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Thermal attenuation and dispersion of sound in a periodic emulsion
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We investigate the attenuation and dispersion of sound waves in suspensions and emulsions caused by
the thermal-transport process. They combine to constitute the effective compressibility of the system.
We begin with an attempt to justify the Isakovich formula for calculating the effective compressibility.
The formula is then rewritten in terms of the interfacial heat flux. Isakovich's analysis is simply an
independent-particle approximation. It is the purpose of this paper to consider the effect of interparticle
interactions. The effective compressibility is calculated for an array of spherical particles or droplets
centered at the points of a periodic lattice, immersed in a fluid of different species. Ewald s method of
fast-convergent lattice sums in electrostatics is extended to a technique for the heat-conduction problem
in a periodic emulsion. The computation for cubic lattices reveals that the interparticle interactions act
to reduce, in the lower-frequency range, both the attenuation coefficient and the departure of the sound
velocity from its high-frequency limit. The striking feature is that a drastic change in attenuation occurs
when the thermal conductivity of the particle is substantially larger than that of the ambient fluid.

PACS number(s): 82.70.Kj, 44.30.+v, 43.35.+d, 63.90.+ t

I. INTRODUCTION

Sound waves propagating through a fiuid medium en-
tail attenuation due to the existence of viscous dissipation
and thermal conduction. When the systems are mixtures
of two or more materials, the increased attenuation and
dispersion of sound are observed. These phenomena are
of great importance in connection with the acoustic-wave
propagation through fog, ocean or ocean bottom, and ul-
trasonic measurements of biological membranes and
biomolecules, etc.

A theoretical treatment of the viscous-dissipation loss
of sound in a suspension dates back to Sewell [1], who
placed the restriction that the suspended particle is rigid
and immovable. This restriction was relaxed by Lamb [2]
to allow for the free motion of a particle. Epstein [3] ex-
tended the theory to include elastic particles.

As for the thermal-conduction loss, Zener and co-
workers [4] developed a theory in the context of polycrys-
tals (see Ref. [5]). Isakovich [6] also pointed out the
significance of heat exchange between particles and the
medium in suspensions and emulsions. He reasoned that
compression or dilatation of volume during the passage
of a sound wave brings about a temperature jump at the
droplet-fluid interface, causing a heat flow from one com-
ponent to another. Such a heat-exchange process leads to
internal entropy production, which results in enhanced
attenuation and dispersion of sound. A comprehensive
theoretical framework that includes both viscous dissipa-
tion and thermal conduction was given independently by
Epstein and Carhart [7]. Chow [8] generalized the frame-
work to include the surface tension and larger-amplitude
oscillations of particles. Allegra and Hawley [9] carried
through a further analysis to be applicable to isotropic

solids. They gave a thorough review of previous experi-
mental as well as theoretical studies.

The relative importance of heat and momentum
transfer in sound propagation depends on the material
constants of systems. However, some theoretical argu-
ments and elaborate experimental tests clarified that the
thermal-transport process can be the major factor in the
sound attenuation in many systems such as air containing
water droplets, aqueous suspensions of polystyrene
spheres, and various kinds of emulsions of one liquid in
another [8—12]. On this ground, we focus our attention
on the heat-transfer mechanism.

Several attempts have been made to extend the above-
mentioned work. Among them are studies to include the
dispersion of sound velocity [13], to establish a theory
applicable in a wider frequency range [14], and to take
account of phase transitions, by accommodating interfa-
cial mass transfer as well [15—17]. Despite this long his-
tory of the subject, very little is known about the effect of
particle-to-particle or droplet-to-droplet interactions
upon sound attenuation and dispersion in three-
dimensional suspensions and emulsions.

The objective of the present investigation is first to pro-
vide the formulation of the problem of the excess attenua-
tion and dispersion of sound in an emulsion due to heat
transfer, and second, to elucidate the effect of the mutual
interactions of particles. In keeping with this, we neglect
the viscosity of fluid. In other words, we leave the shear
wave out of consideration. Besides, we postulate that the
wavelength of the compressional wave is much longer
than that of the thermal wave and the interparticle dis-
tances as well as the particle size. This means that the
pressure fluctuation is regarded as uniform over the re-
gion under investigation.
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To be more specific, we explain the heat-exchange
mechanism by the passage of sound in some detail. The
basic laws of fluid mechanics express the conservation of
mass, momentum, and energy. The corresponding partial
differential equations combine to yield, after lineariza-
tion, the following system of equations [14]:

P —V. —Vp —a =0,()2p 1 ()2T
(1.1)

Bt P0 Bt

aT Tpcx ()p
V (~VT) =0

Bt P0c pocp Bt
(1.2}

In the above, p denotes the pressure fluctuation, T the
temperature fluctuation, and T0 and p0 stand for the
values of temperature and density in equilibrium, respec-
tively. The constant a= —(1/p)(Bp/dT)~ is the
coefficient of thermal expansion, P=(1/p)(Bp/Bp)z the
isothermal compressibility, ~ the thermal conductivity,
and c the specific heat at constant pressure. For deriva-
tion of (1.2), it suffices to recall the thermodynamic rela-
tion

Tds =c dT — dp,
TQ (1.3)
p

where s denotes the entropy per unit mass. In the ab-
sence of a, (1.1) and (1.2} express the propagation of
compressional and thermal waves, respectively. It fol-
lows that a plays the key role of linking the thermal wave
to the compressional wave. Komura et al. [14] solved
both (1.1) and (1.2) directly for a one-dimensional period-
ic heterogeneous medium with no restriction placed on
the frequency range. Such a coupled equation system
may be considered to be equivalent to those employed by
Epstein and Carhart and Allegra and Hawley. They dea-
lt with the problem of a single spherical particle under
the stipulation that the wavelength of sound is much
longer than that of the thermal wave as well as the parti-
cle size. But it seems to be a hard task to search for the
solution of (1.1) and (1.2) for many-particle systems in

three dimensions.
Temkin and Dobbins [13] devised an intriguing ap-

proach that relies on coupled equations for one-
dimensional variables derived by taking a certain average
in each component (see Ref. [18]). Though the sound at-
tenuation deduced by them agrees with that of Ref. [7] at
low frequencies, it exhibits discrepancies at high frequen-
cies. Moreover, it is not straightforward to incorporate
the particle-to-particle interactions into their formalism.

For these reasons, the most appropriate approach for
our purpose is to come back to Isakovich's idea. Its key
point is to skip the compressional-wave equation (1.1)
and thereby to reduce the problem to the solution of the
heat-conduction problem (1.2) only. This is made possi-
ble because of the long wavelength of the pressure wave,
under which the interplay of compressional and thermal
waves becomes weak [7,14]. The eifective compressibili-

ty, or the complex wave number, is then accessible owing
to linearity and causality of the system under investiga-
tion. A formula for calculating the dispersion relation of
sound velocity and the coefficient of sound attenuation

II. DERIVATION OF THE FORMULA
FOR THE ATTENUATION AND DISPERSION

OF SOUND

In this section, we shall derive a formula for calculat-
ing the complex wave number whose real part gives the
sound speed and whose imaginary part is the excess at-
tenuation coefficient. We begin with the rederivation of
the Isakovich formula [6].

A. Isakovich formula

Isakovich proposed his formula via an intuitive argu-
ment on the generalized compressibility in the presence
of the heat conduction, using the relation 5p/p
=P5p —a5T. It is informative to approach it from the
opposite side, namely, the energy dissipation or the sound
attenuation.

The rate of energy dissipation E',',h, attributable to
heat conduction, is given by

E',',h = —To J V (vV T)dV . —-
mech 0 (2.1)

Let us divide the temperature field into the equilibrium
temperature T0 and fluctuating part T, which is periodic
in time. Substituting T~T0+ T into (2.1) and taking

was derived by Isakovich in an ingenious but rather intui-
tive manner.

