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High-frequency dielectric behavior of a ferroelectric liquid crystal
near the smectic-C' —smectic- A phase transition
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The temperature and frequency dependence of the complex dielectric susceptibility of a ferroelectric
liquid crystal (FLC) near the smectic-C* —smectic-A phase transition has been calculated using the gen-
eralized Landau model. It is shown that, although the dielectric response of the Sm-C* phase consists
generally of four modes (soft, Goldstone, and two high-frequency polarization modes), only three bands
appear in the dielectric-loss spectrum of FLC's at the Sm-A —Sm-C* phase transition. The calculations
based on the generalized Landau model show that the frequency split of the two high-frequency modes is
too low to be detected as two separate relaxation processes. A special technique has to be used to split
these modes. At the Sm-A —Sm-C phase transition this process does not split or broaden. These re-
sults are in agreement with the recent experimental data. It is shown that in the light of these calcula-
tions a revision of the theory as proposed by Pleiner and Brand [Phys. Rev. A 43, 7064 (1991);Mol.
Cryst. Liq. Cryst. Lett. 8, 1 1 (1991)]is rather unnecessary.

PACS number{s): 61.30.Cz, 64.70.Md, 77.40.+i, 77.80.—e

I. INTRODUCTION

Since the discovery of ferroelectric liquid crystals
(FLC's) by Meyer et al. [1] in 1975, an increasing number
of publications on experimental and theoretical investiga-
tions of the smectic-C' phase have appeared in the litera-
ture. The Landau model [2] and its generalizations (see,
e.g. , Refs. [3-9]) are most frequently used to explain
thermodynamic properties of FLC's. In particular it has
explicitly been shown [3,4,8] that the generalized Landau
model can explain the main experimental features of the
static and the dynamic dielectric behavior of FLC's.

In order to describe the ferroelectric Sm-C* phase,
two-component order parameters [cf. Eqs. (1) and (2)] are
introduced by the model. The dynamic dielectric
response of the system consists generally of four modes,
the two high-frequency polarization modes and the two
low-frequency modes. The latter are connected to the re-
laxation of the director fluctuations. The low-frequency
modes are commonly denoted as the soft mode and the
Goldstone mode [4]. In the Sm-A phase, only two degen-
erate modes are observed, the high-frequency polariza-
tion mode and the soft mode [4].

In the recent experimental investigations of the broad-
band dielectric spectra (up to 1 GHz) of FLC's in the vi-
cinity of the Sm- A —Sm-C' phase transition, three bands
in dielectric-loss spectra have been observed [10,11]. In
the low-frequency region the soft and Goldstone modes
were observed as expected. However, in the microwave
(high-) frequency range only one (lt3-relaxation) band was
observed. At the Sm-A —Srn-C phase transition this
band did not split or broaden and its dielectric strength
did not decrease [10,11]. Therefore it was concluded [11]
that these results did contradict the Landau model.
Moreover these results have led Pleiner and Brand
[12,13] to suggest a model which predicts only three

II. THE DIELECTRIC SUSCEPTIBILITY
OF THE SMECTIC-C AND - A PHASES

IN THE CONTEXT
OF THE GENERALIZED LANDAU MODEL

In the chira1 ferroelectric Sm-C' phase, the tilt of the
director vector n from the normal to the smectic layers
precesses helically as one goes from one smectic layer to
another. The projection of n into the plane of a smectic

l pl= p.
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FIG 1. The orde. r parameters g and P; g is the projection of
the director n onto the layer plane and P is the spontaneous po-
lar lzatlon.

modes in contrast to the four predicted by the Landau
model.

In the present paper we show that there is really no
contradiction between the experimental observations
[10,11] and the predictions of the Landau model [2—4].
We show that for the Landau model we indeed expect
only three peaks in the dielectric-loss spectrum of a FLC
in the frequency range up to 1 6Hz and not four as has
earlier been suggested.
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layer (which is taken to be parallel to the xy plane) is de-
scribed by the order parameter g= g,x+ hazy. Because of
the chirality of the molecules the tilt breaks the axial
symmetry around the long molecular axis and induces a
transverse in plane polarization P=P x+P y perpendic-
ular to the director n. For small tilt angles, we can write

