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Self-induced stimulated light scattering in nematic liquid crystals: Theory and experiment

L. Marrucci, G. Abbate, S. Ferraiuolo, P. Maddalena, and E. Santamato

(Received 21 April 1992)

We present a theoretical and experimental study of the molecular collective rotation induced in a
nematic liquid crystal by a laser beam, when self-induced stimulated light scattering takes place. The
model is accurate enough to obtain quantitative agreement with experimental results, including the ob-
servation of optical bistability and hysteresis. Exact plane-wave expressions for energy and angular-
momentum exchange between light and matter are also derived.

PACS number(s): 61.30.Gd, 42.65.—k, 64.70.Md

I. INTRODUCTION

A phenomenon of nonlinear optics called self-induced
stimulated light scattering (SISLS}has been recently ob-
served [1] in a thin film of nematic liquid crystal (NLC),
prepared in the homeotropic alignment.

To observe this phenomenon a circularly polarized
laser beam must be focused on the sample at normal in-
cidence. When the light intensity I is raised above a
threshold value, the emerging light becomes elliptically
polarized, with the ellipse major axis rotating at constant
speed (a more general SISLS where the input light is al-
ready elliptically polarized has also been studied in Ref.
[2])

This interesting nonstationary effect can be understood
in terms of direct angular-momentum exchange between
the light beam and the collective orientational degrees of
freedom of the medium. In a quantum picture, the pro-
cess is described as a photon stimulated scattering: each
scattered photon goes from the initial helicity state to a
final state with opposite helicity, thus imparting to the
medium an angular momentum of 2R, directed along the
propagation direction z. If p photons are scattered per
unit time, the angular-momentum transfer produces a
constant torque, ~, =2', acting on the medium, which
induces a rotation of the average molecular orientation
(i.e., of the director n) around z. At steady state, this
torque is balanced by the viscous torque, and the angular
velocity Q of the molecular rotation is constant in time.

During this process, energy is continuously dissipated
by viscous forces in the medium; this energy is supplied
by the light itself. The medium being transparent, the
photons cannot be absorbed. Consequently, each photon
reversing its helicity must suffer a frequency redshift Am,
so that its energy is lowered by an amount fiasco. The pre-
dicted redshift has been experimentally measured [3].
The frequency difference between the two helicity com-
ponents of the emerging light also appears in the rotation
of the polarization ellipse.

The relationship between the redshift Aco and the an-
gular velocity Q can be obtained in a very simple way:
the work per unit time done by the optical torque ~, on n
is ~,Q=2fipQ; this work is to be equated to the energy
lost by photons per unit time %hap, thus obtaining

hco =2Q. Since in the final relation A disappeared, such a
relationship is expected to be found also on purely classi-
cal grounds (as in fact will be shown in Sec. IV).

SISLS can be looked upon as a kind of stimulated Bril-
louin light scattering, where collective orientational
modes are involved. Nevertheless, due to the very large
viscosity acting on these modes, no free oscillation is pos-
sible in the medium, contrary to Brillouin scattering.
This implies the following peculiarities of SISLS: (i) there
is no anti-Stokes production; (ii) the frequency shift am-
plitude 2Q is much smaller than usual Brillouin shifts
(typical values of Q are 10 ' —10 Hz}; (iii} the frequen-
cy Q is not determined by the medium, but varies with
the intensity I of the laser beam itself; (iv) the light inten-
sity necessary to observe the phenomenon is very small
and commercial continuous-wave lasers can be used.

Both experiment [4,5] and theory [6,7] show that, for
homeotropic samples where the director n is perpendicu-
lar to the bounding walls, there exists a threshold value

I,z for the light intensity below which the molecular re-
orientation cannot be induced. This threshold effect is
called the optical Freedericksz transition (OFT), and it
has been studied extensively with linearly polarized light
where SISLS does not occur.

A peculiar feature of SISLS is that the transition to the
rotating regime is first order. This is somewhat unexpect-
ed, since all known OFT's are second order [8]. As usual
with first-order transitions, hysteresis is also observed.
Indeed, even if the intensity I is lowered below I,b, the
rotation regime remains stable as long as I is above a
second critical value I& &I,&. Below this second thresh-
old value the rotation ceases, and the director n relaxes to
the initial homeotropic alignment.

