventually they be-
come equal for the HNC solution.

For p > p starting from the Onsager seed the diagram-
matic iteration loop rapidly converges to a limit cycle
composed of several functions, the number of which de-
pends on the type of potential. In the vicinity of p.,
however, for p > p, the iterations always begin to exhibit
a three-function cycle pattern. These three-function pat-
terns gradually change as the iterations continue. Con-
sidering the “time series” E(t), i.e., the energy vs itera-
tion number, then E (¢) seems to converge for p>p to a
pattern E*)(¢) that can be expressed by the following
universal form:

E(t>>1)=E'*(¢)=F[t —L(t mod 3)] . (3)

The function F (1) is periodic with period T. The number
of functions in the limit cycle, Ng, i.e., the number of dis-
tinct energy levels in the pattern E*)(¢), satisfies Ny < L.

The cases m =1 in two and three dimensions (D =2,3)
are the only cases studied before (5] to feature L =3 (i.e.,
a three-function limit cycle) in the immediate vicinity of
I'c. This feature holds also for the Yukawa potential
provided that the screening is weak, @ =2.3. For binary
ionic mixtures this feature of a three-function limit cycle
holds only for certain compositions. The composition
dependence of the parameters, e.g., N; and L, requires
further study

In view of this universal occurrence of the “critical”
densities for the stability of the solution of the HNC
equation, the main question is its correlation with the
freezing densities for the corresponding systems. Com-
bining the present results with those of Ref. [5], a sys-
tematic picture is emerging which will now be described
starting with the hard spheres and other inverse-power
potentials, ¢(r)=¢e(o /r)™. For the hard spheres, m = o,
we find the “critical” packing fraction 7,
=7pc0>/6=0.445+0.001. The results for the inverse-
power potentials are summarized in Table I and in Fig. 1.
The reduced density x =(e/kp T)*/™po’ is related to the
coupling parameter I' by I'=(4#x /3)™/?. The ratio be-
tween the ‘critical” density to the freezing density,
X /Xp, increases monotonically when the potential be-
comes less steep and of longer range; e.g., it is 0.90 for
m= o, 1.01 for m =9, and 1.09 for m =4. The results
for the Lennard-Jones (12-6) system, given in Table II,
are generally consistent with those for the inverse-power
potential with an effective power which increases from
m =12 as the temperature is lowered along the freezing
line. The effective power can be defined by the logarith-
mic derivative, m =3(3InT*/3d1np*), along the freez-
ing line, which gives m =m for the inverse-power po-
tentials. Similarly consistent results for the exp-6 poten-
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TABLE 1. Freezing and melting densities of the inverse-
power potentials, ¢(7)=g(o /r)™. The simulation results [13,14]
for the reduced freezing (xr) and melting (x,,) densities,
x =(e/kT)*™(po?), compared with the HNC instability param-
eters (x¢).

m Xp Xp Xc Xc/Xp

© 1.041 0.943 0.850 0.90

12 1.193 1.141 1.084 0.95
9 1.373 1.333 1.346 1.01
6 2.21 2.17 2.27 1.04
4 4.57 4.53 4.94 1.09
1 1.24 X 10° 1.24X%10° 1.65X% 10° 1.33

tial are given in Table III. The results for the Yukawa
potential are presented in Table IV and in Figs. 2 and 3.
Note that Fig. 1 is constructed for comparison with Fig.
2. The HNC instability is thus the first freezing indicator
of its type, which indicates reasonably well the freezing
density for any potential.

The exploration of the “critical” instability densities
for mixtures is technically the same as for the one-
component systems. The binary mixture is composed of
two types of particles of relative concentrations
Xy;X,=1—x,, interacting via the potentials ¢,;(r)
(i,j=1,2). The binary hard-sphere mixture, composed
of hard spheres of radii R; (i=1,2), is completely
characterized by x;, the ratio R,/R, and the total
packing fraction n=(mpR3}+mpR3)/6, where p
=(N,+N,)/V is the total number density. The results
for binary mixtures of hard spheres are presented in Fig.
4. The two-component plasma is composed of point ions
of charges Q, and Q,, in a uniform neutralizing back-
ground of electrons. The pair interaction is the Coulomb
potential B¢, ;(r)=TQ;Q;/r with r measured in units
of the total Wigner-Seitz radius, ayg, given by
4maiys /3=p. Following the ion-sphere model, the mix-
ture excess free energy can be approximated by the one-
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FIG. 1. Freezing and melting densities of the inverse-power
potentials, B¢(r)=Tr ™. The simulation results [13] for the
freezing (circles) and melting (squares) parameters in the range
1<m <9 are compared with the HNC instability parameters
(full line). To compare with the results for the Yukawa system
we plot T*=e?/T vsa=(m —1)/2.
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TABLE II. Freezing line for the Lennard-Jones potential,
#(r)=4¢[(0/r)'?—(0/r)®]. The reduced freezing density
pr=pro’ as function of the reduced temperature T*=KkT /e
from the simulations [13,15], compared with the HNC instabili-

ty density p&=pco’.