[3,4] (Fig. I)

g, =8ocos(qz), gz
=8osin(qz),

Px = Po»n(qz) Py =Pocos(qz),

where z is the coordinate normal to the smectic planes,
q =2~/p is the wave vector of the pitch p, and 8o and Po
are the magnitudes of the tilt angle and the spontaneous
polarization, respectively. An ac electric field

I

E(t)=Eexp(icot) applied parallel to the smectic layers
induces an average macroscopic polarization
(P(t)) =(P)exp(icot). The complex dielectric suscepti-

bility g(co) is then defined as

y(co) = lim
(P)

E-o E
(3)

In order to describe the dielectric properties of a FLC
we use the generalized Landau model. A full review of
this model can be found elsewhere [8]. Only a summary

of the model is presented below.
The free-energy density g of a chiral Sm-C* liquid

crystal in the vicinity of the Sm-C*-Sm —A transition is

given by a Landau expansion in the order parameters g
and P [3,4],

z z z zz z z3g=-,'& (kf+k)+-.' b(k't+kz)'+ ,'«k)+-4)' —& ki
—

kz

+-,'E3
~kz

cfx Qz

dg, diaz+ ,'e '(P„—+P)+C(P„g„Pyg, )
——p P„+Py

,'«P—.k—PYk&)—'+ .'ri(P.'+-~y')' rI(k)+—kz) ki EqP+ e ~ ~

7 (4)

where only the term quadratic in tilt is explicitly temper-
ature dependent and goes to zero at the "unrenormal-
ized" transition temperature Tp for the FLC, i.e.,
a =a( T To ), the o—ther constants are temperature in-

dependent: e is a generalized susceptibility, E3 is the
elastic modulus, A is the coefficient of the Lifshitz invari-
ant term responsible for the helical structure, and p and
C are coefficients of the Qexoelectric and piezoelectric
coupling between the tilt angle H and the polarization, re-
spectively. 0 is the coefficient of the biquadratic cou-
pling term inducing transverse quadruple ordering and
the g term has been added to stabilize the system. The d
term describes the monotonic increase of the pitch with
temperature at low temperature. The c term has been
added to account for the specific-heat temperature depen-
dence of the system. Here it has been assumed that the
tilt angle H is relatively small.

An equation for the free-energy density g for the "clas-
sical" Landau model introduced by Pikin and Indenbom
[2) can be obtained from Eq. (4) by setting the c, Q, g,
and d terms all equal to zero. The most essential feature
of the generalized Landau model [3,4], in contrast to the
classical one, is the presence of the biquadratic coupling
(the Q term) between tilt and polarization in the free-
energy density. The presence of the biquadratic coupling
is essential in order to correctly describe the dielectric
(and also the basic thermodynamic) properties of the Sm-
C' phase [4].

As shown in [3,4,8], equations governing the behavior
of the system which can be deduced from Eq. (4) are most
conveniently studied by rewriting them into dimension-
less form. This allows one to be able to examine the
shapes of the calculated curves. By doing so the 11 ma-

terial parameters introduced in Eq. (4) are transformed to
six independent dimensionless constants and five scaling
factors. The six constants are defined [3] as

b~ ~'"CZ
Qz ' P

Q 1/2 ' ~ 3ZQ
' 1/2 ' 1/2

V —P
3

' 1/2

where b, c, Z, and C are renormalized constants given by
[3]

4Ad 3d

E, ' '
K,

C=C+ Ap 1 1 p
K3

'
g e K3

The physical quantities such as polarization Pp, the tilt

Hp, and the dielectric susceptibihty y will now be ex-
pressed in dimensionless form and will be denoted by a
tilde above the corresponding symbol, while the charac-
teristic units with which these are measured will be
denoted by an asterisk (e.g., 8o=8o/8'). The charac-
teristic units [8] are chosen to be

8*=(ZQ) ' P'=(Zg)

T*=b/(aZQ), E*=P'/y' .
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From Eq. (4) one can derive [3] the equations govern-
ing the equilibrium tilt and polarization of the system,
namely,

(p —y7 )80+y60+ p80 —90/0 —(p+ 3v560)PQ =0,
Po+ (1+60)PQ —(p+ v560)80=0,

(8)

where r=(T, —T)/T* and T, is the phase-transition
temperature which is [8]

T=T+ (P+A, ).c 0

681=68]osin(qz)exp(i to)],

682 =5820cos( qz )exp(i o]t )

hP] = EP]osin(qz)exp(i 03t ),
EP2 =b P20cos(qz)exp(io]t ) .