All known models of OFT in nematic liquid crystals
assume either splay-bend or twist reorientation separately
[7]. Theoretical studies of SISLS were recently carried
out in the case where the molecular director n is uniform-
ly tilted out of the z axis at a fixed angle (as in smetic-C
liquid crystals} [9], and in the case where twist distortion
is absent [10]. In all these models the orientational de-
grees of freedom are reduced to a single one, thus greatly
simplifying the problexn. Relevant features observed in
SISLS (such as the occurrence of first-order OFT) remain
yet unexplained, however.

46 4859 1992 The American Physical Society



4860 L. MARRUCCI et al.

Although including both degrees of freedom of n great-
ly increases the complexity of the problem, analytical re-
sults can be obtained, which agree even quantitatively
with the observed phenomena. In the present work, such
a theoretical analysis of SISLS is presented and compared
with experiments.

The paper is organized as follows. First, in the classi-
cal framework of continuum physics, the general field
equations of the model are derived in Sec. II, and the
main approximations are explicitly stated. The time
dependence of the asymptotic rotating regimes is found
in Sec. III, where the equations for the field spatial
dependence are also obtained. In Sec. IV, the results of
the preceding section are used to evaluate the angular-
momentum and energy transfer from light to matter, and
the connection with the quantum picture is established.
In Sec. V, an approximate analytic solution of the spatial
equations is presented, which is found to be sufficiently
accurate to explain most of the observed phenomena. Fi-
nally, in Sec. VI the experimental results are reported and
quantitatively compared with theory.

II. DYNAMICAL EQUATIONS

The macroscopic local properties of a nematic liquid
crystal are described by a unit vector field n which indi-
cates the average molecular orientation [11,12]. The hy-
drodynamical degrees of freedom (velocity field), al-
though coupled with n, will be neglected for simplicity
(we are thus neglecting the "back-fiow" effect [13,14]).
Also, the temperature and density (or pressure) fields,
supposed to be uniform and fixed, will not enter the prob-
lem (apart from the obvious dependencies of the phenom-
enological constants).

Let us consider an infinite layer of NLC of thickness L.
We use the Cartesian coordinate system indicated in Fig.
1, as well as polar angles 8 and y to specify n, where 8 is
the tilt angle between n and the z axis, and y is the az-
imuthal angle between the nz plane and the xz plane.
The laser wave is described by the complex electric am-
plitude E, whose real part is the actual electric field of the

(sum over repeated indices is implied), with

E;J'
=E'Z5,J +E'a n; nJ (2)

Here E'~=n, is the square of the ordinary refractive index
of the NLC, and E' =E'll E'~ where ell=n, is the square
of the extraordinary refractive index. The medium is as-
sumed nonmagnetic and nonabsorbing (e is real).

In our plane geometry, Maxwell's equation

divD=0 (3)

allows one to eliminate E, from the set of independent
fields. Maxwell's equations for the remaining transverse
amplitudes E„and E are then written as

BE;
BZ2

where

1 B'
Z; E =0 (i,j =x,y),c' (4)

IJ IJ

IZ ZJ

&ZZ

(i,j=x,y) .

Equation (4) can be rewritten in terms of the right ER
and left EL circular polarization amplitudes of E, con-
nected to the Cartesian amplitudes by the transformation
rules

wave. Both n and E depend continuously on the point
(x,y, z) and on time t.

We assume that the impinging light beam is a mono-
chromatic plane wave, of frequency co/2n, traveling in
the positive z-axis direction, and entering the sample at
z =0. Let c and A. =2~c/co be the velocity of light and
wavelength in vacuum, respectively, and I the input beam
intensity, as given by the z component of the Poynting
vector averaged over a cycle.

Because the geometry is symmetric to translations in
the xy plane, we can suppose that all fields inherit this
symmetry. We assume therefore that the only relevant
spatial coordinate is z (plane symmetry approximation).

The electric displacement vector D is linked to E
through the dielectric tensor e:

D; =e; E (i,j =x,y, z)

outpu
beam

T

E~
1 1

EL v'2 1

Explicitly, we find

E

BE
BZ2

1 B
c2 Bt2

n +n,
2

Ez+ Q 2E
2ell

=0,

BZ2

n+n cn—2

EL + Q*'ER
t2 2 2ell

=0,

input
beam

FIG. 1. The NLC layer, with the Cartesian coordinate sys-
tem and the polar angles 8 and g for the molecular director n.

where the complex field Q is given by

Q = single'~

and the asterisk denotes complex conjugation. The
effective index n (8) appearing in Eqs. (7) is given by
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n(8)=
(n, sin 8+n, cos 8)'