T* PF pt pe/pr
100 2.601 2.48+0.01 0.953
10 1.50 1.425+0.005 0.950
5 1.279 1.205+0.005 0.942
2.74 1.113 1.065+0.002 0.957
1.35 0.964 0.913+0.002 0.947
1.15 0.936 0.883+0.003 0.943
0.75 0.875 0.805+0.005 0.920

TABLE III. Freezing line for the exp-6 potential,

d(r)=e([6/(a—6)]e®! " —[a/(a—6)](a/r)¢), a=13.5.
The reduced freezing density pf =pro® as function of the re-
duced temperature T*=kT /e from a theoretical calculation
[13,16] using lattice dynamics and variational fluid theory, com-
pared with the HNC instability density p&=pco’.

T PF pe p/pF
29.41 3.71 3.95+0.05 1.065
10 2.48 2.55+0.05 1.03

3 1.73 1.751+0.05 1.01

TABLE 1V. Freezing line for the Yukawa potential,

Bo(r)=Te* /r, from molecular dynamics [10] compared with
the HNC instability parameters. The parameters used in Ref.
[10] are related to the potential parameters by T*
=e9/T'/(3/4m)'3, a =a /(3 /41)"3.

Molecular dynamics HNC instability

T* a T* a
0.0089+0.0004 0 0.0081 0
0.0055 2.418
0.079+0.004 2.95 0.083 2.95
0.104 3.627
0.115+0.005 3.86 0.115 3.86
0.166 4.836
0.198+0.008 5.38 0.196 5.38
0.293 6.770
0.2841+0.008 6.87
r a r a
180+10 0 19812 0
329+2 1.5
390+20 1.83 41312 1.83
58313 2.25
664130 2.39 66213 2.39
1225+5 3
176070 3.34 1775+10 3.34
480010 4.2
5460150 4.26
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FIG. 2. Freezing line for the Yukawa potential, B¢(r)
=Te® /r, from molecular dynamics [10] (open circles and full
line) compared with the HNC instability parameters (full cir-
cles and broken line). Also shown are the melting line (squares)
and the bcc-fce transition line for the solid [10]. The parame-
ters used in Ref. [10] are related to the potential parameters by
T*=e%/T/(3/4m)" % ,a=a/(3/4m)"">.

component system with an effective coupling given by
[17] Tg=T(Q)'3(Q5), where (Q')=x,0Q! +x,0%.
To this first approximation it is thus expected [17] that
the freezing of the binary ionic mixture is given by the
freezing of the one-component system (I'4)=180. We
thus define T*=198/((Q)!3(Q5%)), which is the ex-
pected value of I'¢ ., in that approximation. The results
for the ratio G =T ¢ ,;,/T'* between the calculated insta-
bility coupling parameter and that expected on the basis
of ion-sphere scaling for the binary ionic mixture are
given in Fig. 5. Let Z=Q,/Q, be the charge ratio
(@, = Q,); then the freezing line at constant charge densi-
ty, as predicted by the scaling approximation above, is
given by T/T,=1+(Z53—1)x,, where T, is the freez-
ing temperature for the one-component system of charges
Q,, i.e.,, x;=0. The instability line at constant charge
density is given by (see Figs. 6 and 7)
T/T,=[1+(Z°—1)x,]1/G, where now T}, is the insta-

5000} .
4000
L 3000f
20001 FLUID ]
1000} ’
0 oX SOLID
X 1 ° X A 1 1
0 1 2 3 4
o
FIG. 3. Freezing line for the Yukawa potential,

Bé(r)=Te*/r, from molecular dynamics [10] (X ) compared
with the HNC instability parameters (open circles). See Table
Iv.
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FIG. 4. “Critical” (HNC instability) parameters as a function
of the total packing fraction of the spheres and the concentra-
tion of the large spheres, for binary hard-sphere mixtures with
diameter ratios 0,/0,=1.5 (circles) and o,/0,=2.5 (squares).
The lines serve as a guide to the eye.

bility temperature for the one-component system of
charges Q,,1.e., x; =0.