(12)

As a consequence the relaxation behavior of the Srn-C*
phase consists of two director reorientation modes, the
soft mode (mostly amplitude changes) and the Goldstone
mode (mostly phase changes}, and the two high-frequency
polarization modes [3].

The dynamic (Landau-Khalatnikov) equations of the
system obtained in Ref. [4] may be written down in the
dimensionless form as

In the presence of an ac field E(t), a general distur-
bance of the equilibrium state of Eqs. (1) and (2) can be
regarded to be composed of two parts [3,4]. First, the
amplitudes, and secondly, the phases of the order param-
eters, can change. Denoting the amplitude changes by
56& and AP& and the phase changes by 502 and bP2, re-
spectively, the order parameters in the presence of ac
field E(t)=Eexp(io]t)x applied in the x direction are
written as [3]

g] =80cos(qz) +b8]cos(qz) —b 82sin(qz),

(2= 80sin(qz)+ 58]sin(qz)+ 682cos(qz),

P, = —Posin(qz) —b P]sin(qz) bP2c—os(qz),

P =Pocos(qz)+ b P]cos(qz) —b P2sin(qz),

where

b, = i3 +y—r A, (—2A, 5+—3y)60 —Sp60+Po

+ 8v580PQ 2vAPQ—/8]1 2v (Po—/8]1) 55 60—,

b2 = —2l(560+2vA80/Po+2v (Po/60) 25 80—,

b3 =i3+v560+260PQ+ v Po/80,

b4 = —
A, v —v58~ —v P0/00,

b, = —P2+yr —
A,

2 —(215+y)60—p80

—2vA, P /08
—
0 2v (Po/8]1) —5 60,

b 6
=p+ 5v60+ 90@0+v Po /60,

b7=1 —0 +3P +v

~S =1+P0+v

(14)

The normalized complex susceptibility fc(o]) of the Sm-
C* phase defined as [4]

Xc(03)= (bP]0+ LLP20)
2E

is determined as the solution of the set of linear equations
(13), namely,

where

A (o])
28( )

(15)

(b] —io]y, g7)/Q)b6]o+ b2b 620+ b3b P]Q+ b4b P20 =0,
b26810+(b5 ™3G~q/Q)~820+b46P]o+b66P20

(13)
b3 68]0+b46820 (b7+ l coy ps~ ~P]0

b468]0+ b6 6820 (b]]+l oly PG&)BP20 =E,
where yz and yG are the ordinary rotational viscosities
connected to the director reorientations (soft and Gold-
stone modes); the two viscosities yps and ypG connected
to the high-frequency polarization modes are related to
the rotation of the molecules around their long axis (one
can ~~Pe~t that close to T. ys =yG and y ps YpG

the coeScients b; are given by [8]

and

A(03)=(2b4b6 b4 b6)(b] icoystrt/Q)+(2b3b4 b3 b4}(b5 io]yGZri/Q)

(b] 'o]ys&7i/Q)(bs io]yGÃrt/Q}(bs+io]ypGZ) 2b2b3be

—(b, i o]ysZrt/Q)—(b, ioly GZ7t/Q—)(b7+i coy PSZ)+2b2b4b6

+b 2 (b8 + i o]y PGe)+ b 2(b7 +i o]y PSZ) 2b2b4 +2b2b—3b4

8(o])=(b] io]rs&ri/Q)—(b5 io]y GE7}/Q—)(b7+ioly ps&)(b]]+io]y PG&)+b4(b] —iolrs&7}/Q)(b8+iolr PG&)

+b'(b ~r ~ /Q)(b + r~) b''(b + r— ~)( +by )