Equations (7) must be coupled with the equation for Q, or
equivalently for the two real fields 8 and y, describing the
local orientation of the director n. The last equation is
obtained by balancing the elastic, electromagnetic, and
viscous torques acting on n (see Ref. [11]):

As before, F, can be used to find the electromagnetic
torque ~, acting on n:

~ aF,. aF,.
Bz Ba Ba

e, n sin8 cos8

16meiell

~d+ ~em+ ~v (10) X ~Es~ +~Er ~
+

z Re(EsE~Q )

The elastic and electromagnetic torques ~d and r, can
be found as the (functional) derivative of the total free en-

ergy with respect to a local variation of n, while the
viscous torque v„ is obtained as the derivative of the sys-
tem dissipation function with respect to a variation of
n =Bn/Bt.

The free-energy density of F of a NLC in an external
electromagnetic field (as a potential of n, E, and H) is the
sum of elastic and electromagnetic contributions:

aF,
+em

Bz By'

BF,m
Bf

an
—2

8m.
all

(17)

Im(ERE& Q ) .

In deriving Eqs. (17), we used Eq. (3) to eliminate E, (Re
and Im denote the real and imaginary part of the argu-
ment, respectively).

The dissipation function density in the absence of ve-

locity field is taken as

=Fd+Fem . R =
—,'y)(n) (18)

The term Fd is the classical Frank elasticity energy, given

by [11]
where y, is the orientational viscosity [11]. Therefore we

get

Fd= —,'E&&( divn) + 2Ezz(n. rotn) + —,'%33(nX rotn)

(12}

'r
V, B

R

(19)

(13)

with

pi = I —&ii/&33

p2 =1 &» «» ~— (14)

The nonzero components of ~d are obtained from Fd as

dFd r}Fd

Bz Ba Ba

where K», E22, and /33 are the splay, twist, and bend
elastic constants, respectively. In our geometry, Eq. (12)
becomes (8/Bz is denoted with a prime)

E33
Fd = [(1—

p& sin 8}8' +(1—
p2 sin 8}sin 8tp' ],

7 V, g
R = —

y& sin 8y

The torque balance Eq. (10) is finally written out in the
evolution form:

~ 1
[rd q(8"&8'&0"&8)+r,m ~(8&t&Ea &Er )],

Y1
(20}

[rd ~(f"'&8'&y'&8)+r, »& ~(8&p&E~&Er }],1

y, sin'a

where the torque expressions are given by Eqs. (15) and
(17}.

The nonlinear set of Eqs. (7) and (20}, when completed
with the appropriate boundary conditions, describes the
dynamics of our system. We must specify ER and Er (or
E„and E ) entering the sample. We also assume that n is

normal to the bounding surfaces at all times (strong
homeotropic anchoring), i.e.,

=E33[(1—p& sin 8)8"— sin2M' n„(0)=n (0)=n„(L)=n (L)=0. (21)

—( —,
' —

p2 sin 8) sin28&p' ] .

BFd

Bz By'
BFd

Bj(p
[EC33( 1 —p sin 8')sin 8qr' ]

Bz

(15)

(n E)(n.E'}-
16m

e~EE*+HH
(16)

The term F, is the usual electromagnetic (cycle-
averaged) free-energy density in a linear (at fixed n)
dielectric and is given by [15]

F 0-E*+H-H*
em=

16

Although Eqs. (21) express four independent boundary
conditions on n, these reduce to only two
[8(0}=8(L)=0]when polar angles are used. The two
missing boundary conditions are recovered by further
considering that also "bulk" information has been lost
when passing from Cartesian components to polar ones.
Indeed, consider the limit of the derivative

qr'=(n„, n„' nn„' )/(n„+n„)—
as the boundaries are approached. This limit has the in-
determinate form 0/0 but, applying L'Hospital's rule,
and using n„" and n" from the bulk equations, it is found
that lim, Oy'=lim, z y'=0.
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The complete set of boundary conditions is then writ-
ten as

8(0)=0, 8(L)=0,
g'(0) =0, y'(L) =0,
Ez+(D)=E&oe ' ', ER (L)=0,
EL+(0)=ELoe ' ', EL (L)=0,

ct)R
R

2
' —2n+n, e, 2

II

2 —2
coL n +n, e,

ll

=0,

(8",O', 0', 8)+rc~ e(B,V, ER,EL ) =0,
td ~(y", iI', qr', 8)+r, &(8,y, E+,Et ) =Qr, sin 8 .