In Sec. II, we give a theoretical justification for
Isakovich's approach, starting from the entropy produc-
tion formula in thermodynamics and fluid mechanics.
Thereafter his formula is cast into an alternative form
which is quite illuminating, admitting a lucid physical in-
terpretation. It is then apparent that Isakovich's analysis
neglects the interparticle interactions through thermal
waves and replaces the many-particle problem by the
isolated-sphere problem. The interparticle interactions
are the main subjects of this paper. Our formalism,
presented in Sec. II, gives rise to a by-product even under
the isolated-sphere approximation: for emulsions with
very different thermometric conductivity (the sphere's be-
ing much smaller), a frequency region shows up where
the attenuation coefficient does not depend on the fre-
quency.

In Sec. III, we highlight the interparticle interactions.
As a step towards it, we turn out attention to dilute emul-
sions of spherical particles arranged in a periodic lattice.
To construct a solution of (1.2), we resort to a singular
perturbation technique called the method of matched
asymptotic expansions. In manipulating the matching
conditions, a fast-convergent method of lattice sums de-
vised by Ewald [19] is extended to a new technique appl-
icable to the heat-conduction problem. Numerical com-
putation is performed for three kinds of cubic lattices,
namely, simple cubic, body-centered, and face-centered
cubic lattices. It will be shown that the importance of
particle-interaction effect depends sensitively upon the
material properties, especially the thermal conductivity.
The final section (Sec. IV) is devoted to a summary and
conclusions.
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E',',h = f TV.(aV T) dv,
To V

(2.2)

only terms up to second order in the fluctuation, we are
left with, after the time average over one period,

glV1rlg

k(ro)
( )(a T) (2.11)

where the overbar signifies the time average. Substitution
from (1.2) then gives

v Bt
(2.3)

~E',',h ~

= ——f aim(TP')dV, (2.4)

where the symbol Im means the imaginary part and the
asterisk indicates the complex conjugate.

Let us define c as the sound speed for the heterogene-
ous medium under consideration. The mean total energy
would be expressed as

E= f p dV=
2 f PP'dV,

c'&po& v 2c'(p ) v
(2.5)

where ( ) stands for the spatial average. We do not
give here a mathematical proof for this. The reader may
take this as a plausibility argument but could accept it
from the sound energy density, e

e=&p v'+ ~ p'1

2po ~p
(2.6)

and

We send a monochromatic wave into the medium and
put the pressure and temperature perturbations to be

p =Re(Pe ' ') and T=Re(Te '"'), where co, being a
real number, is the angular frequency, and the symbol Re
means the real part of the following expression. Presum-
ing no confusion, we use T both for the total temperature
perturbation and for its amplitude indistinguishably.
Then (2.3) is reduced to

where a, is a real function of co. The quantity [k (co)/co]
plays the role of susceptibility relating the response p to
the stimulus p. Owing to the linearity and causality of
the system, the Krarners-Kronig relationship guarantees
that once the e-dependent imaginary part of the suscepti-
bility is available, the real part is uniquely determined
without going into details of the dynamics [21—23].
However, because of lack of the knowledge of functional
form of (2.10), we have no alternative but to appeal to the
limiting behavior of k (co) as co~ 00. In the high-

frequency limit, the internal process becomes adiabatic,
so that the temperature is given by

Toa

Bp pocp
P ~ (2.12)

and that the limiting sound velocity CLL is made simply
from the volume average of the adiabatic compressibility
p/y:

c„=1/[(p, &(P/y ) ] '", (2.13)

Here g is the so-called condensation defined by

g=PP aT, — (2.15}

and use has been made of the thermodynamic relation
P(1 —1/y ) = Toa'/(poc~ ).

B. Alternative form of the Isakovich formula

where y is the specific-heat ratio. By comparing (2.11)
with the limiting expression k =(o/cLL, we obtain the
form of a

&
and thus we reach the Isakovich formula

(2.14)

E=f pdV,
v p0 Bp

(2.7}

The physical meaning of the Isakovich formula is made
clear if we transform (2.14) into another form derived in
what follows. For a monochromatic wave proportional
to e ' ', (1.2) is written as

6= IE(T).
h I /(2cE ) .

Introducing (2.4) and (2.7) into (2.8), we find that

(2.8)

where use has been made of the viral theorem of mechan-
ics. In the above, v is the fluid velocity and p is the densi-
ty fiuctuation [20].

The attenuation coeScient 5 is defined by

1 Tou
icoT= —V (~V T) P.

pocp ppCp
(2.16)

V (aVT) dv,
copocp PpoCp

Insertion of (2.16) into (2.14) with (2.15) yields

ci) (p() ) T()a
k = pV v

5= —
—,'ca)(po&Im(aT/P ) . (2.9) (2.17}

Im[k ((o)]=—co (p())Im(aT/P), (2.10)

Here the assumption that the pressure may be thought of
as uniform is to be remembered.

Now we are in a position to introduce a complex wave
number k(co) =k„+ik, , whose real part is related to the
bulk sound speed c through c =co/k„and whose imagi-
nary part is the attenuation coefficient 5 =k;. Then, (2.9)
reads

where Vis the total volume of the system.
We try to transform the last term of (2.17}into the sur-

face integrals at the interfaces. For this, we restrict our
attention to emulsions in which suspended particles or
droplets are composed of an identical substance with
common material constants, and specify the suspended
particles by the subscript I and the suspending fluid by
the subscript 2. The proper boundary conditions on the
surface S"of the ith particle are
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Ti =T2, (aiVTi ).n=(a)VT)).n, (2 18) noted that

where n is the unit vector along the outward normal to
the particle. In addition, we neglect the contribution
from the surface integral at the boundary receding to
infinity by assuming the sufficiently rapid decay of the
temperature field with distances. Then (2.17) becomes,
with the help of Gauss's theorem,

f TC, V (vVTq )dV=0
v

for T+ and V T~ are entirely out of phase. Omitting
(k/E), with E = (1+i)(poc co/2x )'~, we obtain

poaq
2

p = —icopo(y+4&)= T +constT@ .

k =a). &p, )
y

a2 a1

NP p2Cp p 1' Then (2.21) is written as

1
X —gq,

q; = —f,(aV T) n dS,

1/2

(2.19)

(2.20)

E',',„=f pV (lrVT~)dV,
V Pocp

where we have used the thermodynamic identity

aq cp

y —1 a TO

Hence we arrive at
and the summation is taken over all particles. The ex-
pression (2.19) implies that the thermal attenuation and
dispersion are featured by the heat-transfer rate q; across
the interfaces. Note that the boundary conditions (2.18)
pertain to the systems that exhibit no phase transitions.
With phase transition, due to the latent-heat generation
inside the interface, (2.18) must be replaced by another
one and (2.19) ceases to be valid [15,16].

The Isakovich formula can be derived from hydro-
dynamical principles under certain approximations. We
will not go into detail but will give an outline of our
derivation. We start with Epstein-Carhart s formalism
[7], where the pressure and the temperature fields are ex-
pressed as linear combinations of two scalar fields tp and

To be more specific, the sum y+4=y is the scalar
velocity potential so that the fluid velocity v is expressed
as v=Vy. Let T be the fluctuating part of the tempera-
ture field. Following Epstein and Carhart, we may safely
separate the Tfield as T=T +T~, where

(T) 1 a2 a1

2 p2C p1C
Re P~ g q; . (2.22)

P2Cp

a1

P1Cp
T P —toot (2.23)

is established between the two phases with no time lag. It
is followed by the heat current q, from the higher temper-
ature phase to the lower one. The amount of work done
associated with this relaxation process is furnished by
(2.22).

Starting from (2.22) in place of (2.3), we are able to reach
(2.19) again.