IV. DISCUSSION

The present results for a large variety of pair interac-
tions (“hard spheres,” ‘“Yukawa,” ‘“Lennard-Jones (12-
6),” and “exp-6" potentials), together with the results of
Ref. [5] for the soft inverse-power potentials, enable
finding a general systematic behavior. The ratio between
the “critical” (“instability”) densities, p., and the freez-
ing densities, pr, increases monotonically as the steepness
of the interaction decreases. It varies between the ex-
treme values of p-/pr=0.9 for hard spheres and
pc/pr=1.3 for the Coulomb potential. Since the di-

20f

ratio

00 02 04 06 08 10
concentration of large charges x|

FIG. 5. “Critical” (HNC instability) parameters for the two-
component plasma, composed of two types of ions in a compen-
sating rigid background of electrons. Results for charge ratios
Q,/Q,=1.4,2,4,8 are given as a function of the concentration
of the large charges and the coupling parameter given in terms
of the “ratio” (see the text) between the calculated instability
couling parameter and that expected on the basis of ion-sphere
scaling for the binary ionic mixture.

FIG. 6. The instability temperature at constant charge densi-
ty, T/T,, for a binary ionic mixture with charge ratio
0,/Q,=1.4, as a function of the concentration of the larger
charges, x,. T, is the instability temperature for the one-
component system of charges Q,, i.e., at x, =0.

agrammatic iteration does not give information about the
solid, pc cannot be equal to pr and thus represents a
structural (not thermodynamic) freezing indicator. The
relevant scale for evaluating the correlations between the
“instability” densities p- and the freezing p for not very
soft potentials is the density change upon freezing. On
this scale, the “instability”’ densities pc correlate with the
freezing parameters pp for the corresponding systems,
better than any other Lindemann-type freezing indicator.
In this context the gross empirical correlation between
pc/prp=1 and crossover between the fcc and bce relative
stability of the coexisting crystal structure, as found for
both the inverse-power potentials [5] and for the Yukawa
system, are interesting. The accurate determination of
the freezing density for the one-component plasma is
difficult for any theory, and the 30% difference between
pc and pp corresponding to the difference between
I' =200 and 180, respectively, is on the scale of the uncer-
tainty for pg.

Accurate freezing results for mixtures are required be-
fore a detailed comparison with the instability densities
can be performed. Pending the availability of the ap-
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concentration of large charges x,

FIG. 7. The instability temperature at constant charge densi-
ty, T/T,, for a binary ionic mixture with charge ratio
Q,/Q,=2, as a function of the concentration of the larger
charges, x,. T, is the instability temperature for the one-
component system of charges Q,, i.e., at x, =0.
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propriate freezing simulation data for mixtures, it is in-
teresting to observe that the hard-sphere results of Fig. 4
are in qualitative agreement with the results in Ref. [18],
based on density-functional calculations, and the results
of Ref. [19]. The qualitative similarity between our re-
sults for hard spheres and point ions, Figs. 4 and 5, is also
interesting. Both show that the fluid phase is stable to a
higher density in the binary mixture than in the mono-
disperse system, and that the maximum fluid freezing
density occurs in mixtures rich in small particles, with
the proportion of small spheres increasing sharply with
increasing diameter ratio. The density of the binary-
mixture fluid increases from that for the monodisperse
case up to a maximum value for diameter ratios about 1.5
and then decreases. These results for the instability den-
sities for mixtures are also in qualitative agreement with
recent experiments, using light scattering and scanning
electron microscopy, on the phase behavior of mixtures
of colloidal hard spheres [20]. Qualitatively similar phase
behavior has also been observed [21] in binary suspen-
sions of charged colloids where at intermediate composi-
tions the liquid phase remained stable up to a higher
number density in the mixture than in the individual pure
suspensions. Figure 6 favors the carbon-oxygen phase di-
agram of Ref. [22] over that of Ref. [23], while Fig. 7 pre-
dicts an “azeotropic” or “‘eutectic” phase diagram for the
helium-hydrogen binary ionic mixture.

The “instability” parameters p. represent perhaps an
upper bound for the radius of convergence of the di-
agrammatic, small-p, Mayer expansion of the pair-
correlation functions. This seems to be a reasonable con-
clusion if we recall that the diagrammatic expansion as
described by van Leeuven et al. [1] begins with the HNC
approximation, and its failure to converge may be indica-
tive for the full expansion. It should be remembered,
however, that the omitted bridge diagrams could make
the true radius of convergence either larger or smaller.
Moreover, since the HNC approximation is only the first
step in the systematic diagrammatic expansion [1], its in-
stability need not indicate anything about real physics.
The correlation between p. and freezing however, pro-
vides strong indication that there is real physics behind
it. It demonstrates that the diagrammatic iteration pro-
cess, which eventually builds up the fluid correlation
functions, also contains information regarding the stabili-
ty of this structure. The question of what is the specific,
local, or integral property of a given pair structure,
which makes it unstable with respect to the iteration
loop, is still open. The structure factors S (k)=1+ph (k)
as obtained from the solution of the HNC equation at the
instability density for a large variety of potentials are
displayed together in Fig. 8. These S (k) exhibit the ex-
pected similarity as featured by the Hansen-Verlet “rule”
[13,15] concerning the height of the first peak of the
structure factor. The solutions do not exhibit, however,
any drastic change across the instability densities, except
of course the stability property with respect to the itera-
tion loop. The standard stability analysis [24] of the di-
agrammatic iterative map may eventually lead to an
answer, giving perhaps a different quantitative structural
definition for ‘‘effective packing.” It should be em-