(26)

(27)

(28)

where E+ and E are the complex amplitudes of waves
traveling in the positive and negative z directions, respec-
tively. For a circularly polarized input beam, either Ezo
or ELO is nil.

III. STATIONARY REGIMES

Rather than in the complete dynamics, we are interest-
ed in the asymptotic regimes which are described by the
attractors of the set of Eqs. (7), (20), and (22). To find
these attractors, we may exploit the invariance of our
model with respect to rotations around the z axis; a rota-
tion of an angle Ay around the z axis transforms the
fields as follows:

Q~Qe' &,

EL ~EL e

(23)

Equations (7) and (20) are not changed upon this transfor-
mation, while in the boundary conditions there is but a
shift in the time origin.

Because the ensemble of all attractors has the same
symmetry of the dynamical system, we must expect either
single symmetric attractors or symmetric subsets. In or-
der to search for single attractors, we apply a time-
dependent uniform rotation b,y(t)=Qt on a stationary
(except for electric-field oscillations at co) configuration of
fields. A periodic time-dependent set of fields is thus ob-
tained, which during the motion covers all the
configurations which can be generated from the initial
one by the transformations (23). In other words, we re-

quire that the dynamical behavior of our fields be given

by

8(z)=0,
y(z)=(not significant),

ER(z)=Etio ~

Et. (z) =ELo

(29)

This is the homogeneous undistorted state (US) which
sets in when the beam intensity is below the threshold.
As the intensity I is increased above the threshold value

[7]

2~ C e~~rc33
2

e, n, L
(30)

stability is lost, and new dynamical regimes appear.

IV. ENERGY AND ANGULAR-MOMENTUM BALANCES

From Eqs. (25)—(26), soine simple considerations on
conserved quantities can now be made.

For a monochromatic wave of frequency co/2m, the
magnetic field H is given by

H= —i—rotE,. C

CO

(31)

To satisfy the boundary conditions for the light fields, we

may set either to+ =co (co being the input frequency) or

coL =~, depending on the helicity of the input wave.

The dynamics described by Eqs. (24) is a steady state if
Q=0, and is a limit cycle if QAO. In the latter case, as
mentioned in the Introduction, a frequency shift of 20 is

added to that of the two emerging polarizations, having
the opposite helicity of the input wave.

A simple steady-state solution of Eqs. (26)—(28) is given

by (reflection on the glasses is neglected)

8(z, t) =8(z),

p(z, t) =y(z)+Qt,

E& (z, t) =E& (z)e
(24)

so that the cycle-averaged Poynting vector S is

S= Re(E XH)= Im(E*X rotE) .
8~ 8m.co

(32)

with

EL (z, t)=EL (z)e
Because right and left polarization waves are separately
monochromatic, we can use Eq. (32) to write their respec-

tive intensities IR and IL (z components of S) as

coR 2Q (25)

The time-independent fields 8(z), q&(z), Ez (z), Ez (z) must
then obey the following nonlinear set of equations, 0
playing the role of the eigenvalue:

C2
I~ = Im(ERE~ ),

8am~

C2
IL = Im(Et*EL ) .

87TCOL

Moreover, by using Eqs. (26), we find

(33)
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Ng
IR

2 +em, y &

NL
IL

2

enemy

&

(34)

8' (z) «1 for every z . (41)

plifying hypothesis, an analytic solution can be found.
The following assumptions are made:

(i) Splay-bend distortions are small, i.e.,

=0 or

where ~, is the z component of the electromagnetic
torque r, , given by Eq. (17). From Eqs. (25) and (34),
the following noteworthly expressions can be derived:

Ic, I IL I~+ + = const, (35)
Bz cor coR NL Ng

(ii) Twist distortions are small, i.e.,

1
ly'(z)l « —for every z .

