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Time-of-flight neutron interferometry

H. Rauch and H. Wolwitsch*
Atominstitut der Osterreichischen Uniuersitaten, A-1020 Wien, Austria

R. Clothier, H. Kaiser, and S. A. Werner
Physics Department, University ofMissouri Col—umbia, Columbia, Missouri 65211

and Research Reactor Facility, University ofMissouri Co—lumbia, Columbia, Missouri 65211
{Received 22 July 1991;revised manuscript received 12 December 1991)

In the experiment described in this paper, a chopper serves as a source of neutron intensity pulses
which pass through a perfect Si-crystal neutron interferometer (NI), where they are split coherently into
two parts that recombine and interfere. As the occupation number of a single pulse is much smaller than

unity, the results very clearly demonstrate the single-particle interference phenomena of neutron inter-
ferometry experiments. While traveling the pulses spread, with faster {slower) neutrons tending toward
the leading (trailing) edge. The coherence length of the neutrons depends on the spectral width of their
wavelength distribution. When a material with a neutron-nuclear optical potential is placed in one beam

path in the NI, there is a loss of fringe visibility (contrast), which depends on the coherence length. By
using time-of-flight techniques, we divide the pulse into time segments. Within a given time slice, the
wavelength spectrum is narrower than in the pulse as a whole. As a result, contrast remains in the time
slices even when it disappears in the overall pulse. We also observe an additional contrast modulation
due to the overlap of neighboring pulses.

PACS number(s): 03.65.Bz, 07.60.Ly

I. INTRODUCTION

Most neutron interferometer experiments performed
until now have dealt with stationary situations where the
phenomena are completely described by the stationary
Schrodinger equation (e.g., [1—3]). Time-dependent
effects appear if a time-dependent Hamiltonian or time-
dependent boundary conditions act on the system. In
this case the phenomena are described by the time-
dependent Schrodinger equation

Hy(
Bt

which adds the time parameter and permits energy ex-
change between the quantum system and the measuring
apparatus. Although the experiments being described be-
long to the quasistationary regime where the energy
change is small, the observed phenomena will show dis-
tinct correlation between the interference pattern and the
time structure of a pu1sed beam behind a fast chopper
system.

The observed interference phenomena are described by
the coherence function I (h, , t ) which is given by the au-
tocorrelation function of the overlapping wave functions

overlapping beams which gives in the case of an ideal ar-
rangement

y= fk ds=(1 n)kD, tt=b, kD,tt,— (4)

with D, =sD o(/k n). According to Snell's law, only the
normal k component changes and the momentum vectors
inside (K) and outside (k) the sample can be written as

K—k=(1 n)kn/(k n), —

which permits the definition of the spatial shift of the
wave trains

(3)

where the phase shift y is given by the path integral of
the canonical momentum along the beam paths. In the
case of a homogeneous phase shifter of thickness D0,
with a surface normal n and with an index of refraction
n =1—

A, Xb, /2m (A, is the neutron wavelength, E the
particle density, and b, the coherent scattering length)
one gets

where Lk=r' —r" and t =t' —t" are the spatial and tem-
poral shifts of these wave functions (e.g., [4]). I (h„o)
and 1 (O, t) denote the spatial and temporal coherence
functions, respectively.

The interference pattern of a perfect crystal inter-
ferometer is governed by the phase shift between the two

Thus one can reformulate the phase factor in the form

(7)

A wave-packet description has to be used to account
for the finite momentum width of the beams. This causes
the coherence function to become
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(ll(&)l& =(2~) ' 'f p(k)e' dk,

which can be interpreted as the Fourier transform of the
momentum distribution function p(k) or as an average
over the phase factor as defined in Eq. (7). In the case of
normal distributions one can use the relation (e.g. , [6])

(e'r& =e'rexp((5y'&/2),

which yields for Gaussian momentum distributions with
widths 5k; an intensity modulation