Equation (2.22) is helpful in understanding the heat-
exchange mechanism. In response to the incident pres-
sure wave, the temperature difference

T = ice[(y ——1)/aq ]g, Tc, = —(poc~/a~)4,

with q~=y/pg. The latter satisfies the thermal diffusion

equation, namely,

1
V (IrVT~)=0.

pocp

Then we obtain

E~h= T V'. KVT@ dV .
To v

(2.21)

To arrive at the expression (2.21), we have neglected the
Stokes-Kirchhoff dissipation with a minor renormaliza-
tion arising from the reflection waves in the p field, name-

ly,

C. Dilute emulsion of independent spherical particles

BT BT
T =T, K =K2 at~=a.

1 2 1 g 2 (2.24)

Subject to (2.24), the solution of (2.16) takes the form

It is worthwhile to revisit the problem of a very dilute
emulsion of spherical droplets or particles. With the
phrase "very dilute, " we mean that mutual interactions
among the particles may be disregarded. The result is in-

cluded in Ref. [6], and we make a few explanatory com-
ments on it.

We consider a spherical particle or droplet of radius a
embedded in a fluid of different sort and choose polar
coordinates (r, B,Q) with the origin taken at the center of
the sphere. Then the boundary conditions reduce to

f T~V.(~VT )dV
v

has been neglected. This is justified as long as the volume
fraction of the suspended particles is not too small. It is

T] c

Toa1 + sinh[(l —i)n&r] Pe.
P1Cp r

for r ~a, (2.25a)
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T2=
T

TO(X2 A 2 —[( ]—') ]+ e 2 Pe Ecof

p2CJ,

for r )a, (2.25b)

where n; =(cop;c~ /2K; )' for i = 1,2 is the wavelength of
the thermal wave, and A, and A2 are the constants com-

plying with (2.24). Insertion of (2.25) into (2.14) or (2.19)
yields

1/2

(2.26a)
3ieTO&po&CLL-k(oi)= 1+, A

CLL Q N

where e is the volume fraction of the suspended material
characterized by the subscript 1 and

A=
'2

EX2 Q)

P2Cp p1Cp

KiKz[(1 —i)nba + 1][(1—i)n ia —tanh[(1 —i)n, a] }

Ki [ ( 1 —i)n ia —tanh[( 1 i—)n i a] }+Kitanh[( 1 —i)n &a][( 1 —i)n&a + 1 ]
(2.26b)

Here the definition of CLL given by (2.13) is to be under-
stood.

For e«1, the limiting forms of this expression for
both cases where the thermal wavelength is much greater
and much less than the size of the suspended particles are
easily written out. At very low frequencies (n, a «1 and
n, a «1),

CO E'

LL 0 LL &PO&PI p

(2.22), we may say that the heat fiux q is proportional to
because the temperature variation is confined to the

skin depth of thermal clothes. It is not difficult to realize
that the dependence of (2.28) on frequency is in accord
with that associated with sound reflection from a solid
wall [24,25].

It deserves emphasis that a novel feature shows up
when the thermometric conductivity y=K/pc& of the
suspended substance is much smaller than that of the am-
bient fiuid. Manipulation of (2.26) uncovers that for
n ia )) 1 and nba « 1 under the constraint Ki(n, a) ))Kz,

a2 a,
P2c& Plc

(2.27a) E52 a2 a&
C CLL 1 TOCLL &Po&K

2QN P2c& P lc

K(
TocLL & po&picJ +

6K) 5 K2

K2
X 1+

2Ki(n, a)(n~a)
(2.29a)

Q2
X

p2Cp

a,
p&CJ,

'2

0 N (2.27b) 36' CX2 CX (

, TocLL&PO&Kz
20 p2cz p&c

'2

(2.29b)

At very high frequencies (n i a » 1 and nba » 1),

c-c 1—LL
CK2 a&36'

TocLL & po&
2a i/2' P2c& Plc

(KiPicp ) + (Kippcp )
(2.28a)

'2

(KiPicp ) +(Kippcp )
(2.28b)

At low frequencies, the attenuation coefficient 5 given by
(2.27b) is proportional to co, which happens to agree with
the Stokes-Kirchhoff formula in the homogeneous media.
But their physical mechanisms are different from each
other and these effects are additive. The source of (2.27b)
is traced to the nonstationary term in (2.16). The forms
of (2.28a) and (2.28b) are inherent in the heterogeneous
media. At high frequencies, 6 is proportional to co', be-
cause only a small fraction of the volume confined to the
thermal boundary layer with thickness (cope~ /K)
takes part in the loss mechanism. From the standpoint of

The examination of the temperature field (2.25) in this
frequency range indicates that the boundary conditions
(2.18) imposed at the interface are virtually equiva-
lent to the fixed temperature condition ( Ti

= Tz
=[Toailpic ]Pe '"'at r =a) on account of the relative

largeness of the specific heat of the particle. In this case,
the heat flux q is proportional to co, so is the attenuation
coefficient. We are reminded that the same frequency
dependence is touched on in Ref. [20]. This particular
behavior is intrinsic to spherical particles or, more pre-
cisely, curved interfaces. For flat interfaces, heat flux in-
dependent of co is in no way compatible with the fixed
boundary condition. It is interesting to note that the sys-
tems undergoing the first-order phase transition within
the interface show the same behavior [16].

To illustrate the significance of the heat-exchange
mechanism, we show in Fig. 1 the excess attenuation per
wavelength A. =2m. /k and the sound velocity normalized
by CLL simultaneously as functions of the normalized fre-
quency n2a for an emulsion of 20%%uo by volume toluene in
water. For comparison, the attenuation per wavelength
for pure water, based on the formula of Stokes-Kirchoff,
is shown as a dashed line. The material constants em-
ployed here and hereafter are taken from the tables in
Ref. [9), except for air, and the values at 20 C, which are
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FIG. 1. Excess attenuation per wavelength 5&( =2~5/k) and
normalized sound velocity c/c«as functions of
n~a =(cop2c~ /2~2)' a, the ratio of droplet radius a to skin

depth of thermal wave in the suspending fluid, for an emulsion
of 20% by volume toluene in water at 20'C. Here cLL is the
high-frequency limit of the sound velocity and is given by (2.13).
The values are calculated from (2.26a) and (2.26b). The dashed
line displays the attenuation per wavelength for pure water
based on the formula of Stokes-Kirchhoff.

100

10

10

adopted, are listed in Table I. For air, the physical pa-
rameters at 22'C are chosen from Ref. [7]. It is apparent
that the sound attenuation is dominated by the interfacial
heat transfer over a wide frequency range, but that this is
not the case when the frequency becomes very large. The
transition between them was clearly exemplified by
Komura et al. [14], dealing with a one-dimensional
medium.

Figure 2(a) presents the frequency dependence of the
attenuation coefficients for suspensions of 0.1% by
volume polystyrene in water (the solid line) and in air (the
dashed line). Figure 2(b) is the corresponding graph for
the deficiency (c~L

—c)/ctL of sound speed. The heat
conduction is more effective in air than in water, mainly
because the magnitude of cz/pc of air is much larger
than that of water. More remarkable is that for the air
suspension, an intermediate frequency region is
identifiable where the frequency dependence is the same
as that predicted by (2.29). To see this, it is enough to
refer to the difference of values of the thermometric con-
ductivity.

However, all of the results mentioned above forget the
inhuence of the neighboring particles or droplets on
heat-transport process. At low frequencies the tempera-

10

10
0.1

I I I I I I II I I I I I I I I I I I I 111) I I I I 11111

1 10 100 1000
neo = (4)P]cp /2Kt)

ture changes gradually over a thick layer surrounding the
interface. As a result, each droplet is dressed in a thick
clothes of such boundary layer of temperature penetra-
tion that may contain adjacent droplets. The heat-
exchange process may be significantly different from
Isakovich s case. In the next section, we inquire into the
modifications brought about when particle-to-particle in-

teractions are called into play.