L
(42)

(iii) The splay-bend distortions profile is given by the
first mode of the Fourier sine expansion, i.e.,

which expresses the conservation of total photon flux in
the process; sin8(z) =

I Q(z) I

= A sin
L

(43)

(Ir +IR )= —Qr,
c}z

(36)

which expresses the equality between the energy lost by
the total radiation field per unit time and volume, and the
work made by the electromagnetic torque on the medi-
um;

a
Bz cog

7 em, y ~

Ng
(37)

which permits us to identify the quantity

IL
M, =

NL
(38)

LI(0) I(L)=y,Q—f sin 8dz,
L

M, (0)—M, (L)=y,Q f sin 8dz

(39)

(I=I+ +Ir is the total intensity of light). Equation (39)
equates the energy flux lost by the radiation field (on the
left-hand side) to the total work made by viscous forces
per unit time (on the right-hand side). Similarly, Eq. (40)
equates the angular-momentum flux lost by the radiation
field to the total viscous torque. It should be noted, how-
ever, that the exchanged energy I(0)—I(L) is dissipated
into heat in the medium, while the angular momentum
M, (0)—M, (L) is transferred to the velocity field, and
hence finally to the walls.

V. APPROXIMATE SOLUTION

The set of Eqs. (26)—(28) is a nonlinear problem which
cannot be solved exactly. Nevertheless, with some sim-

as the net flux of angular momentum (z component) car-
ried by the optical field. Equations (35}—(37), although
derived in the framework of a classical theory, are fully
consistent with the quantum prescriptions Iz=n„AN+,
IL =nLANL relating the intensities to the photon number
fluxes na, nr Equa. tions (35) and (37) are therefore the
Manley-Rowe relations of the process [16]. Notice that
the Manley-Rowe relations have been obtained without
making use of the slow-envelope approximation.

Using the torque balance Eq. (10), we substitute for

~ in Eqs. (36) and (37). Integrating the resulting equa-
tions, and using the torque expressions (15) and (19), we
get the following global balances, where the elastic term
has vanished:

where A is a constant.
(iv) The light frequency shift is small compared to the

optical frequency, i.e.,

2IQI «~ . (44}

(v) Maxwell's equations can be solved in the slow-
envelope approximation, since we neglect any reflection
and suppose that

—»I&'I and —»Ig'I1, 1
(45)

2 Im(EaEq )
sp=

0
(46)

$3=
S0

where

s, =IE, I'+IE, I'. (47}

By virtue of hypotheses (41) and (42), we expand all func-
tions of 8 and y' up to order 8 and y', respectively.
Cross terms such as 8 y', etc. are also neglected.

With these simplifications, it can be shown [17,18] that
Eqs. (26) reduce, in the slow-envelope approximation, to
the precession equation for Stoke's vector s=(s„s2,s3)
given by

ds 277
[n(z) —n, ](cos2y(z), sin2y(z), 0) Xs, (48)

dz

and that $0 is related to the (constant) intensity I by

So(z)= I .16~

c[n, +n(z}]
(49)

For circular polarization, the boundary condition for Eq.

(the last hypothesis obviously implies L »I,).
Let us first solve Eqs. (26) for the light field. In view of

Eq. (44), we neglect the difference between con and cor ',

consequently, the beam intensity I is taken as a constant
throughout the sample. The only effect of the
birefringence of the medium is to change the beam polar-
ization, as described by reduced Stokes parameters

2 Re(E„Er' )

s 7

0
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(48) is

s(0)=(0,0,$3O), (50)

E'g &a 2. 2~Zn(z)=n, 1+ sin 8 =n, 1+ A sin
2ell 2ell L

{51)

where s30=+1 depending on the helicity of the input
light. Since the reflected wave is neglected, no condition
on the optical fie1d at the final boundary L is to be im-
posed.

To the same order of approximation, the effective in-
dex n is given by

g&(z) = —2$3o f y'(z') sinu(z')dz',

$2(z) — $30 sinu (z)

(3(z)—$3o cosu (z)

We now can move to solve Eq. (28) for the twist distor-
tions p'(z). In view of Eqs. (37) and (38), we set

= —M,
' into Eq. (28); a first integration of the result-

ing equation then yields

E33(1—
p3 sin 8) sin 8tp'

=M, (z) —M, (0)+0,f sin 8(z')dz' . (59)

The slow-envelope approximate expression for M, is
It is expedient to define a variable u(z) for the phase
difference accumulated between the extraordinary and or-
dinary wave at depth z in the sample:

IM = ——sz 3 (60)

u (z) = f [n (z') n, —]dz'—2K

0

Using Eqs. (43), (55), and (60), we then cast Eq. (59) in the
form

7771,6 A 2

(52) 2a sin
~ 2 7TZ P2 . 2 mZ

1 —a sin
L

The total phase difference a =u(L } at the exit face of the
sample is related to the constant A by

=Qu (z)+ vr I [$3o
—$3 (z) ], (61)

where we introduced the dimensionless intensity

a=u(L}=LA

where we defined the dimensionless sample thickness

mn, E, LL=
2ell

(53)