I (I+( lI (dE)l &cosy),

with

& II (&)I &= g exp[ —(&;5k;)'/2] .
I =Xi/, Z

One notices that in a perfect crystal interferometer the
damping factor depends strongly on the orientation of
the phase shifter because 5k is very small along the
reflecting lattice vector of the reflecting planes. Related
experiments have been reported in the literature to eluci-
date the quantum-mechanical coherence properties of
matter waves [7—12]. From the reduction of the coher-
ence function at large phase shifts the related coherence
length has been deduced [bx =(25k;) ']. 5k; can be
defined before or behind the interferometer as we will see
from the following results. Phase variations due to varia-
tions of the sample thickness 5D can be treated similarly
by adding a factor exp[ (2m5D/—Di) /2] where Dz
denotes the A, thickness of the sample [D& =2m/(Nb, A, )].
Absorption and other loss processes have to be described
by an imaginary term to the index of refraction and a fac-
tor exp[ a„ND/2] i—s added, where o

„

is a so-called re-
moval cross section accounting for absorption, scattering,
and diffraction effects if they remove particles from the
original phase space volume defined above [13,14]. The
related momentum resolutions (5k; ) can be defined as be-

fore, inside or behind the interferometer. Thus, in cases
where the overall momentum width prevents the observa-
tion of an interference pattern behind the interferometer
[Eq. (11)],spectral filtering behind the interferometer due
to an additional crystal refiection [11],or a time of flig-ht-
analysis as done in [15,16] and in this work, can recover
the interference pattern. In another experiment, the in-

terference pattern of simultaneously diffracted first- and
second-order neutrons have been observed by using a
time-resolved measuring technique at a pulsed source
[17].

In the following sections we will describe experiments
which demonstrate how the interference pattern changes
in time-resolved measurements where the momentum dis-
tribution within certain time slices can be made much
narrower and where frame overlap effects of faster and
slower neutrons from neighboring pulses can be observed.
The main components of the experimental setup are
shown in Fig. 1.

II. TIME-DEPENDENT EFFECTS

[5x(t)]'=[5x(0)] +
5x(0)

(12)

This minimum uncertainty wave packet is difficult to
achieve because 5x(0) has to approach the coherence
length hx'-(25k) ' as discussed previously. This also
means that pulse lengths of the order of the coherence
time At'=Ax'/v have to be produced which means
chopper opening times of the order of ns. In this case,
diffraction in time would play an important role which is
completely analogous to the well-known single slit
diffraction phenomena in real space [19—21]. Thus,
Fraunhofer- and Fresnel-like phenomena are expected to
occur which change the energy of the beam accordingly.
For a triangular slit opening for a time At one expects for
an incident plane wave with a frequency coo a frequency
spectrum

sin(co —ivo)b, t 2

(13)

For long opening times (b, t ))ht') diffraction effects
occur at the edges only which can be neglected in most
cases. Then the phenomena can be described by classical
distribution functions and their spreading happens simi-
larly in the quantum case. For Guassian pulses one gets

The motion of a free wave packet is described by the
time-dependent Schrodinger equation (1). In the case of
minimum uncertainty packets with Gaussian widths 5x
and 5k in real and momentum space (5x5k =

—,') one ex-
pects the quantum-mechanical spreading as a function of
time (e.g. , [18])

2

ST CHOPPER

AUXILIARY PHASE
SHIFTER

[5x(t)]'=[5 (0)]'+[5v t]' (14)

NEUTRON

Cs DETECTOR [b,t]'=[6,t, ]'+ (15)

where one notices the similarity to Eq. (12) if one uses the
Broglie relation and gx '= (25k )

terms of the temporal pulse length one obtains
2

Bi- PHASE
SH IF TER FERNE TER

CRYSTAL

FKx. 1. Sketch of the experimental setup for pulsed neutron
interferometry measurements.

where At is the opening time of the chopper and

to=L /Uo is the average time of fight of neutrons be-
tween the chopper and the detector at distance L. In
fact, Eq. (15) which describes the broadening of the inten-
sity pulse is identical to the expression which describes
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the broadening of a quantum-mechanical wave packet
[Eq. (12)] except for the fact that in Eq. (15) 5x(0)=v 5t
does not fulfill the minimum uncertainty relation. The
mean wavelength of neutrons being measured at time t at
a detector with an effective thickness Ad becomes in the
classical limit [5x(0)))b,x']

(16)

with

[b,t'] =[5,t] +[Ed/vo]~ .

Due to (y(t) &
~ (A,(t) & we get a similar equation for the

phase shift

Thus, the total intensity exhibits a series of "beats, "
modified by a decaying exponential. The contrast of the
intensity pattern as a function of the thickness of the
phase shifter is given by

I,„—I;„C(D)=
Imax +Imin

= leos(Nb, Ddk, lexp[ —yo(5A, /Ao) /2] . (24)

The exponential term is due to the wavelength spread and
the cosine term represents a contrast oscillation caused
by the overlap of two pulses, i.e., the contrast is expected
to vary according to a damped cosine function going
through a series of minima and maxima.