FIG. 2. Excess attenuation 6 (a) and deficiency 1 —c/c«of
sound velocity c (b) as functions of nla ={Nplcp /2K1)l/2a, the

ratio of particle radius a to skin depth of thermal wave in the
particle, for an emulsion of 0.1% by volume polystyrene in wa-

ter (solid line) and in air (dashed line) at 20'C. Here c« is the
high-frequency limit of the sound velocity and is given by (2.13).
The values are calculated from (2.26a) and (2.26b).

TABLE I. Physical constants of substances employed in our calculation. The values, except for the
last column (air), are calculated at T =20 C, using the information listed in the tables of Allegra and

Hawley [9]. The values for air, given at T =22'C, are chosen from the table of Epstein and Carhart [7].

p (g/cm')
~ (10 erg/emsec C)
c~ (10' erg/g C)
c (10' cd/sec)
a (10 /C)

Water

0.9964
5.87
4.181
1.483
2.042

Toluene

0.8656
1.6
1.666
1.360

10.71

Polystyrene

1.055
1.15
1.19
2.38
2.6

Air (22'C)

1.17X10 '
0.243
1.00
0.344

36.6
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III. PERIODIC EMULSION

The question of interparticle interactions with respect
to the thermal-transport process was addressed recently
by Onuki [16]. He dealt with sound attenuation in the
critical regime of a phase-separating fluid system and
commented upon the interaction effect for a uniform dis-
tribution of droplets. But in several respects, his treat-
ment is insufficient. In this section, we consider spatially
periodic emulsions and give a more comprehensive
analysis on the attenuation and dispersion of sound.
Though limited in application, this situation has some
relevance to ordered colloidal dispersions, which consist
of electrically interacting charged Brownian particles ar-
ranged in a lattice.

A distinguishing advantage inherent in a periodic sys-
tem is the availability of a powerful mathematical tool for
lattice sums exploited by Ewald [19] (see also Ref. [26]).
This technique has been applied to a variety of solid-fluid
or solid-solid systems, such as the sedimentation problem
for spheres in a lattice [27,28], the effective viscosity of a
periodic suspension [29,30], and the effective conductivity
of composite materials [31,32]. Here we would like to
point out that although there has been an abundance of
studies concerning periodic systems, the calculations of
lattice sums so far implemented have been limited to sys-
tems with very long-range interactions, such as arrays of
Coulomb charges and Stokeslets. However, the thickness
of the thermal boundary layer plays an important role in
the physical mechanism of heat transfer and so the varia-
tion of its thickness cannot be ruled out. Our intention is
to accomplish an extension of Ewald's technique to lat-
tices of spherical droplets with nonstationary interfacial
heat transfer. This procedure is then tied up with a
singular perturbation method.

With these conditions, mutual interaction between the
particles need be considered. The above conditions are
simply expressed by

a «1/n, —1/n2-h «2n/k . . (3.2)

T; =Re[i';Pe ' '], (3.3a)

The equation to be solved both inside and outside the
sphere is provided by (1.2) or (2.16). The boundary con-
ditions (2.24) apply to the interface of the sphere centered
at the origin. The coexistence of conflicting symmetries,
namely, the spherical symmetry associated with the parti-
cle shape and the symmetry associated with the arrange-
ment of the particles, renders the problem difficult. A
way to circumvent this difficulty is to take advantage of a
singular perturbation technique called the method of
matched asymptotic expansions, an explanation of which
is given in the following.

We concentrate on a specific particle and the surround-
ing unit cell bounded by the midplanes between that par-
ticle and the nearest-neighbor ones. The Cartesian coor-
dinates r'=(x'„xz, x3) or polar coordinates (r', 8,$) are
introduced such that the origin coincides with the center
of the sphere. Here as a tentative notation we distinguish
the dimensional coordinates by primed variables. The
inner region consists of both the interior of the particle
and its immediate neighborhood [r'-O(a)]. The outside
of it [r'-O(1/n2)] is referred to as the outer region.
Accordingly, we introduce the inner variable r=r'/a and
the outer one F=n2r', with which we nondimensionalize
(2.16) in each region. As in Sec. IIB, the temperature
field is decomposed into the incident wave and the
diffraction component T,

' and thus expressed, corre-
sponding to the pressure perturbations p =Re[Pe '"'],
as

A. Formulation of the problem:
matched asymptotic expansions

with

f'; = T +Toa; /(p; cz ) . (3.3b)
Consider a set of identical spherical particles or drop-

lets of radius a, which form an infinite three-dimensional
regular lattice embedded in another fluid. Coordinates of
sphere centers are

r =lia"'+l2a' '+l a' '
1 1 2 3

(1„l2,13 =0,+1,+2, . . . ),
where a"', a' ', and a' ' are the basic lattice vectors that
constitute the basis for a unit cell having volume
so =a" '(a' ' Xa' '). The volume fraction of suspended
substance is e=4na/3', which is. assumed to be small.
We are reminded that the wavelength 2~/k of the pres-
sure wave is much longer than the lattice parameter h
(particle-to-particle distance) as well as the particle ra-
dius, so that the pressure may be taken as uniform. Upon
the thermal wave, we impose a condition that the thick-
ness 1/n with n =(cope /2~)'~ of the thermal boundary
layer is much larger than the particle size, but it may be
comparable with the lattice parameter. Also, the condi-
tion that n, —n 2 or y, -y2 is necessary for our expansion
scheme to be valid.

Then, in the inner region, the diffraction component
obeys

hT
&

= —2iR' QT
&

for r (1,
b, Tz= —2iQTz for 1&r ~R, /a .

(3.4a)

(3.4b)

In the outer region, it takes the form

AT2 = —2i T2 for r + n2R, , (3.5)

where Q=(n2a), 8 =n, /n2, and b, is the three-
dimensional Laplacian. As is seen from (3.2), 0« 1 and
8'-O(l). There is a substantial region of overlap be-
tween the inner and outer regions and R, is a typical ra-
dius characterizing it We seek. the solution of (3.4) and
(3.5) supplemented with (2.24) to yield the temperature
distribution in the inner and outer regions separately, in
the form of series expansions in a small parameter 0'
The resulting fields are then matched to each other.

In the inner region, where the nonstationary effect acts
as a small perturbation, we proceed by postulating the
following forms of the temperature fields:
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T' =T' '+QT'"+Q T' '+Q T' '+Q
1 1 1 1 1 1

+O'T"'+O'"T""'+. . .
1 1 (3.6a)

T' =T"'+QT"'+O'"T""'+O'T'"+O'"T ' '
2 2 2 2 2 2

+O T' '+O T '+.
2 2 (3.6b)

In the outer region, where the nonstationary effect bal-
ances with the heat conduction, the expansion is of the
form

~(3/2)
—2@i(k f)

A ~ e

0 m k2
2

(3.13)

where Tp is the normalized volume of unit cell (n 2'}and
mEZ . Furthermore,

k =m b' '+m b' '+m b' '
m

—m1 m2 m3

(m „m2, rn3 =0,+1,+2, ) (3.14)

T' —O3/2T(3/2) +O2T(2) +O5/2T(5/2) +O3T(3)
2 2 2 2 2

+O T' '+O T' '+
2 2 (3.7}

is the wave number normalized by n2 with (b'",b' ', b' ')

being the reciprocal basic lattice vectors, which are given

by

and

T1 TO
0) (X2 (X

P2Cp P1C

T(0) —02

(3.8a)

(3.8b)

It is straightforward to obtain the first few terms of the
inner expansions. If we suppose that (3.7) is true, there
exists no field in the outer region up to 0 (0), which sup-
plies heat to the inner region. Therefore, we have

b'"=[a+ 'Xa' ']/ro, b '=[a 'Xa" ]/7.0,
b(3) [a(l ) X $2)]/ (3.15)

Now we turn to derivation of the functional form of
(3.13) as 7~0. In connection with this, Ewald [19]gave a
useful argument in the context of electromagnetic waves
and we refashion if for our purpose.