(54)

I=I /I, i,

and the dimensionless angular speed

Q=Q
33

(62)

(63)

Notice that, although a is proportional to A, it cannot
be considered small, because the constant L, containing
the factor L/A, , may be a very large number (typical
values of L are —100). In actual experiments, a can vary
over many n's Equation .(52) can be rewritten in terms of
a as

$3(L)—$300=m I (64)

Equation (61), evaluated at z =L, yields the following re-
sult for 0:

z 1 . 2mz
u(z) =a —= sin

L 2m. L
(55)

If the third of Eqs. (58) for $3(z) is substituted into Eqs.
(64) and (61), these become

Let us now switch to reduced Stokes parameter vector
( g1 gz g3 ) as seen in the "rotating frame" which fol-

lows the angle {p(z); g is connected to s by

$, =g, cos2q& —
gz sin2y,

$2 =gi sin21p+ g2 cos2+,

$3=/

Equation (48) then reduces to

(56)

10, —2 + Xg,
du du

(57)

where u(z) is given is Eq. (55). This equation can be
solved by a perturbative series in powers of dy/du. The
zero-order term is found out by integrating Eq. {57)with
dy/du =0. After substituting this zero-order term back
into Eq. (57), another integration gives the first-order
solution:

-cos(a) —10=~s30I a
(65)

—1 —cosu(z) —(1—cosa)[u (z}/a]
Z — $302L a sin2(m. z /L )

[Eq. (49) has been also used], where

where in the latter equation the small term y'a/L has
been neglected.

The field solutions and the eigenvalue 0 just found de-
pend on the unknown quantity A, or equivalently on the
total phase retardation a; this constant is to be deter-
mined from the remaining field equation, Eq. (27). To
solve this equation, we rewrite it in terms of the variable

I Q I

= sin8, and expand up to third order, to find

(1—pi IQ I') IQ I"+(1—pi }IQIIQ I

' —IQ lq'

2I+ IQI 1+(,— IQI =0 (67)
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Sell
(68)

ing both sides by 2 sin(nz/L) and integrating throughout
the film]. The result is a transcendent equation for a

Then, following Galerkin's method [19],we substitute in
Eq. (67) the first sine mode, Eq. (43), and "project" the re-
sulting equation onto the first sine mode itself [multiply-

I

1+2pi
a 1 — a I—1 —~a + G(a) =0,

4L L

where G(a} is the function defined as

(69)

G(a) =2m.2 & sin[au(g)][1 —u(g)][1—cosau(g) —(1—cosa)v(g)] d
0 a sin n.g

+H 1 —cos[av(g) ]—(1—cosa )v (g)
0 a sinn(

with

(70)

v(g)=g — sin(2m() .1

2' (71)

1+2p i a
4L

1 271I(a)= 1 — a — 1 — a —2G(a) 1—
G(a) L

(72)

A trivial solution of Eq. (69) is a(I ) =0, which corresponds to the undistorted state (US) already found in Sec. III. The
nonzero solutions of Eq. (69) will depend on I, and can be found by inverting the function I(a) given by

1/2 '

I(a)= [1—[1—2G(a)]'~ ] .
G(a)

(73)

We note that the liquid-crystal constants p&, g and the

Of the two roots of Eq. (69) we chose the one falling in
the experimental range 0(I& 3.

Figure 2 illustrates the typical curve a(I } found from
Eq. (72), for the case of a 75-pm-thick film of 4-cyano-4'-
pentyl-biphenyl (5CB). The corresponding curve Q(I ), as
obtained from Eq. (65), is shown in Fig. 3.

For small a, the term a/L is negligible, and the curve
I(a) is well approximated by

I

film thickness L have disappeared. Thus, in this approxi-
mation, the phase retardation a and the reduced angular
velocity 0 turn out to be "universal" functions of the re-
duced intensity I, independent of the material constants,
thickness, etc.