Related measurements using a similar setup at the high
flux reactor at Grenoble were given previously [14,15].

At a position I. at a time t there still exists in a certain
time channel a Gaussian distribution with a restricted
spectral width given by

'2 ' 2 —1

to

5A, ht' (18)

I(A, i, Aq) =l(A. , )+l(A~)

"2+& ll (~ )I &cosx +& lf'(~ )I &cosy . (19)

which causes less diminution of the interference contrast
for measurements with narrow time channels than for the
whole beam [Eq. (11),notice 5A, /AD=5k/ko].

%e now know how neutron pulses spread as they prop-
agate. At larger distances downstream the edges of each
pulse begin to overlap incoherently with the preceding
and following ones. Gaussian-shaped neutron pulses pro-
duced within a time interval T, corresponding to wave-
length A, , =A,o

—5X and A,2=A,0+5K,, overlap at a distance
L '= h T/2m 5A, downstream from the chopper. The
spectral width at the relevant time interval is given by the
spectral widths around A, , and k2. The measured intensi-
ty in the related time slice around t =to(1 —5A, /A, o) is
given as [15,21]

III. EXPERIMENT

A fast mechanical neutron chopper was added to the
neutron interferometer setup at beam port C at the Uni-
versity of Missouri Research Reactor (MURR) as shown
in Fig. 1. The chopper was built by URANIT in Ger-
many and consists of a 17.0-cm-diam aluminum disk,
mounted on the end of a magnetized steel shaft, and en-
closed in an evacuated, electronically controlled drive
mechanism. The shift is suspended and set in motion by
rotating magnetic fields, up to a frequency of -45500
rpm. The vacuum in the vessel is maintained at —10
Torr to reduce friction. There are 60 grooves milled
around the outer edge of the disk, each 6 mm wide X 15
mm high, separated from each other by 1.5-mm gaps, and
filled with a Gd203-epoxy mixture. Since Gd absorbs
thermal neutrons, the 1.5-mm-wide Al gaps between the
Gd203 regions act as neutron slits, opening and closing
60 times per revolution. The Gd and Al regions were
made with a size ratio of 4:1,so that the chopper is closed
80% of the time (Fig. 2). A Cd slit, 1.5X15 mm, was
aSxed to the cover of the drive mechanism, directly
downstream from the chopper disk. The combination of
stationary and rotating slits creates a train of triangular
intensity pulses which can be approximated by Gaussian
shapes. At maximum speed, the chopper produces pulses
in an interval of T=22 ps and 4.40 ps in duration [full

In the case of material phase shifters arranged perpendic-
ularly to the beam (Fig. 1) and for rather narrow Gauss-
ian wavelength distributions around A, , and A,2 [Eq. (18)]
one can reformulate this equation to be

I(A, ), lq) ~ [1+exp[—yo(M, /10) /2]

Xcos(Nb, DER. )cos(Xb, DA, )], (20)

where we have used

(lI (b, , )l &=(ll (62)l &
—exp[ —(65k) /2], (21)

and the definitions

(m(~ ~

'gggg yg yg@ I gglhhN 1 4%

and

A,
—:(A, , +A.2)/2, hA, —= (A, ,

—
A,2)/2,

go=——Xb,DA.O .

(22)

(23)
FIG. 2. Photograph of the neutron chopper disk showing

also the magnetized shaft for the magnetic bearing.
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width at half maximum (FWHM)] which corresponds to
a standard width ht =1.869 ps (Fig. 3).

It should be noted that these intensity pulses are actu-
ally probability distributions. The number of neutrons
contained within each pulse depends on the intensity of
the incident beam. In the experiment, the neutron inten-
sity was so low that most (99.995%) of the "pulses" were
in fact empty. After summing many of these "pulses, "
however, the neutrons are distributed according to the
expected pulse-shaped probability distribution. Also,
despite the similarities, an intensity pulse is not the wave
packet of an individual neutron. In the wave-packet pic-
ture, the physical extent of the neutron is given by its
coherence length (b,x ), which for this experiment was
Ax'=160 A. The spatial length of the neutron intensity
pulse, on the other hand, is determined solely by how
long the slit remains open, and was at least 7 mm in this
experiment. Thus, an intensity pulse may contain within
it many (or perhaps no) individual (much smaller) neu-
tron wave packets. We shall see, however, that the prop-
agation and spreading of the pulse is theoretically very
similar to that of a wave packet [Eqs. (12) and (14)].