We start with transformation of (3.13) into an integral
representation:

T(3/2) A . X3 —7I[k —(i /2m )+e](—2mi (k r)
lim e

0+ 0

T1 = — A r—(1) 2

2K1

AT 7

(1)—
2

where

2K1
+1

K2
(3.9a)

(3.9b)

(3.16)

A small positive number e is introduced for correctness.
Here we divide the domain of integration into two parts;
one is from 0 to g and the other from g to ao. By apply-
ing to the former part the theta transformation formula

2l K1A= 88.
K2

(3.10)

—nk g
—2vri(k r) O

—mtr —r() /g

3/2
m

(3.17}

Notice, as shown by (2.23), 8 is the initial temperature
discrepancy across the interface that drives the resulting
heat current.

we have

(3/2) 2 ~ —(r—r()'g'+((/2g )

T2 =A e
v'7r

(

B. Periodic fundamental solution

The crucial step is the construction of the periodic fun-
damental solution T'2 ' of (3.5} and the deduction of the
matching condition on the inner solution. Below, we de-
scribe it at some length.

The solution (3.9b) requires that

~0 m

2@i (k r)—
e

—n.[k —(i/277 )+e]7lg
X lim e d

a~0+ 1

(3.18)

T2 ——as r 0,(3/2) A

r
(3.11}

In the first term of (3.18), we convert the integration vari-
able ( into (((, defined by

which represents the temperature field produced by a
point source of strength —4m. A at r=0. If account is
taken of the periodicity of the system, the solution of (3.5)
subject to (3.11) is shown to be reducible to the solution
of

p+[p 2(1 i }R(]'——
(M=R(g+ or (=

2g 2R,

with R(=~V' —F(~. Thereby that term is split into two

terms, to one of which we again apply transformation of
the integration variable

+2iT2 = —4vrA +5 (F—F(),
I

(3.12)
v =(((, —2(1 i)R, . —

where the summation is taken over all integers
1=(1(,12,13)EZ . As usual, we write down the formal
solution of (3.12) in the form of a Fourier series

In the resulting expression, there still remains an undeter-
mined sign (plus or minus). With one sign chosen to be
compatible with (3.18), we get
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I

erfc lr —r l

lr —r, l

(1—i)~r—r )

T(3/2)
2

I

1/2 1/2

+ 1 —i
2

—(1—i))r—r
~

e 77+ erfc lr —ril-
lr —r, l

1/2 ' 1/2
1 i—

2 7r
+

Ir70 m

—2n.i(k -F)—m[k —(i /2m )]g

k
l

27r2

(3.19}

where

erfc(z) = f "e "'d~ .
m' z

(3.20)

(0) Y4m 8 8 8
anm Cnm 2n

X1 X2 X3

T(3/2) y.
2 s

(3.24a)

It should be noted that (3.20) represents a line integral in
the complex plane rather than the real integral. The con-
tour of integration is prescribed to guarantee the conver-
gence of (3.20).

We are now prepared to deduce the behavior of the
fundamental periodic solution as F~O. To this end, we
use Hobson s theorem [33],which is expressed, if we limit
ourselves to cubic lattices, as

m &n/2
Z

(3/2) T + M w (a(0)+a(2)r2+. . .
s ~ ~ nm nm

n=O, m=O
n/1

(2&)
anm

with

2"k!(4n +3 }(4n +5) (4n +2k + 1)

Xp2kY4m
2n

BX( BX2 BX2
L

z (3/2) T2 s

(k ~ 1), (3.24b)

e 22"(2n)!(2n —4m)! 1 for m =0
(4n)!(2n +4m)! ™2 for m &0 .

+a(2k)r2k+. . . )nm

X Yz„(X),X2,X&), (3.21)

where T, is a particular solution including aB of the
singular part and is given, for example, by

(3.24c}

Substitution from (3.19) thus gives rise to

T —A ——(1 i +b) —ir +—(1 —i + b)& ———(3/2) i
2 3 6

T —
[ ( ) i )r+ —( (——i)F]

2F
(3.22)

+ r +a 20 Y4(X),x 2X )3
1 i+b -4 (o) o

and Y„ is the solid spherical harmonic +a 2(0,
) Y44(x „X„x,)+ as r~O .

Y„( „XX,2X)=2r "P„(cos8)

cosmic,

(3.23) (3.25)

with P„(cos8) being the associated Legendre function of
degree n and rank m. The coefficients a„(m"' are deter-
mined by

Here the parameter b is the crucial quantity in our
analysis. This parameter represents the particle-to-
particle or droplet-to-droplet interactions and is given by

2; /2 . 1 —i vy—e'" —(1—i )erfc
7l 2 7r

1/2
2&l i q/2~e
70

(1—i)F
—X'

1+0 2FI

'lr
erfc rl

1/2 1/2
1 i-+

2

—(1—i)FIe
1/2 ' 1/2

1 —i
erfc rl

2

—m[k —{i/2' )]grn

r

mWO, 2 l
0 ~m 2'

(3.26)
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The prime on the sums means that the index I =m=0 is to be removed. It is noticeable that all other particles sirnul-
taneously take part in the heat-conduction process. The limiting form (3.25) thus obtained in turn furnishes a matching
condition on the solution at higher orders.

C. Formula for attenuation and dispersion of sound

The construction of higher-order inner and outer solutions is implemented with no difficulty. We have repeated the
procedure up to 0 (Q ) for the inner solution and up to 0 (Q ) for the outer solution. We omit details and write down
the necessary expressions of the resulting field over the entire space.

In the inner region,

To CX1 K2+8— A r—
P 1CP 2K1

2K1 +1 Q —A(1 i +—b)Q + .~ 3/2

K2 K1

lK
& A

4

20
--' "'+1 2 +A," 0

6

+ 6' (1 i+—b)r +A' ' Q + for r(1
3 1

(3.27a)

Tz= +—Q —A(1 i +b—)Q + —iAr+ —Q + (1 i +b—)r +A& '+ —Q +TO&2 A 3 2 . B 2 lA . 2 5 2 C 5/2

P2CP r 3
Pp

for 1~r ~R, /a . (3.27b)

In the outer region,

To cx2

2
p2CP

E= A(1 i +b—)
2

15

2K1 2 4K1 4 K18'+ 8' —+—

2iB K1 2+ (1 i +b—) 1 ——fi i C,—
3 K2

(3.29d)

[AQ +BQ +CQ +DQ tEQ + ]+
7T7 o

—2~i(k F)

and

K2

= —i A 2 ——'8'2) i 2 2K1 7
1

+—+
5

7K2

20K1
(3.29e)

xg
m k2

2772

for r ~ n2R, , (3.28) 2K1
A '= (1 i +b)—3 —8' 1+l

K2

2 2 K1B=—iA 1 ——8 —+—
3 K, 5

(3.29a)

2iA K1 2C= (1—i +b) 1 ——&
3 K2

(3.29b)

'2
4K1 4 K1 4K1 4@2—&@4

2 3K2 K2 5K2 35

where the definitions of 8 and A are given by (3.8a) and
(3.10), respectively, and other constants are

B(1 i +b)——,
A q~

~' = B( 1 i +b)——,

(3.29f}

(3.29g)

777 o

—2mi (k F)

o m

27T2

dF= 27Tl (3.30)

with & =n, /n2.
The last remaining task is to evaluate the volume aver-

age of the temperature field, and thus to obtain the
effective compressibility or the complex wave number of
the two-phase system as prescribed by (2.14), along with

(2.15). In so doing, the formula

—iB, (3.29C)
is of great help. After some manipulations, we eventually
arrive at the desired formula:

CO 2 2k+t5= 1+ecLI (pp)p&c Tp
CLL p2C p&cp,

2

2i K1 1 2
2l K1 . 2

4K1 1 Kl 2 2K2 2 2 2
X 1+— +—& Q — (1 i+b)& Q'~'+ —1 ———+—+ 8' fi' Q

1/2
2 1 1

(1—i+b) 1 ———+— fi' 8' Q +
K2 3 K2 5

(3.31)
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The same result is obtained if use is made of the formulas
(2.19) and (2.20), which serve as a consistency check. The
parameter b is defined by (3.26). It is emphasized here
that b is a universal quantity representing the effect of in-
terparticle interactions in the periodic-emulsion system.
In the absence of b, (3.31} agrees with the behavior of
(2.26) at low frequencies, as it should be. Furthermore, in
view of (3.28), (3.31) is contributed by monopole tempera-
ture field only and in line with this fact, the diffracted or
scattered compressional wave comprises an assembly of
monopole sounds. What we have done is to work out the
correction to the strength of point heat source due to sur-
rounding particles.