We may distinguish five regions of I, having qualita-
tively different features, and delimited by four critical
values, I„1,Iz, Iz, as shown in Figs. 2 and 3. For I &I,
the only solution is the US. At I=I& there is a saddle-
node bifurcation (turning point}, with the appearance of
two solution branches, besides US. The decreasing a(I)
branch (labeled RSO in Fig. 2, for "rotating state 0") is
unstable, while the increasing one (labeled "RS1") is

10-

0.8

RSO RS1

RS5~ its4
: ~RS3
s: I

Ip 1.2 Ig

RS2

I

1.4 US

O.s

RS3

1.2 lp 1.4

FIG. 2. Calculated total retardation angle a vs dimensionless
intensity I for a 75-pm film of 5CB. US, undistorted homeotro-
pic state; RSn, rotating regimes (solid lines refer to stable re-
gimes, dashed lines to unstable regimes). The critical values
I), 1,I2,Ig separate intensity ranges yielding qualitatively
different behavior.

FIG. 3. Calculated dimensionless angular speed Q vs reduced
intensity I for a 75-pm film of 5CB. US, undistorted homeotro-
pic state; RSn, rotating regimes (solid lines refer to stable re-
gimes, dashed lines to unstable regimes). The critical values
I), 1,I2,Ig separate intensity ranges yielding qualitatively
different behavior.



4866 L. MARRUCCI et al. 46

stable. The curves ass, (I} and Qzs, (I) are sample in-
dependent. In this region of I there is bistability between
RS1 and US. At I=1 the system shows a Hofp subcriti-
cal bifurcation, above which US becomes unstable.

Starting from the US, and slowly increasing I, the sys-
tem will remain in US up to I=1. There, it will show a
first-order transition (the OFT) from US to RS1. After
the transition, the system will continue to stay in the RS1
branch, even if I is lowered below 1, showing hysteresis.
Only when I &I, the system will relax back to US. The
predicted value I, =I, /I, h-—0.88 is essentially indepen-
dent of the sample.

In the range 1 &I & I2 there are two solutions, US and
RS1, but only RS1 is stable. At I=I2, there is the first of
many saddle-node bifurcations, which give rise to new
branches of solutions alternatively stable and unstable (la-
beled RS2, RS3, etc.}. Since the value of a at these bifur-
cations are large, the threshold I2, as well as the number
of simultaneous stable solutions depend on sample con-
stants. All these branches disappear in subcritical bifur-
cations, except for the lower one (RS2) and the higher
one (labeled RSH). At I=I3 we are left with only four
solutions, which are the US (unstable), the RS1 (stable),
the RS2 (unstable), and the RSH (stable). Bistability is
therefore expected, but in this case the model does not
predict a threshold to go from RS1 to RSH.

We finally describe the Q(I) curve (see Fig. 3). The
RS1 branch, corresponding to the less-distorted regime,
and to the lowest viscous torque, has the highest velocity
Q. Moreover, 0 is only slowly dependent on I because
a„s&(I) is almost constant. On the contrary, the RSH
branch has an oscillatory behavior due to the cos(a) term
in Eq. (65). The values of I at which QRsH =0 correspond
to steady states with a free p value (the symmetric limit
cycle degenerates into a symmetric ensemble of fixed
points). In these states, the angular momentum transfer
M, (0)—M, (L ) vanishes.

VI. THE EXPERIMENT

)Ar+ '

T
NLC BS g/4 PBS PD

f1
u

PD

DA

FIG. 4. Experimental apparatus. NLC, sample; T, thermo-
static oven; Ar+, laser; BS, beam splitter; P, polarizer; PBS, po-
larizing beam splitter; A, /4, birefringent plate; PD, photodiode;
DA, data-acquisition system.

justable parameters. The (RS1-US) hysteresis loop is
quantitatively well reproduced by our model. On the
contrary, for l)I2, theory shows only a partial agree-
ment with the observed behavior. In particular, the
multistability in the I2 —I3 range was not observed.
Moreover, as shown in Fig. 5, a second hysteresis loop is
found between RS1 and RSH. Although the last two re-
gimes were predicted to be simultaneously stable, no ex-
planation for the RS1~RSH transition is found in our
model. The observed transition intensity I4 shown in

Fig. 5, however, did not show a fixed value; rather, it
would change from one experiment to the other (with the
same sample) by more than 20%. For comparison, the
fluctuation of the observed turnoff intensity I, in various
experiments (even with different samples) was less than
3%.

We believe that the failure of the model in the high-
intensity region arises because the rotational symmetry is
not completely reproduced in the experiment, due to una-
voidable perturbations. The symmetry-breaking agents
create a coupling of the dynamical variables a and y,
which, during the rotation, induces a synchronous oscil-

We used films of 4-cyano-4'-pentyl-biphenyl (5CB) and
of nematic-liquid-crystal mixture E7 of various
thicknesses (50, 75 and 110pm), contained between glass
slides coated with surfactant for homeotropic alignment.
The samples were put into an oven for temperature con-
trol within +0.1'C. The light beam was a 514.5-nm
wavelength Ar+ laser, focused onto the sample to a spot
of about 150-pm diameter.