The beam incident on the interferometer is produced
by reflection off the (002) planes of a pyrolytic graphite
monochromator. At a take-off angle of 41', this produces
a beam of nominal wave length A,0=2.349 A and spectral
width 5A, /iI=0. 00505. The beam then passes through a
5-cm cube of pyrolytic graphite, which filters out the
X=1.17 A neutrons. The chopper then chops the beam
into intensity pulses, which subsequently pass through a
8 X 6 mm slit and then strike the neutron interferometer
(NI). The pulses spread as they propagate, as discussed
in Sec. II. The perfect silicon NI uses the (220) lattice
planes at a Bragg angle 0&=37.71'. Some of the neu-
trons are diffracted by the NI and enter one of the exit
beams, C2 or C3. If allowed to travel far enough down-
stream, the spreading pulses will eventually overlap with
adjacent pulses, before entering one of the He detectors.
A summary of the symbols and their experimental values
for the setup used is given in Table I.

To provide thermal and vibrational stability, the NI is
housed inside an aluminum enclosure, which is mounted

t a t zng C'nopper
sk, ~~ tn SI~ ts

Train o f
..n tens i ty' pu)ses

Sta t ~ oner yS1z t

Inc i den t Pulse
wz o'tn (Fee+)

mm
Qt = N. WO

FIG. 3. A train of neutron pulses, created by passing a beam
through the rotating chopper disk in front of a stationary slit.

on a granite table and enclosed within a large masonite
box. The granite table is supported by four vibration-
isolation pneumatic cushions, and the entire apparatus is
enclosed by a large plexiglass box, to provide additional
environmental isolation. In this experiment, the C2
detector was mounted vertically inside the aluminum
box, and was not used in a significant way. The C3
"detector" actually consisted of four horizontal 20-atm
He proportional detectors, each a cylinder with a 1.27

cm diameter, stacked one above the other, and all feeding
into the same electronic detection channel. They contrib-
ute to the time uncertainty by htD=hd/Uo=1. 36 ps.
The C3 detectors were mounted as far downstream as
physically possible: 277 cm from the chopper inside a
masonite shielding drum. At that distance the pulse
length at the highest repetition rate used was
At'=8. 62 Ius [Eqs. (15) and (16)]. The masonite drum
was lined with 5 cm of B4C powder, which reduced the
C3 neutron background to 9.4 counts/min. This was
necessary, because the chopped C3 beam at this position
had an average intensity of only 28.4 counts/min.

The output from the detectors fed into a time-of-flight
data collection system. The data were collected in 1-ps
time bins. Once per revolution, every 1320 ps, a signal

Time Channel (ps) Time Channel (ps)
4 8 12 16 203000

x = 277 cm c- 8000

15 19 1

~ 0

5 9

x=97cm

2000
U3

~ ~ 6000

1000

0
C3

~ ~ ~~ ~ ~

4000

C

0 2000
C3

0 I I I I I I I I I I 0 &, ~ I I I ~ I I I a j

1632 1636 1640 1644 1648

Approx. FlightTirne (p.s)
564 568 572 576 580 584

Approx. Flight Time (ps)

FIG. 4. The pulse shape I(t) in the C3 exit beam, measured at a distance of 97 and 277 cm from the chopper. The background has
been subtracted.
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from the chopper disk was used to synchronize the sys-
tem. During one revolution, 60 pulses were produced in
22-ps intervals. After accumulating data over many re-
volutions, the 60-pulse pattern was summed into one 22-
ps window. Figure 4 shows pulse shapes measured in this
way at a distance x=97 cm from the chopper and at
x=277 cm where most experiments have been per-
formed. At x =97 cm, the pulses are still isolated, but at
x =277 cm, they have spread enough so that neighboring
pulses overlap as is shown schematically in Fig. 5.