S(k)

FIG. 8. The structure factors S (k) as obtained from the solu-
tion of the HNC equation at the “critical” (instability) density
for all soft inverse-power potentials and all Yukawa potentials
considered in Tables I and IV. The “wave vector” k is in units
of the inverse of the Wigner-Seitz radius.

phasized, however, that the real eigenvalue spectrum of
the Floquet matrix [24] (corresponding to the lineariza-
tion of the iteration map) for the iterations near the HNC
solution does not show any qualitative change across the
“critical” density. Our extensive effort with the standard
linear-stability analysis only indicated the need to go
beyond the linear analysis. Considering the multidimen-
sionality of the iterative map (D ==N) makes the task very
(if not prohibitively) complicated. The relation of the
three-function limit cycles to Sharkovsky’s theorem [25],
if it exists, also remains to be clarified.

The HNC integral equation provides an accurate
description of the fluid pair structure and features an in-
stability which provides a good estimate of the freezing
density. Considering the asymptotic (““Onsager”’) limit of
the solutions to the HNC equation the ‘““ideal liquid,” it
then provides, as the initial seed for the diagrammatic
iteration loop, both the structure of the fluid and an indi-
cation of its instability. The HNC instability, as a sem-
iempirical freezing indicator, is at present the only one of
its kind to be nearly equally accurate for all potentials.
Accurate simulation results for the freezing of fluid mix-
tures are still needed in order to evaluate the instability
lines for mixtures.

APPENDIX: ASYMPTOTIC DIRECT
CORRELATION FUNCTIONS (REF. [4)

(a) The asymptotic (Onsager) direct correlation
function for the two-component plasma, composed of
point ions of charges Q; and Q,, has the form
(i,j =2)cfing,ij(r)= —T'¥;(r), where W;(r) is given by
the electrostatic interaction between the two charges Q,
and Q, at distance r, when each is uniformly smeared in
the volume of a sphere of radius R, and R,, respectively.
The distance r is measured in units of the total Wigner-
Seitz radius, aws, and R} =Q,/{(Q) and R3=0Q,/(Q),
where (Q)=x,Q,+x,0,. Let R;>R, and define
the quantities X;=R;—R,, Xzg=R,+R,, V;
=4wR3}/3, V,=4mwR3/3, Az=2w/12)(Xg—X.)%
A =—3m/12)(Xg X, )?, A,=2(mw/12)Xg (X3 +3X}),
and A;=—3(m/12)(X3 +X}); then the function W,,(r)
is given by the following expressions.
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W,(r)=

Q1Q2/r for r>XR .

(b) The asymptotic (Onsager) direct correlation func-
tion for the Yukawa potential Boy, (r)=Te ™% /r has the
form c{nc(r)=—T'VW(a,r), where ¥(a,r) is given by the
Yukawa interaction between two “‘charges” g. at dis-
tance r, each uniformly smeared in the volume of a
sphere of unit radius. The distance r is measured in
units of the Wigner-Seitz radius, awg. Define S
=e*a—1)+e %a+1), then q.z=2/3/(Sp/a?.
Define further 4 =3¢%;/a% B=1.54(1—a%)/a’ V=
—3q.4(1+a)/a®/e® The function W(a,r) is given by

W(a,r)=A +Br/2+ Ar®/16+V(1—e =) /a/r
+(V2/2/a/a/r)[1—cosh(ar)] for r<2

Q10,47 /V IV, Agr?/3+ Az (X} —r2)/2+ A(Xg — X))
+ A, (X3 —X})/2+ A5(X3 —XP)/3+(m/12)( X3 —X})/5] for r <X,
0,0,(4m/V IV, AzX: /3/r + A, (PP —X32)/2/r
+ A,(rP—X})/3/r + Ay(r*—X}) /4/r +(m /12)(r®—X[) /6 /r + A (Xg — 1)
+ A(X3—r2)/2+ A5 (X3 —r®) /3 +(m/12) (X3 —r°) /5] for X, <r <Xg

[
and

Y(a,r)=e “/r forr>2.

This representation for the Yukawa asymptotic limit
function is based on an analysis [26] of the Onsager limit
for Yukawa mixtures. It is identical to the function given
in Appendix B of Ref. [27], which was derived as a limit
of the mean-spherical-approximation direct correlation
function.

(c) The asymptotic (Onsager) direct correlation func-
tions C,7(r), for the binary hard-sphere mixture, is pro-
portional to the overlap volume of two spheres of radii
R,,R, and separation r, ,,(r). We do not know a priori
the coefficient c,;; (r =0) for the HNC equation.
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