+b 3 ( b
&

i o]r G Fri/Q )
—
( b 8 +i o]y PG F }+ b 4 ( b ~

—i coy G 87t / Q )( b 7 +i coy PS@) +b 4 2b 3 b 4b 6 + b 3b 6—

2b2b3b4(b8 + l 0]ypGZ) 2b2b4b6(b7 + l o]ypsZ)
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(0'& i coy&„—ZrilQ )hf, o+a 46P&o= 0,
(it] icoys~Zri /Q)kg 2o+i4f6P o=0 ~

cT~~fzo (ct7+—&y p~~)~P.o=E

a 4 ~410 ( a 7 +i~y pA ~ )~Pyo

where

if, = P+—yr A, —a4, =P—Av, 0'7=1+v

(19)

(20}

Then the normalized complex susceptibility yz of the
smectic- A phase defined as [8]

j„(co)= AP, o/E—
is given by

(a, i coys—„t'ai/Q )
x~(~}=

it 4 + (a
&

i

clays

~Zri/Q )( Z7 + l coy p ~ Z )

(21)

(22)

In the smectic-A phase ( and P are zero at equilibrium
so that fluctuations corresponding to 50, and hP;, which
were introduced by Eqs. (11), can here be taken to be the
components of g and P themselves. We only retain terms
of second order in g and P and set d /dz =0 in Eq. (4) [4].
Thus the free-energy density g of the smectic-A phase is
given by [4]

g= ,'a(g—+g)+ ,'e —'(P +P )

+C(P„(2 Pg—, ) E(t—) P+

Introducing a time dependence of the order parameters
as g;=kg;oexp(icot) and P; =EP oexp(icot) we can obtain
the set of dynamic equations [4] which may be represent-
ed in the dimensionless form as

-0

V
FX

0-3

O
-5

-7
0 3 4 5

log (~)
10

region one can see the soft and Goldstone modes at
T (T, (curves 1 and 2) and only the soft mode at T) T,
(curves 4 and 5). The high-frequency modes observed ap-
pear to be only one band. Similar dependencies for the
"classical" Landau model [2] are also shown in Fig. 3 for
comparison (calculations have been made for the same set
of the material parameters).

When studying the high-frequency polarization modes

FIG. 2. The imaginary part of the normalized complex sus-

ceptibility for the generalized Landau model [4] as a function of
frequency near the Sm-C* —Sm- A transition. Curve 1:
T =326.04 K, 8&=0.92, Po = —0.".".".2; curve 2: T =326.51 K,
Op=0. 68 Pp = —0. 1998; curve 3: T =327.0 K (the phase-
transition temperature), 80=0.00, Pp =0.00; curve 4:
T=327.015 K; curve 5: T =327.96 K.

III. THE HIGH-FREQUENCY
DIELECTRIC RESPONSE

OF A FERROELECTRIC LIQUID CRYSTAL:
DISCUSSION AND CONCLUSIONS

0-

On using Eqs. (8), (9), (14), (16), (17), (20), and (22) we
are able to calculate the dielectric susceptibility of both
the smectic-C* and -A phases. The six dimensionless pa-
rameters defined by Eqs. (5) and the four scaling factors
g', 8*, P', and T' enter into the calculations. The cal-
culations have been made using the values of the material
parameters introduced by Carlsson et al. [8] as a stan-
dard set of parameters of the Sm-C* phase. They are
y=2.0, P= —0.17, p=0.90, A, = —0.062, v= —0.060,
5= —0.012, T*=0.92 [K], y'=2. 66X10 ' [C/(Vm}],
8 =0.20 [rad], and P =1.3X10 [C/m ]. We have
not considered any temperature dependence of the rota-
tional viscosities and have taken yG=yz=yzz =0.25
Pa S (1 S= 1 cm /s) and ypa =yps=ypg =7400
Vm/(Cs) as in [4]. In our calculations we assume
T, =327 K.

Results of the calculation of the imaginary part of the
normalized complex dielectric susceptibility near the
Sm-A —Sm-C' phase transition as a function of frequen-
cy are shown in Fig. 2. As expected in the low-frequency