%'ith this arrangement, we were able to carry out NI
experiments using only those neutrons that arrived
within a certain time slice of the pulse. The experimental
strategy was the following: We placed a sample of thick-
ness D in beam II in the NI, and did a series of 33 mea-
surements of the intensity I(D,a, t ), each corresponding
to a different angular position a of the auxiliary phase
shifter [a from —0.8' to +0.8' in steps of 0.05, corre-
sponding to phase steps of b,g~(a)=25 ]. We split each
pulse into 11 time slices, each 2 ps wide, and counted the

Symbol

C(D)

TABLE I. Definitions of symbols and their experimental values.

Definition

Contrast of the interference pattern measured
with a phase shifter of thickness D
(C& is relative contrast)

A, thickness of the sample

Phase shift between the coherent beams
due to the Bi sample

First-order coherence function. I (6) is the spatial
and I (t) the temporal coherence function

Value

variable
(see Table II)

variable

56.5 rad/mm

variable

Ap

kd /Vp

L c

5k;

tp

Vp

6x(t)

5x(0)

hx'

Mean wavelength of the beam

Gaussian spectral width

Time resolution of the detector with an
effective thickness hd

Overlap distance of two successive pulses

Gaussian momentum width of the beam in direction i

Unit vector perpendicular to the sample surface

Time at which the overall pulse (mean wavelength Ap)

reaches the detector at distance x

Gaussian temporal length of the neutron pulse
at distance x

Opening time of the chopper (Gaussian equivalent)

Gaussian temporal length of the neutron pulse
at the detector, including the time resolution of
the detector.

Time interval between successive pulses

Mean velocity of the neutrons

Gaussian spatial length of the neutron pulse

Gaussian spatial length of the neutron pulse
behind the chopper

(Longitudinal) coherence length of the beam

2.349 A

0.0119 A

1.36 ps

3.656 m

variable

variable

1645 ps
(x=2.77 m)

8.51 ps
(x=2.77 m)

3.45 ps
(x =0.97 m)

1.869 ps

8.62 ps
(x=2.77 m)

3.71 ps
(x=0.97 m)

22 ps

1684 m/s

14.4 mm
(x=2.77 m)

3.15 mm

hx'= (25k )
= 160 A
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given sample thickness, as described above and shown in
Figs. 6—8. The sample was then replaced with another Bi
sample of a different thickness, and another data run was
taken. Bismuth has a large, positive scattering length
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FIG. 5. Overlapping pulses in the detector vs time.

200
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400-

200—

number of neutrons in each slice. When plotted versus a,
this gave 11 interferograms, each corresponding to a 2-ps
region of the pulse. Such a series of curves is shown in
Fig. 6. The sample used for this data set was a polished
bismuth slab, 12.26 mm thick. At a given auxiliary phase
shifter position a„the sample was driven out of the
beam, so that D =0 ("sample out"), and the contrast
reduction due to coherence limitations are negligible [Eq.
(11)]. During a measurement time of about 45 min, an
average of 1500 neutrons were detected, and divided
among the 11 time slices. The sample was then driven
back into the beam ("sample in"), and the measurement
was repeated with a counting time twice as long (about 90
min). The phase rotator was moved to a new position,
a2, and the process repeated; then again with a3, n4, and
so on, resulting in the plots in Fig. 6. Note how the ini-
tial phase of the sample-in interferograms varies from
slice to slice. This indicates that the mean wave length k
varies across the pulse [Eq. (16)], as previously shown in
the course of a measurement at the high flux reactor at
Grenoble [16]. A least-square fit (shown by the solid lines
in Fig. 6) gives the contrast of each plot, and, after
correcting for attenuation, the ratio of the sample-in to
sample-out contrast gives the relative contrast C„(D)in
each time slice (see [10]). The relative contrast C~(D) is
defined as the contrast measured with a sample of thick-
ness D divided by the contrast of the empty interferome-
ter [Cz(D) =C(D)/C(0) =( ll"(b)l ) /( f'(0)l )], where
C(0) accounts for all experimental imperfectness of the
setup [in our case C(0)—50%]. The relative contrast for
the plots in Fig. 6 is shown in Fig. 7. Note the distinct
dip in the relative contrast around time channel 7. Sum-
ming the plots in Fig. 6 (right) over a11 11 time slices gives
the interferogram for the overall pulse, including all neu-
trons. The same curve would be obtained in a steady-
state experiment. Figure 8 shows the sample-out and
sample-in interferograms for the overall pulse with the
D =12.26 mm Bi sample; the absolute contrast of the
curves is (45.0+1.0)% and (0.4+0.7)%, respectively, giv-
ing a relative contrast of (0.9+1.5)%. Note that the
overall sample-in interferogram has almost no contrast
(0.4%), although the interferograms in the time slices in
Fig. 6 exhibit considerable contrast.