A salient feature of our treatment is that the parameter
b is not a constant but that it has a weak dependence on
the frequency co. In the limit of co~0, it will restore the
known values. Before proceeding to the discussion of nu-
merical results, we examine the behavior of (3.31) in this
limit in order to get some insight.

We define the lattice parameter h characterizing the
distance between the nearest-neighbor particles, along
with the basic vectors. For three types of cubic lattices
we have the following.

(i) Simple cubic lattice (sc):

(1,0,0) b (1,0,0)
=h (0, 1,0) b' ' =1/h (0, 1,0)

a(3) ((}Q 1 ) b(3) (0,0, 1}
(3.32a}

(ii} Body-centered cubic lattice (bcc):

(1,1, —1)
a(~) =—( —1 1 1)

2
(1,—1, 1)

b(1) (1,1,0)
b' ' =1/h (0, 1,1)
b(3) (1,0, 1)

(3.32b)

(iii) Face-centered cubic lattice (fcc}:

a'" (1,1,0) b"' (1,1, —1)
a' ' =—~ (0, 1,1), b"' =1/h )( —1, 1, 1) (3.32c)
a(3) ( 1 Q 1 ) b(3) (1,—1, 1)

r

When the frequency is so low that the thermal skin
depth around each particle contains so many particles,
that is, for N(n, h) «1 and N(noh) «1 with N being a
very large number, (3.31) is reduced to

k+i5= N 21+ecL~L &Po&P)cl, To
CLL P2Cp P1Cp

r

2i 1 K1 2 K1 1 2 2X 1 ——h e+——+—(1 de )—+3e—1 —— +—8 & 0+
K2 3 5

1/2

(3.33a)

1.760119 for sc
d = 1.791 858 for bcc

1.791747 for fcc .
(3.33b)

a2 a1
c cLL ~ 1 CLL & po &p)cp To

2 P2Cp P1Cp

'2

P1Cp,
+ o ~ ~X 1 —e

P2C
(3.34a)

Here d is a constant reflecting the very long-range in-

teractions among particles. The same values were ob-
tained in different problems by several authors [27,28].
Furthermore, if e((1 in addition to the above assump-
tions, (3.33) may be separated into the real and imaginary
parts, giving

r

We observe from (3.34a} that the effective adiabatic
compressibility for a two-phase state takes a larger value
than the simply averaged value. We may say that the
medium becomes softened on account of heat exchange.
Equation (3.34b) states that the interparticle interactions
act to diminish the attenuation coeScient and that the
main correction term is essentially proportional to e'
The magnitude of the correction terms for the three types
of cubic lattices does not differ very much from each oth-
er. The reduction is more effective for bcc and fcc than
for sc. We would like to stress that the ratio K1/K2 is vital
to the action of the interparticle interactions. The larger
K1 /K2 is, the more influential the contribution from the
surrounding particles is.

a2 a1
cLL & s'o &s')c„To

3 p2cp p I cp

X —+—(1 de )—1 1/3

5 K2

'2

Kl 2 K1 1 2 2+3m—1 ———+—n co(n a) +1

(3.34b)

D. Results

As noted before, the interaction parameter b, the most
important quantity given by (3.26), varies with frequency.
A choice of the integration contour in the complex plane
is at our disposal. We have picked out two different con-
tours, say, a straight line parallel to the real axis, and a
contour composed of a straight line parallel to the imagi-
nary axis and the real axis itself. Furthermore, a return is



4916 YASUHIDE FUKUMOTO AND TAKEO IZUYAMA

(n2h)b = — +c,h —(1—i)n2h
(n2h)'ro

2i— (n2h) +0((n2h) ), (3.35a)

with

made to the original formula (3.18). All of the results
produced by them agree within sufficiently many digits.
To bring out the features of the particle-to-particle in-
teractions, we depict the real and imaginary parts of
(n 2h) b as a function of n2h in Figs. 3(a) and 3(b) sepa-
rately. In view of (3.31), the real part of b is tied primari-
ly to the attenuation coefficient and the imaginary part
primarily to the dispersion of the sound velocity. It is
worthwhile to note the limiting behavior of b as n2h ~0:

The interaction parameter (n2h)b exhibited in Figs.
3(a) and 3(b) is found to be given by (3.35) at very low fre-
quencies and tends to zero as noh~~. This is con-
sistent with our intuition that at high frequencies, the
thermal skin depth is much thinner than the particle-to-
particle distances, and hence the interparticle interac-
tions become irrelevant. The attenuation and the disper-
sion of sound are calculated for the real materials with
the parameter values listed in Table I.

As the first example, we consider suspensions of polys-
tyrene spheres in toluene in which the ratio ~&/~2 of
thermal conductivity does not differ very much from uni-
ty. Figure 4(a) shows the attenuation per wavelength as a
function of n2a for typical values of volume fraction e.
The simple cubic array is assumed. Figure 4(b) is the cor-

2. 837297 for sc

c,h = 3.639233 for bcc
4. 584 862 for fcc,

4-

I

(a)—

ro =ro/h, and c2 /h is a constant of the array.

(3.35b)
0.06-

0.04-

0.02—

(a)

6 = 0.3

6 =0.1

6 =0.01

0
0 2

n&a = (u) Ppcp, /2K') o
1/2

0
0 2

op" = (&Ppcpq/2KpI

6

).00

C/CLL—

5=001

5=0.t
r

r

0.98-
6'=03

-100-

0.97-

c -200-

-300-

0,96
0 2

1/2
n&a = (vP, cp, /2K&) a

-400
0 1 2

noh = (Q Ppcp&/2 K2) h

(b)

FIG. 3. The real part (a) and the imaginary part (b) of (n2h)b,
with b being the interaction parameter provided by (3.26), as
functions of n2h =(cop2c~ /2~2)' 'h, the ratio of lattice parame-

ter h to skin depth of thermal wave in the suspending fluid. The
solid line displays the result for the simple cubic (sc) array, the

dashed line for the body-centered cubic (bcc) array, and the dot-

ted line for the face-centered cubic (fcc) array.

FIG. 4. Excess attenuation per wavelength 6;(=2m.6/k) (a)

and normalized sound velocity c /c«(b) as functions of
n2a =(~p,c~ /2a, )' 'a, the ratio of particle radius a to skin

depth of thermal wave in the suspending fluid, for a simple cu-

bic (sc) lattice of polystyrene spheres suspended in toluene at

20 C with typical values of volume fraction e (solid lines). Here

c« is the high-frequency limit of the sound velocity and is given

by {2.13). The values of e are indicated on each line. The re-

sults are obtained from (3.31) and plotted on a linear-linear

scale. The dashed lines display Isakovich's results, which ignore

particle-to-particle interactions, as given by {2.26a) and (2.26b).
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6 =0.01

responding graph for the sound velocity normalized by
cLL. The results for a periodic suspension are drawn by
solid lines. For comparison, we show the results obtained
from Isakovich's theory for independent particles by
dashed lines. At first glance, we see that the attentuation
coefficient grows, roughly speaking, in proportion to the
volume fraction. The same is true of the deviation of the
sound speed from the limiting value cLL as co—+ oo. The
particle-to-particle interactions come into play at low fre-
quencies, say, n, a -n2a ( 1. The interactions necessarily
act to reduce the attenuation coef6cient. The deviation of
the sound speed from cLL is reduced by the interactions.
The interactions become quite influential for a volume
fraction such as e=O. 3. It is noteworthy that for e=O. 3,
the interactions bring in a drastic modification of
Iskaovich's values for both attenuation and dispersion.

