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Nonclassical character of states exhibiting no squeezing or sub-Poissonian statistics
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A criterion is evolved for testing the nonclassical character of the field even if it does not exhibit

squeezing and sub-Poissonian statistics. An explicit example of a state of the field is given to demon-

strate the utility of this criterion. The production of such a state by state-reduction methods is also

shown. This criterion also enables us to study the nonclassical character of the Schrodinger "cat" state

in regions where it does not exhibit sub-Poissonian statistics.

PACS number(s): 42.50.Dv

Nonclassical light has been characterized in a quantita-
tive way by examining the degree of squeezing [1,2] or
sub-Poissonian character [3]. For a single-mode field
represented by the annihilation and creation operators a
and a ~, these two parameters are

S=(:(ae' +a e ' ):)—((ae' +a e ' )), (1)

Q=((a "a') —(a'a)')/(a'a) . (2)

For squeezing S should be negative. For sub-Poissonian
statistics, Q is negative. In the literature a large number
of systems have been studied to find the conditions under
which S or Q or both are negative [1—5]. Note that if we
were to represent the density matrix of the field in terms
of diagonal coherent-state representation [6,7]
p= fP(a) ~a) (a~d a, then the negativeness of S and Q
implies that the variances of the variables a a and
ae' +a'e ' with respect to the distribution P(a) are
negative. In other words, negativeness of S and Q implies
that P(a) cannot possess all the properties of a classical
probability distribution over the whole complex plane.

A question that arises —can the light be still nonclassi-
cal even if both S and Q are positive? If yes, then what is
the counterpart of Q or S which can quantitatively
characterize the nonclassical light? Hong and Mandel [8]
introduced the concept of higher-order squeezing, the ex-
istence of which also implies nonclassical properties of
P(a). A related concept of amplitude-squared squeezing
was introduced by Hillery [9]. In what follows we intro-
duce the counter part of Q to characterize nonclassical
light for situations where light is nonclassical in spite of
the fact that Q is positive. We consider explicitly exam-
ple of a field given by the density matrix

tm —pa a m
p ~ ™ae' 'a, P) 0, rn =integer, (3)

and show that the corresponding P function can be nega-
tive even though it is well behaved. Thus the P function
possesses nonclassical properties. We exhibit regions of P
values in which Q is positive though the P function is
negative. We show how the criterion proposed in this pa-
per, can be useful. %'e further demonstrate how a state
like (3) can be produced in the micromaserlike [10] situa-
tions by using the process of state reduction [11].

We first obtain an appropriate generalization of the pa-
rameter Q. Let us introduce the normally ordered mo-
ments

m„=(at"a")—= fP(a)~ai'"d'a . (4)

1 m& m2

m = m& m2 m3(3)=
m2 m3 m4

(6)

should be positive dept nite More ge. nerally, for a classical
distribution, the matrices

m&

m'"'= m 2

ml m2 mn —1

(7)

mn —1 m2~

for n =1,2, 3, . . . , etc., should be positive definite. For
n =1, this condition is trivial. For n =2 we recover the
condition that Q should be positive. For n )2 we get a
different criterion for the nonclassical fields. Thus for a
given field one can test whether the field possesses phase-
insensitice nonclassical properties or not by computing the
matrix m'"' and its eigenvalues and by testing if at least
some of the eigenvalues A,

'"' of the matrix m'"' are nega-
tive. Note that detm' '=0 for a coherent state, whereas
for the most nonclassical state, namely the Fock state
detm ' ', has the value

Consider the quadratic form constructed from

(C,+C, ]a('+ C, ia ['),
where Co, C, , and C2 are arbitrary constants. Clearly, if
P(a) behaves like a classical distribution, then the quad-
ratic form F([cI )

2

F(tc])= g C C (5)
i,j =0

should be positive. In other words, the matrix
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detm' '= 2—N (N —1) if p= ~N }{N~ .

It would thus be useful to introduce a normalized quanti-
ty so that it is bounded by —1. For this purpose we also
introduce the analog of m„ formed from the moments of
the number distribution rather than the moments of the P
function

)M„=((a a}"}

and we construct the matrix p'"' obtained from m '"' by
the replacement n„~p„. Clearly p'"'s are positive-
definite matrices. Moreover, for a Fock state detp'"'=0
if n ) 1. As a measure of the nonclassical property we in-
troduce the quantity
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detm' '

detp' ' —detm' ' (10)

at( ~~)e ~a I2) — ( ~/ )e ~a~ l2)

one can show that (11}can be reduced to

a- f e lal e
—la ((+(/r2) [&}(&[d2&

mn Ba Ba™
(12)

The derivatives in (12) can be expressed in terms of the
Laguerre polynomials L . The final result for the P
function after normalization is found to be

Note that A3 is, respectively, equal to zero and —1 for a
coherent state and a Fock state. Note further that in the
nonclassical region detm' '&0, and since detp' ')0, it
follows that in the nonclassical region A2 lies between

ZeTO QPld 1.
We next demonstrate the above criterion by consider-

ing the state (3) of the field. We first obtain the P func-
tion for the state (3). We can rewrite (3) using the diago-
nal representation of the thermal density matrix as

pa f e ~ "a™~a}(a~ad a, n =(et' —1) ' . (ll)