It took three days to complete such a "data run" for a
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FIG. 6. Interferogram patterns in the eleven time slices, for
the 12.26-mm Bi sample, for both the C3 sample-out and
sample-in conditions. The numerals in the upper right of each
indicate the 1-ps time channels which were combined to make
up the 2-ps time slices.
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FIG. 7. The relative contrast of the C3 interferograms in the
time slices, for the 12.26-mm Bi sample. 2000—
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b=8.533 fm, an atom density N=2. 82X10 m, and
relatively low absorption (cr, =0.0388 b). Initially, four
slab-shaped samples of bismuth were machined and pol-
ished, and then epoxied onto aluminum mounting brack-
ets. The samples were made so that their nominal
thicknesses were multiples of 4 mm (4, 8, 12, and 16 mm),
and were numbered sequentially from 1 to 4. The exact
thicknesses of the samples are given in Table II. In addi-
tion, a fifth sample was made which was thinner than the
others (2.1 mm thick). Since this sample is about half as
thick as sample no. 1, it was dubbed "sample no. —,'."
This sample was used in combination with larger ones to
give finer increments in thickness. For example, samples
nos. 1 and —,

' were used simultaneously to place 6.10 mm

of Bi in the beam; we called such a combination "sample
no. 1 —,'." The thin sample was also combined with the
other samples, to create samples nos. 2—,', 3—,', and 4—,'.
This doubled the number of data points that could be ob-
tained.

There were 12 data runs taken, using 9 different sample
thicknesses. Each run was identified with a sequential
run number. There were three early runs, numbers 35,
37, and 38, done with the 8-, 4-, and 12-mm samples, re-

-0.8 -0.4 0.0 0.4 0.8
Phase Rotater Angle n (deg )

FIG. 8. C3 interferograms for the overall beam, run 73,
12.26-mm Bi, for both the sample-out and sample-in conditions.

spectively. After a period of computer and apparatus
problems, we took a series of 9 more runs, numbered
from 73 to 83, using sample thicknesses from 2 to 18 mm,
in steps of 2 mm (see Table II). There was a large amount
of data generated in these data runs, but we are primarily
interested in how the relative contrast in the time slices
and in the overall pulse varies as a function of sample
thickness D. Table II shows the relative contrast mea-
sured in the overall pulse (as in Fig. 8) for all data runs.
A plot of the contrast versus D is shown in Fig. 9(a), and
is quite similar to the steady-state curves measured in

[10] and [11],as one would expect. Note that the con-
trast falls off rapidly, mainly caused by the wavelength
(momentum) spread of the beam [Eqs. (10) and (11)]. The
solid line is a predicted curve based on a double Gaussian

TABLE II. Relative contrasts in C3 measured for the overall pulse and for nonoverlapping and over-

lapping time slices.

Bi
sample

no.

I

2

1 —'

2

2-
3

3-
4
4—'

D (mm)

2.09
4.01

6.10
7.99

10.08
12.26

14.35
16.15
18.24

Overall
pulse

84.8+2.4
55.9+1.9
44.1+2.4
11.6+1.3
14.8+1.5
13.1+1.5
8.11+1.59
2.67+1 ~ 47
0.93+1.50
4.43+1~ 64
3.22+ 1.62
1.26+ 1.38

Relative contrast C& (percent)

Nonoverlap
time slice

95.7+8.3
84.8+6.2
80.4+6.2
85.0+7.3
95.9+8.8
73.9+6.7
77.3+7.4
54.2+6.7
48.7+5.3
43.6+6.0
35.9+5.4
36.5+4.8

Overlap
time slice

77.3+7.7
16.5+3.9
16.7+4.2
49.8+5.2
79.2+7.8
65.0+6.6
74.8+7.6
13.7+5 ~ 3
3.4+4.9

13.9+4.8

39.5+6.3
38.3+5.5
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FIG. 9. (a) The relative contrasts in C3 measured in the
overall pulse for all data runs, vs the sample thickness D and the
predicted curve from a model based on a double Gaussian spec-
tral fit to the actual wavelength distribution. (b) The relative
contrasts in C3 measured for all data runs, vs the sample thick-
ness D in the nonoverlap time slice, (c) for the overlap time
slice.

spectral fit to the actual wavelength distribution as dis-
cussed in [11]and [12].