Figures 5—7 extend Fig. 4(a) to a wider frequency
range and are plotted against log(n2a) Fi.gure 5 is drawn
for the case of @=0.01, Fig. 6 for @=0.1, and Fig. 7 for
@=0.3. In order to illustrate an advantage of our scheme
that takes the variation of thickness of the thermal
boundary layer into consideration, we show, by dotted
lines, the results of very-low-frequency behavior supplied
by (3.33). It is conspicuous from Fig. 7 that the attenua-
tion is substantially modified by the interparticle interac-
tions. Besides, the same figure clarifies that inclusion of
the variation of the boundary-layer thickness is in-
dispensable for producing satisfactory results. But this is
not the case with dilute suspensions as shown by Fig. 5
(@=0.01) and Fig. 6 (@=0.1).

The correction from the interactions depends slightly
on the structure of the cubic lattice. We make a compar-
ison between sc, bcc, and fcc, though the dependence is of
little practical importance. Figures 8(a) and 8(b) display

10

6' =0.1
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I
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\

0
0.1 10

nba = (u)P~cp&/2K') "a
100

FIG. 6. As Fig. 5, but for @=0.l.

the attenuation per wavelength and the normalized sound
velocity, respectively, for e=O. 3. The difference between
bcc represented by a broken line and fcc marked with
crosses is hard to discern. As for the reduction in at-
tenuation, we admit a larger inhuence for bcc and fcc
than for sc. In contrast, regarding the sound velocity, sc
undergoes a larger influence than bcc and fcc.

In the above, our argument has been directed ex-
clusively toward suspensions composed of two substances
with comparable thermal conductivity. Expressions
(3.31) and (3.33) suggest that the interaction is fairly sen-
sitive to the ratio «& A2 of the thermal conductivity. Sub-

sequently, we shed light on this aspect.
In Figs. 9(a) and 9(b) we present the attenuation per

wavelength and the normalized sound velocity for an
aqueous suspension of polystyrene spheres of 30% by
volume arranged in a sc lattice. The characteristic of the
ambient water is its large thermal conductivity. There-
fore, «, i«2 takes a small value in this system. We learn
from Fig. 9(a)'that the neighboring particles do not inter-
vene so much in the heat-exchange process despite the
rather high concentration.

The opposite situation is demonstrated by Figs 10(a).
and 10(b), where the sound attenuation and velocity are
calculated for a 5% emulsion of water globules in to-
luene. This is an example of large «&/«z in comparison
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llama
= (4)Ppcp /2K') a

1/2
100

FIG. 5. Excess attenuation per wavelength 5&( =2+5/k) as a
function of n2a, the ratio of particle radius a to skin depth of
thermal wave in the suspending fluid, for a simple cubic (sc) lat-
tice of polystyrene spheres suspended in toluene at 20'C with
volume fraction a=0.01 (solid line). The result is obtained from
(3.31) in a wider frequency range and plotted on a semilog scale.
The dashed line displays Isakovich's result for independent par-
ticles, as given by (2.26a) and (2.26b). The dotted line shows the
very-low-frequency behavior {3.33a) and (3.33b} obtained by ig-
noring frequency-dependence of skin depth of thermal wave.
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with unity. Although this example seems to be somewhat
artificial, it discloses rich details. In a usual sense, this
example appears to belong to a dilute emulsion. But Fig.
10(a) implies that the independent-particle approximation
breaks down. Therefore, we have to be careful in identi-
fying a small volume fraction of suspended particles with
a dilute emulsion. The substantial thermal effect in such
a dilute emulsion originates from two sources, which can
be seen in (3.34b). First, there is a correction proportion-
al to e', which acts to suppress the attenuation. The
dependence of e' is attributed to the ordered structure
of dispersed particles. The second correction term,
which is proportional to e, is negative in sign in this case,
and thus contributes to reinforce the action of reduction.
It should be borne in mind that these cooperative effects
result from the largeness of a, /~2. In a higher-frequency
region, we notice that the solid line deflects downward
from the dotted line as opposed to the previous examples.

This fact may reflect the undue truncation of our expan-
sions, so it is necessary to implement the higher-order ex-
pansions in order to obtain satisfactory values at higher
frequencies.

We conceive the mechanism of the reduction of at-
tenuation in the following way. Under a sound wave in a
heterogeneous medium, adiabatic temperature variations,
different in different substances, immediately follow in
response to compression or expansion of the substances.
Then the heat exchange arises between an emulsion parti-
cle and the ambient medium. The strength of the heat
flow is proportional to the temperature gradient. The
heat flow produces the entropy production or the energy
dissipation in proportion to the volume integral of the
square of the temperature gradient. When the tempera-
ture of the particles happens to be raised more than that
of the ambient medium, the heat flows out from the parti-
cles. Viewed globally, it implies that the neighboring par-
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FIG. 8. Excess attenuation per wavelength 5z(=2m.5/k) (a)
and normalized sound velocity c/c«(b) as functions of n2a, the
ratio of particle radius a to skin depth of thermal wave in the
suspending fluid, for suspensions of 30% by volume polystyrene
in toluene at 20 C, as calculated from (3.31). Here c« is the
high-frequency limit of the sound velocity and is given by (2.13).
The solid line is for the simple cubic (sc) array, the dashed line
is for the body-centered cubic (bcc) array, and crosses are for
the face-centered cubic (fcc) array. The discrepancy between
bcc and fcc is not discernible.

n2o = (u)Ppcp /2K')' a

FIG. 9. Excess attenuation per wavelength 5&(=2m.5/k) (a)
and normalized sound velocity c/c«(b) as functions of n2a, the
ratio of particle radius a to skin depth of thermal wave in the
suspending fluid, for an aqueous suspension of a simple cubic
(sc) lattice of toluene globules at 20'C with volume fraction
@=0.3 (solid line). Here c« is the high-frequency limit of the
sound velocity and is given by (2.13). The result is obtained
from (3.31). The dashed line displays Isakovich's result for in-

dependent particles, as given by (2.26a) and (2.26b). The dotted
line shows the very-low-frequency behavior (3.33a) and (3.33b)
obtained by ignoring frequency dependence of skin depth of
thermal wave.



46 THERMAL Al lENUATION AND DISPERSION OF SOUND IN A. . . 4919

ticles supply each particle with heat. The opposite is true
when the particle temperature is lower. It follows that
for given density variations of the particles and the medi-
um, the magnitude of temperature gradient in the
interacting-particle system is smaller than that in the
independent-particle system. As a result, the sound at-
tenuation is smaller in the interacting-particle system
than in the independent-particle system.

The many-particle effect is less remarkable in the
sound velocity than in the attenuation. In a heterogene-
ous system, Isakovich obtained a certain decrease of the
sound speed c from cLL, that is, the proper spatial aver-

age of the adiabatic compressibility. Our analysis takes
into consideration the many-particle effect neglected in
Isakovich's theory. The decrease of c from cLz is re-
duced by our many-particle effect. Since the reduction is
small, we skip the physical explanation for this reduction.