2hX

O
3

O
4

-5

-7
0 4 5

log (~)
10

FIG. 3. The imaginary part of the normalized complex sus-
ceptibility for the "classical" Landau model [2] as a function of
frequency near the Sm-C —Sm- A transition. Curve 1:
T=326.08 K, 00=1.00, Pp= —5.8824; curve 2: T=326.52 K,
Op =0.72 Pp = —4.2353; curve 3: T =327.0 K (the phase-
transition temperature) 80=0.00, Pp =0.00; curve 4:
T=327.015 K; curve 5: T=327.96 K.
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we are dealing with frequencies that are so high that the
director can no longer follow the electric field, and one
can therefore neglect contributions of low-frequency re-
laxation processes to the dielectric susceptibility [4].
Mathematically this can be expressed by setting yG, ys,
and ysA equal to infinity in Eqs. (16), (17), and (22); the
accuracy of this approximation is of the order —10
which is negligible compared to experimental errors [4].
The high-frequency dielectric response is then given by
the following equations [4]:

1 1
gc(ei) =

—,
' +

by+i ~y ps& b 8 + l cop PG~
(23)

and

XA(~)=
1

a7+i COy PAP
(24)

for the Sm-C' and Sm-A phases, respectively. Equations
(23) and (24) may be written down in the Debye form,
viz. , for smectic-C* phase,

gs gG
Xc(~)=—~Xpc . +

1 + l c07 ps 1 + l N7 pG
(25)

for smectic Aphase-

~+PA
gA (ei) =

1+l co~PA
(26)

where the dielectric strengths hype, and hgpA and relax-
ation times 7ps 'TPG and'TPA are given by

1 1
~+PC —

—, — +-
b7 b8

(27)

As one can see from Eq. (25) gc(co) consists indeed of the
two high-frequency polarization modes. [We denote the
first and second terms in the right-hand side of Eq. (25) as
the S and 6 modes, respectively. ]

In the limit T~T, when Po, 8o~0, the dielectric
strength A+pc may be represented as

1 1 1
+Pc 2

— +
b, bs

1 1 1

1+v'+ 3Po —~o 1+v'+Po

rps eYPs/b, , ~PG =eppo Ibs TPA e) PA /a7, (28)

and the coeScients gs and gG are determined as

gs 1/2b7bXpc go =1/2bshXpc (gs+go

(29)

&Tps

I+v
~PPG

PG

0 —3P'
+&7PS

( 1+ 2)2

Po

(1+ 2)2

(31)

(32)

On taking into account explicit expressions for all the
quantities entering in Eqs. (25)—(29) and setting

p pG =p ps =p sA y we find that at the phase-transition
temperature T,

1
yc(ei)

=/A�

(~)=
1+v +ld)QZ

(33)

For the "classical" Landau model [2] when
b7=bs=a7=1+v at all T Eq. (33) is valid for all tem-
peratures in the vicinity of the Sm-C —Sm-A transition,
that is to say, in the case under consideration the Landau
model predicts the three modes only —the soft, Gold-
stone, and degenerate high-frequency polarization modes.

As follows from Eqs. (30)—(32) in the vicinity of the
phase-transition temperature the deviations of the high-
frequency part of the susceptibility fc(ei) from that of
gA(co) are of the order [B~,Po ]. Hence there is no split-
ting or broadening of the band at the phase transition.
Thus in full agreement with the comments of Pleiner and
Brand [12,13] the frequency of the band maximum varies
smoothly across the Sm-A —Sm-C* transition not show-
ing any jumps, cusps, or kinks (see Figs. 2 and 3).

Such a type of the high-frequency dielectric behavior
of a FLC is not surprising in view of the fact that the
imaginary part of the complex susceptibility f'(co) for the
two relaxation processes with relaxation times ~, and ~2

defined as

8~)=~X . +g&

1+ia)wi 1+ico&2
(g i+g2 = I ) (34)

may have two maxima if the ratio ~, /~2 is suSciently
large [14]. The minimum value of vilr2 for the oc-
currence of two maxima depends on the relative weight
of the two relaxation processes; for g& =gz =

—,
' Davidson

[15] calculated r, /r2) 3+2&2—=5.8. When g, +g2, the
ratio ~, /~2 must be larger to obtain a separation of the
maxima (see Ref. [14] for detail).