The experimental apparatus is shown in Fig. 4. We
made an ellipsornetric real-time analysis of the light beam
emerging from the sample. The angular speed 0 was
measured by observing the rotation of the polarization el-
lipse major axis. The birefringence a (modulo 2~) could
also be calculated from the output ellipticity
s 3 (L ) =s 3o cosa. The number of 2~'s to be added to such
determination of a was found by counting the rings in the
far-field diffraction pattern.

As a typical example, Fig. 5 shows data obtained with
a 110-pm-thick E7 sample, together with the theoretical
curve. As shown by the figure, there is a generally good
agreement, especially if one considers that we used no ad-

25 0

15—

US RS1

0.8
A ~ A L k i a a (

I) 1

V s 4I

1.2
VV USV V~

T4

FIG. 5. Measured total retardation angle a vs dimensionless

intensity I for a 110-pm film of E7. Squares refer to data ob-

tained with increasing intensity, triangles with decreasing inten-

sity. Lines refer to theoretical predictions. The threshold value

I4 refers to the observed RS1~RSH transition (not explained

by the model). No fitting parameters have been used.
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FIG. 7. Experimental values of the ratio y&/K33 in E7 at
different temperatures. The straight line is from linear best fit.

E7 is plotted as a function of temperature.
As expected, the observed RSH regime rotation is

much slower than that of RS1. A quantitative fitting to
the theoretical curve was nevertheless impossible in the
RSH regime. The observed rotation was not even uni-
form, due to the simultaneous nutation.

90 I l ~ I
0.94 0.90

t
1.0 2 1.00

FIG. 6. Rotation periods vs reduced intensity I in a 75-pm
film of 5CB at a temperature of 24'C [(a) and (b)], and in a 50-
pm film of Ej at a temperature of 20'C [(c)]. Best fits to data
yielded r=y jL'/K33 55 s in (a), ~=56 s in (b), and ~=108 s in
(c).

lation of a. The "nutation" was actually observed, but it
remains very small for I & 1, while it becomes larger and
larger as I is increased. It is probably the nutation that
destabilizes the RS1 state at I=I4 and that makes the
RSn intermediate regimes hardly observable.

In the I &I2 region, the measured rotation periods
agree very well with theoretical predictions, as shown in
Fig. 6. The theoretical curve is given by 2n. /Qas&(I)r,
where Q„s,(I) is the dimensionless angular speed, and 7

is a time scale employed as a fitting parameter; the best fit
values of ~ are experimental estimates of the time con-
stant y,L /K33 [see Eq. (63)]. The obtained values agree
fairly well with reported data. For example, in the 75-
pm-thick sample of 5CB, at a temperature of 24 C, we
found ~=55.5+0.5 s, which taking %33 9.5X10 dyn
from Ref. [20] gives y1=94+1 cp, in excellent agreement
with the value y &

=95 cP reported in the same reference,
and obtained with a completely different technique. Be-
cause our determinations of y& are based on the y angle
dynamics, and not on the 8 angle, the measurement is not
affected by backflow [13,14].

An example of application of this new measurement
technique is shown in Fig. 7, where the ratio y, /%33 in

VII. CONCLUSIONS

We have presented a complete theoretical model for
the dynamical effects induced in a NLC film by a circu-
larly polarized laser beam, when self-induced stimulated
light scattering (SISLS) takes place.

The equations for the energy and angular momentum
exchange between light and matter have been derived
from Maxwell's equations, in the plane-wave approxima-
tion. The Manley-Rowe relations for the process were
also obtained.

With suitable approximations, which appear to be well
verified in the experiments, an analytic solution to our
model equations was found. In a wide range of beam-
intensity values, the quantitative predictions, expressed in
dimensionless variables, turn out to be independent of the
material, film thickness, and light wavelength.

The comparison between theoretical results and experi-
mental data shows excellent quantitative agreement at in-
tensities below and slightly above the OFT threshold;
only partial agreement is found when the beam intensity
is increased.

Finally, by fitting the theoretical periods of rotation to
the observed ones, we obtained accurate measurements of
the ratio y, /K33, free of the influence of backflow. Work
is in progress, to extend and improve this technique.
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