On using the property

045 i i s i s i i i s 1 ~ ~ s y I » i s 1 ~ ~ i ~ s & s i ~ 1 ~ i s ~ s s i ~
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Fig. 1. Distribution P(a) for the state given by Eq. (3) with

m =5 and average photon number n(a)=0. 7, (b)=0.95, and
(c)=1.2. For the case (a) the plotted values are —,'0 th of the ac-

tual values. One can see from (b) and (c) that P(a) becomes
negative even if n is greater than the critical value &m /(m + 1)
( =—0.913 for m =5) given by Eq. (18). The inset corresponds to
the plot of Qia) [Eq. (14)] as a function of ~a~2 for n (a) =0.7
and (b) =1.2.

a ~a~=( —1) g (
—1)', (p!) a'a "

r! (p —r)!
(16)

Fig. 1.
We next consider the criterion of the nonclassical na-

ture of the P function based on the sub-Poissonian statis-
tics. The structure of the state (3) is such that the an-

tinormally ordered moments of the intensity are easily
computed with the result

{a)'at)'}=(n+1}r (15)
mI

The normally ordered moments can then be obtained by
using

lal /nL
m 1+— fn/2

n
Using (15) and (16) we find that the parameter Q is

( —1 }r(n + I ) m!
(m —p )!p!2'

2(p —
q )!2q!

,=o (p —q)-''q"

(13) n(m+1)n m-
n(m+1)+m

(17)

Thus the condition for the existence of sub-Poissonian
statistics is

The distribution P(a) clearly becomes negative as
Laguerre polynomials oscillate between positive and neg-
ative values. In Fig. 1 we show the nonclassical character
of the state (3) by the oscillatory character of (13) for a
range of the values of n and for fixed m.

The Q function for the state (3) is rather simple,

1 [2m
—/a/ l(1 n+)

Q(a)= —&a/pea&=
m.(1+n ) +'m! (14)

This distribution as a function of ~a~ is centered at
m(1+n) and is well behaved as shown by the inset in

n( m+1

1/2

From Fig. 1 it is clear that P(a) continues to exhibit non-

classical properties even if n &[m/(m+1)]'~. Note
also that the state (3) has no phase-sensitive properties;
i.e., it, for example, exhibits no squeezing S=0. Thus for
n & [m l(m + 1)]'~, Q & 0, S=0. In such a case the non-

classical properties can be understood in terms of the cri-
terion developed here. We have examined the positivity
of the matrix (6). The results are shown in Fig. 2, where
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FIG. 2. Parameters Q (solid curves) and A3 (dashed curves)
as functions of average photon number n for (a) m=2, (b)
m =5. For n & &m/(m+1), the parameter q becomes positive
but the parameter A3 still continues to be negative, implying
that the 6eld is nonclassical even if it does not exhibit squeezing
as we11 as sub-Poissonian statistics.

FIG. 3. Parameters Q (solid line) and A, (dashed line) as
functions of 0 for the Schrodinger-cat state given by Eq. (19) for
a equal to 8. 0 is expressed in units of m. It is interesting to
note that A3 is negative in the range of 0 values where Q is posi-
tive.

linear processes or by state-reduction methods. The P-
function for the state (19) does not exist; however, the Q
function is well behaved. Schleich [13] has studied the
sub-Poissonian characteristics of such a state. He
showed that there exist regions of 8 values for which the
state given by Eq. (19) exhibits sub-Poissonian statistics.
The question that arises is: does this state have any non-
classical properties for values of 8 such that Q is positive?
This is where the determinant criterion is useful. We cal-
culate the parameter Q and the parameter A3 for the
state (19). We show in Fig. 3 how the parameters Q and
A 3 vary with change in 8 for a =8. It is seen from Fig. 3
that A 3 becomes negative for the range of 8 values where

Q is positive.
In conclusion we have developed a quantitative cri-

terion for characterizing the nonclassical properties of
the states of the field in regions where say the parameter
Q is positive. This criterion is successfully applied to
study the nonclassical properties of the Schrodinger-cat-
like state and the state obtained by adding photons to a
thermal field.

we plot both Q and A 3. This figure clearly demonstrates
the utility of the criterion in terms of the positivity of the
matrix m'"' when the field state is such that S & 0, Q & 0.

We also indicate here how a state like (3) can be pro-
duced by the process of state reduction [11]. Consider a
single-mode cavity (e.g., a microwave cavity) at a finite
temperature T. The field in the cavity is described by
e ~' '. Consider now the passage of a beam of well-
separated atoms in the excited state through the cavity.
Assume that the atoms are so separated that at a given
time only one atom is in the cavity. If after the passage
the atom is measured to be in the ground state, then the
state of the field in the cavity is reduced to (3) with m = l.
The passage of m atoms will produce the state (3).

As a further illustration of the importance of the cri-
terion developed here, we consider the nonclassical state
formed by the superposition of two coherent states [12]

(19)

where JV'is the normalization constant given by

A =[2+e ' ' [exp(/af e' )+c.c. ]] . (20)
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The Schrodinger-cat-like states have attracted a great
deal of attention, as these exhibit very interesting in-
terference effects [12] as well as nonclassical effects [13].
These states can be produced [14] in a number of non-
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