For FLC's we usually have r, /r2(2 [4]. In such a
case Eq. (35) predicts always only one maximum in the
spectrum of dielectric loss and the frequency dependence
can be approximated by a single relaxation process

8 /4P = 8 /4QPo

which is determined by the material parameters q and Q.
Also we have a similar behavior of the relaxation times
7 ps and ~pG, namely,

1 8()
—4Po 1 8()

—4Po+— =6/PA+ — . (30)
1+v 2 (1+v ) 2 (I+v )

f(co)= ~x
1+l co%

(35)

As follows from Eq. (30) the model may predict both the
small increase and decrease of the dielectric strength

A+pc ~ This depends on the ratio r=(~ ~ )' (36)

with a single relaxation time ~ which is a geometric aver-

age of ~& and 72,



HIGH-FREQUENCY DIELECTRIC BEHAVIOR OF A. . . 4857

0.6 0.6—

0.5- 03-

0.4-
'
~

1

'I
0.4-

jx
0.2

M
RX

04

0.1 0.1

0
7

log ((u)

10

log (~)
FIG. 4. The high-frequency behavior of the imaginary part

of the normalized complex susceptibility for the generalized
Landau model [4] as a function of frequency. The Sm-C
phase, T=326.81 K, 80=0.44, Po= —0.0917. Curve 1: the
high-frequency G mode; curve 2: the high-frequency S mode;
curve 3: the sum of the first two curves (the resulting spectrum);
curve 4: the relaxation band with the single relaxation time ~
calculated from Eqs. (35) and (36). (In this case r&/v2=-1.212.)
Curve 3 coincides with curve 4 within graphical accuracy.

'(CO) T)+r2 7)%2&To)( (&)

N1Q' (C)ufo p~"(~)
(37)

the plot should be a straight line with the direction
tangent —r, rz/ro and intersecting the ordinate at
(rt+ 7 2}/Tp hence the values of r, and r2 can easily be in-
ferred [14]. It would be very interesting to apply this
method to the Sm-C' phase in order to determine the re-
laxation times ~pz and Tpg and to check the model more
accurately.

It should be noted that the Landau model does not ex-
plain details of the temperature dependencies of the ex-
perimental dielectric spectra [10,11] because it has been

[for g, =g2 this value of r guarantees the coincidence of
the frequencies of the maximum for yc(co} predicted by
Eqs. (34) and (35)].

Typical examples are illustrated by Figs. 4 and 5 and
these support the above conclusions. One can see by in-
spection of these figures that the high-frequency band of
a FLC resembles that for a single relaxation process.

However, a graphical method for the evaluation of the
two relaxation times v& and ~z if the dielectric strength
hy is already known has been given by Barriol, Boule,
and Diguet [16]. This method requires an arbitrary
choice of a time constant ro which is of the order of the
relaxation times of the system under investigation. We
then plot [bg g'(co ) ]/co~~—"(co) against roe~'(co )/
y"(co). It can be derived from Eqs. (34) that

FIG. 5. The high-frequency behavior of the imaginary part
of the normalized complex susceptibility for the generalized
Landau model [4] as a function of frequency. The Sm-C

phase, T=326.0.4 K, Hp=0. 92 Pp= —0.".".~2. Curve 1: the
high-frequency G mode; curve 2: the high-frequency S mode;
curve 3: the sum of the first two curves (the resulting spectrum);
curve 4: the relaxation band with the single relaxation time ~
calculated from Eqs. (35) and (36). For this case ~&/~2——- 1.60.

assumed that the model parameters (excluding the term
quadratic in tilt} are explicitly temperature independent
and we can thus ignore the implicit temperature depen-
dencies of the parameters. However, these assumptions
are strictly valid in a very narrow temperature range,
which does not satisfy the experimental conditions
[10,11]. For example, under the above assumptions, the
"classical" Landau model predicts that the frequency of
the maximum of the P-relaxation band f,„does not de-

pend on temperature (see Fig. 3). In the context of the
model, if we suppose an Arrhenius behavior for the rota-
tional viscosities y~s and y~G, i.e., y~s, y~G -exp( A /T},
which is typical for liquid systems including liquid crys-
tals [14], we could explain the observed Arrhenius-like
temperature dependence of f,„[an almost straight line

in the coordinates ln(f, „) versus T '] [ll]. Also, the
temperature variations of the dielectric strength that
have been observed [10,11] may be explained by the tem-
perature dependence of the density, high-frequency
dielectric constant, intermolecular correlations, etc. We
also note that the conclusions concerning the high-
frequency polarization modes are also valid for the FLC
racemic mixture.
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