It is emphasized here that the correction due to the
many-particle effect in the water-in-toluene emulsion is
very large even in the dilute case of @=0.05, while in the
toluene-in-water emulsion, the effect is small even in the
dense case of a=0.3. We note that 8' is not very much
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FIG. 10. Excess attenuation per wavelength 5&( =2~5/k) (a)
and normalized sound velocity c/c«(b) as functions of n&a for
a simple cubic (sc) lattice of water globules suspended in toluene
at 20 C with volume fraction a=0.05 (solid line). The dashed
line displays Isakovich's result for independent particles. The
dotted line shows the very-low-frequency behavior (3.33a) and
(3.33b).

different from unity. In these examples, ~„„„is much
larger than ~„&„,„,and therefore the droplet-to-droplet in-

teractions are mainly controlled by ~, , the heat conduc-
tivity of the droplet.

The clue to comprehending the sensitive dependence of
the correction on sc, /~z lies in the expressions (2.19}or
(2.22}. The energy dissipation or the complex wave num-

ber is corrected by the heat conduction through the prod-
uct of the temperature discrepancy (2.23) or (3.8a) caused
adiabatically and the resulting interfacial heat flux q;.
Plainly, the adiabatic temperature variation has no con-
nection with the heat-conduction process as evidenced by
(3.8a). The heat flux is determined by the solution of the
coupled equations (3.4a) and (3.4b) complying with the
boundary condition (2.18). But in our formulation, the
temperature gradient dTP'/Br at the order of fl" is
determined solely by the distribution of T', " and is
thus irrelevant to the temperature distribution T'z ' of the
same order in the suspending fluid. In fact, (3.4a) and the
regularity condition yield

gZ (k)

f g T'," "(g)dg . (3.36)
dr r~

Because of (3.8a), BT'&" /Br has no dependence on a& or
Kp so the interfacial heat flux v&BT'&" /dr is proportional
to a, . This is the reason why the heat source A in (3.12)
is proportional to ~&. All of the suspended particles are
then endowed with the same heat source. They coher-
ently excite the locally uniform temperature 6eld
T', '=T~ '= —A(1 i+&—) of O(Q ) In conse-
quence, BTP~ '/Br ~„&=2iA (1 i +b)h —/3 The .pa-
rameter b, which measures the influence of the interparti-
cle interactions, is coupled in ~,BTP '/dr with a, A, the
product of the thermal conductivity K& and the strength
of the heat source. The basic mechanism expressed by
temperature gradient (3.36) at the interface, which ap-
pears to be irrespective of that of the suspending fluid, to-
gether with the temperature discrepancy 8 driven adia-
batically, gives rise to the selective importance of a& in
manifesting the mutual interactions between the suspend-
ed particles. It is to be understood that the uneven roles
of a& and ~z are peculiar to the shape of the minority
phase.

IV. SUMMARY AND CONCLUSION

We have investigated, in this paper, the coefBcient of
sound attenuation and the dispersion relation of the
sound velocity in suspensions and emulsions. Otherwise
stated, we have worked out the effective compressibility
of heterogeneous media. Following several considera-
tions, we have disregarded the viscous dissipation and
spotlighted the process of the interfacial heat transfer. A
great simplification has been achieved by taking advan-
tage of Isakovich's framework.

We provide a theoretical justification of the Isakovich
formula, which produces the attenuation coefticient and
the sound velocity at the same time. For this, we start
with the entropy production formula rather than the den-
sity variation 5p or the compressibility. After the



4920 YASUHIDE FUKUMOTO AND TAKEO IZUYAMA

rederivation, we rewrite his formula in terms of the inter-
facial heat Aux and the adiabatically driven temperature
difference between two phases. This version helps to real-
ize the underlying physical mechanism of heat transfer in
the presence of the compressional wave.

The problem of a single spherical droplet immersed in
a Quid of different species, which was originally solved by
Isakovich, is revisited. As shown by him, the attenuation
coefficient 5 behaves as co at very low frequencies
[(n,a) «1], while it behaves as co'r at very high fre-
quencies [(n,a) »1]. In addition, we uncover the ex-
istence of a new scaling regime for emulsions with the
material property of g& &&y2. What we have found is
that 5 is proportional to co and (1—c/c LL) is propor-
tional to co

' at frequencies satisfying n, a )&1 and
nza « 1 with the condition n, a »Kz/K, being necessary.
A suspension of polystyrene spheres in air exemplifies it.
It is worth emphasizing that this behavior has much in
common with the low-frequency behavior in mixture un-

dergoing the first-order phase transition in the thin inter-
face [16]. In both cases, the heat-conduction process is
virtually subjected, at frequencies in question, to the
boundary condition that the temperature is fixed at the
interface.

The second half of this paper is concerned with the elu-
cidation of the effect of multiparticle interactions upon
the thermal attenuation process. We have dealt with a
lattice of spherical particles or droplets embedded in a
medium of another liquid. Isakovich s framework, which
requires the functional forms of the temperature distribu-
tion both inside and outside the particle, has much in its
favor. They are derived in the form of expansions in
powers of 0', using the method of matched asymptotic
expansions. The correction coming from the multiparti-
cle interactions is then obtainable through the fast-
convergent lattice sum of the contour integrals in the
complex plane. Here we accomplish an extension of
Ewald's method to the heat-conduction problem. The
numerical calculation is implemented for the typical cu-
bic lattices, namely, sc, bcc, and fcc lattices. To enlight-
en the sensitive dependence of the interactions upon the
ratio n.

, /tcz of the thermal conductivity, we pick up, as
examples, an aqueous polystyrene lattice (tc, &ttz), a sus-

pension of polystyrene particles in toluene (tc, -tcz), and
an emulsion of water in toluene (tt, & ttz). Our results are
summarized as follows.

(i) In general, the interparticle interactions act to
suppress both the sound attenuation and the deviation of
the sound velocity from the high-frequency limit.

(ii) At such high frequencies that the thermal skin
depth is much thinner than the particle-to-particle dis-
tances, the effect of the neighboring particles is inconse-

quential.
(iii) In contrast, at very low frequencies, there is a

significant correction, depending upon the value of a&/a2,
to the attenuation coefficient whose dominant term is
proportional to e'~ with e being the volume fraction of
the minority phase. The reduction in attenuation is more
effective for bcc and fcc than for sc. In accordance with
it, the deviation of the sound velocity is relaxed, but sc is
more susceptible to it than bcc and fcc, as opposed to the
attenuation. In either event, the difference is not large
enough to be of practical importance.

(iv) For moderate volume fractions, the consideration
of the skin-depth variation with frequency achieves an
improvement in quantitative accuracy.

(v) The most relevant physical parameter prompting
the interparticle interactions is the thermal conductivity
tc, of the suspended substance. When tc, /ttz is large com-
pared with unity, the word "dilute, "with respect to e, no
longer makes sense. Even if the concentration of water is
a few percent in toluene, the attenuation curve exhibits a
marked difference with Isakovich's result. The monopole
temperature field or the point source emanating from
each particle participates in the attenuation and the
modification of sound speed. This fact accounts for the
relative importance of ~, .

Here, a question is raised as to the contribution from
the viscous force. As e and/or tc, /a'z are increased, the
attenuation goes through a considerable reduction from
Isakovich s result. If so, we cannot dismiss the possibility
that the viscous dissipation and the thermal conduction
exchange roles. In reality, there is no doubt that an in-

crease of e causes an increase of the force exerted on the
particles and therefore an increase of the contribution
from the viscous dissipation. At present, it does not seem

to be straightforward to incorporate the viscous dissipa-
tion into the formula (2.14).

Our choice of periodic emulsions of spherical particles
is not sufficient to have much practical bearing. A recent
experiment revealed that for aqueous suspensions of po-
lystyrene spheres, the occurrence of aggregation phenom-

ena, on the contrary, promotes the attenuation in the
low-frequency range [12]. It implies that the sound at-
tenuation may be quite sensitive to the distribution of
particles. Furthermore, for emulsions, the minority

phase cannot always be reckoned to be of spherical shape.
These and other factors call for individual treatment.
For this, the alternative formula (2.19) and (2.20) will be
helpful.
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