Of the 11 time slices, we are primarily concerned with
the relative contrast results in only two of them. The first
is the slice consisting of time channels around 17 and 18
iMs (see Fig. 4, left), near the minimum of the pulse inten-
sity. For reasons discussed in Sec. II, this is called the
"nonoverlap slice"; it represents the center of each indivi-
dual pulse, where there is minimal contribution from
neighboring pulses. Table II lists also the relative con-
trast results in the nonoverlap slice for each of the data
runs, and Fig. 9(b) shows the data plotted versus D. The
solid line is a prediction based on the Gaussian model ap-
propriate for a "nonoverlapping slice" with a narrow
wavelength distribution with a width given by Eq. (18).
Note that the relative contrast in the nonoverlap slice
falls off much more slowly than in the overall pulse [Fig.
9(a)]; there is still contrast in the time slices, even though
it seems to have disappeared in the overall pulse.

The second time slice of interest consists of time chan-
nels around 7 and 8 ps (see Fig. 4, left), near the max-
imum of the pulse intensity. This is called the "overlap
slice"; as discussed in Sec. II, it is where neighboring

pulses most completely overlap. The relative contrast
data in the overlap slice are also listed in Table II, for all
data runs. Fig. 9(c) shows the contrast plotted versus D;
again, the solid line follows from Eq. (24). The resulting
curve is much different in the overlap slice than in the
nonoverlap slice. The contrast remains high in compar-
ison to the overall pulse [Fig. 9(a)], but it exhibits well-
defined oscillations, with minima at D=4 and 12 mm,
and maxima at D =0, 8, and 16 mm. On inspection, the
maxima in the overlap slice can be seen to be equivalent
to those in the nonoverlap slice, so that Fig. 9(b) seems to
define an envelope bounding the contrast oscillations in
Fig. 9(c).

IV. DISCUSSION

In this experiment, we were able to carry out a full-
scale neutron interferometry experiment in the time
domain. The neutron pulses produced by a fast mechani-
cal chopper were significantly shorter than the dimen-
sions of the perfect crystal interferometer, thus assuring
that there is no permanent overlap of wave functions or
distribution functions at the beam splitting and beam
overlapping part of the interference experiment. The ex-
periment again demonstrates very clearly the single-
particle interference phenomena in neutron interference
experiments because the mean occupation number in a
single neutron pulse is much smaller than unity (it is of
the order of 10 ). The neutron intensity pulses used in
this experiment are considerably longer than the coher-
ence length of the beams and, therefore, diffraction in
time effects are negligible. Several aspects of neutron
wave mechanics have been explored and have been shown
to be in agreement with the theoretica1 predictions. The
spreading of the neutron pulses has been observed as well
as the spectral narrowing in distinct time slices down-
stream from the interferometer.

The excellent agreement between the predicted con-
trast curves and the measured data, particularly in Fig. 9,
shows that our model correctly describes the propagation
of neutron pulses, the separation of the wavelength com-
ponents, as well as the various corrections necessary to
extract the experimental results. In Sec. II the formulas
for single Gaussian distributions are given although the
detailed data evaluation has included the double Gauss-
ian nature of the actual wavelength spectra [22]. As in
our other recent papers [10—12], we have found a way to
extract interference fringes (i.e., contrast) from a beam
which, on the whole, exhibits no contrast. Thus, an in-
terference and coherence phenomena can be completely
hidden due to general averaging effects but it can be
recovered even behind the interferometer if a proper
measuring procedure is applied.

The observed beam modulation occuring in the overlap
region of successive pulses is another example how intrin-
sic coherence phenomena become manifest. In this case
when time resolution is applied the average intensity
remains constant —aside from attenuation effects —but
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the contrast shows a marked beat effect. This behavior is
characteristic for the incoherent beam superposition of
two different wavelength bands.

Furthermore, it is our hope that our time-dependent
neutron interferometry effects, such as quantum chop-
ping (phasing) or Miller-Wheeler delayed choice experi-
ments [23] will soon be investigated.
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