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A simple Ginzburg-Landau free-energy functional for oil-water-surfactant mixtures, with a single, sca-
lar order parameter, is studied in detail. We show that the free energy of swollen spherical and cylindri-
cal micelles obtained from this model can be described in terms of the Helfrich Hamiltonian of surfac-
tant monolayers. The surface tension o, the spontaneous curvature modulus A, the saddle-splay modulus
k, and the bending rigidity « of the surfactant sheet at the oil-water interface can all be calculated from
the order-parameter profile of the planar oil-water interface. It is demonstrated that for stable droplets
and cylinders, these expressions of « and K give reliable predictions for the free energy only if the system
is at oil-water coexistence. Off coexistence, the distortion of the profile due to the finite curvature of the
interface has to be taken into account. The results are used to discuss the phase diagram of the Landau
model. In addition to the bending elasticity, the interaction between monolayers plays an important
role. This interaction is found to be always attractive in our model. We show that the simple
Ginzburg-Landau theory describes various spatially modulated phases: the lamellar phase, the hexago-
nal phase of cylinders, a cubic crystal of spherical micelles, and bicontinuous cubic phases. Finally, we
discuss the behavior of oil-water-surfactant mixtures near a wall. We find that under suitable conditions
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the lamellar phase wets the wall-oil (or wall-water) interface.

PACS number(s): 61.20.Gy, 82.65.Dp, 64.60.Cn

I. INTRODUCTION

The investigation of the properties of oil-water-
surfactant mixtures has a long history. This is mainly
due to their important applications in everyday life. On a
microscopic scale, the most intriguing property of these
systems is the self-assembly of the surfactant molecules
into a large variety of complicated structures [1-3].
These can be visualized either as surfactant monolayers
between oil-rich and water-rich regions, or as surfactant
bilayers with oil or water on both sides, which fill the
three-dimensional space in various ways. The lamellar
phase, for example, is a simple, one-dimensional stacking
of surfactant sheets, while the microemulsion is an (al-
most) random array of monolayers. There has been
much interest in these systems recently, because an un-
derstanding of the statistical mechanics of self-avoiding
surfaces [4,5] is also important in other areas of science,
as for the behavior of cell membranes in biology [4-6],
and for the string theory in high-energy physics [7].

Both experiments and theories of oil-water-surfactant
systems have made considerable progress over the last
years. On the theoretical side, much work has been in-
vestigated in the study of various lattice models [2,8-12].
The main advantage of these models is that many
methods of statistical mechanics are available for lattice
models. Their drawback is that oil-water-surfactant mix-
tures are in the continuum, so that the density distribu-
tion of many ordered phases seen in lattice models can
only be a rough approximation of the real structures. It
has been shown [8,11,12] that many results obtained for
lattice models in the mean-field approximation change
very little when the effect of fluctuations is included.
However, on the level of finding configurations of
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minimal free energy, continuum models are conceptually
not more difficult than lattice models, although the nu-
merical effort to find the density profiles may be consider-
ably larger. We investigate in this paper a simple contin-
uum Landau-Ginzburg model for a single, scalar order
parameter. This model has been introduced in Ref. [13]
to explain the wetting behavior of oil-water interfaces by
the microemulsion. We find that the phase diagram con-
tains many of the ordered phases observed in experiment,
and that the density profiles are much more realistic than
anything found in lattice models. This includes, in par-
ticular, cubic phases with bicontinuous structure.

A complementary theoretical approach to oil-water-
surfactant mixtures is phenomenological (or interfacial)
models of microemulsions [2,14-19]. In this case, it is
assumed that there is always a complete, incompressible
monolayer at the microscopic oil-water interface. The
monolayers are considered in this approach to be
infinitely thin, mathematical surfaces. All the physics of
the monolayers is subsumed in their elastic energy, which
is given by the Helfrich Hamiltonian [14,20],

##= [dS[o+AH +2xkH*+7K] (1)
where dS denotes the surface element. Here,
H=1(1/R+1/R,) is the mean curvature and

K =1/R R, the Gaussian curvature, both given in terms
of the local principal radii of curvature R; and R,. The
first term in (1) is the surface tension o. This term is
often assumed to be negligibly small or to vanish alto-
gether [21]. The second term gives the spontaneous cur-
vature H,= —A/(4«). The elastic moduli « and « deter-
mine the bending rigidity of the monolayer. Expressions
for the elastic bending moduli have been derived from
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various microscopic models [22-26]. We have shown in
Ref. [22] that the bending energy (1) can be derived from
our Ginzburg-Landau model, under the assumption that
the order-parameter profile of a curved interface can be
approximated locally by the profile of a planar interface.
We will give a more detailed derivation of this result in
Sec. III below. The validity of this approximation can be
determined by a systematic expansion of the order-
parameter profile in the inverse radii of curvature. We
will show that the lowest-order approximation for « and
K gives reliable results only at oil-water coexistence. In
Sec. IV, the effective interaction of planar oil-water inter-
faces is derived. The interaction is found to be always at-
tractive, so that the transition from oil-water coexistence
to the lamellar phase—or to other ordered phases—
must be first order. In Sec. V we present phase diagrams
of our model, and discuss the stability of the various
phases in terms of the bending elasticity of the surfactant
sheets. Section VI, finally, is devoted to the study of oil-
water-surfactant mixtures near a wall. The wall favors
planar interfaces, and can therefore induce complete wet-
ting by the lamellar phase.

II. SIMPLE GINZBURG-LANDAU MODEL
Our analysis is based on the free-energy functional [13]
FLo(0)]= [ d3r [c(V3$)+g ($) (V) +f($)—pd] ,
(2)

for a scalar order-parameter field ¢(r), which is propor-
tional to the local difference of the oil and water concen-
trations. This functional does not contain explicitly the
surfactant degrees of freedom, like the surfactant concen-
tration. These degrees of freedom are considered as being
integrated out [27,28]. The presence of the amphiphiles
manifests itself in the special form [30,31] of the func-
tions f and g. Three-phase coexistence of an oil-rich
phase with ¢=¢,, a water-rich phase with ¢=¢,,, and a
microemulsion phase with ¢=¢,,, which are all homo-
geneous phases, implies that the free-energy density f
must have three local minima. We define the chemical
potential difference u between oil and water such that
©=0 at oil-water coexistence. Thus, f(¢,)=f(4,). The
value of the microemulsion minimum f(é,,) obviously
depends on the amount of amphiphile present: f(¢,,) is
low for high amphiphile concentration and high for small
amphiphile concentrations. The general structure of g
follows from scattering experiments in the three homo-
geneous phases, which show that there is a pronounced
peak in the scattering intensity at nonzero wave vector q
in the microemulsion, but only a peak at ¢ =0 in the oil-
rich and water-rich phases. In the Gaussian approxima-
tion, the scattering intensity of our model (2) is given by

S(g)~[cq*+g(¢y)g>+1f"(¢,)1 7", 3

where ¢, €E{¢,,¢,,,6,]. A peak at g >0 (g =0) is there-
fore equivalent with g(¢,)<0 [g(¢,)>0], as first noted
by Teubner and Strey [32]. Thus, in an expansion of f
and g in powers of the order parameter, we must have
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flé)=3 a,¢",
n=2

, (@)
g(d)= 3 g,¢".
n=0

Here, ag>0 and g, >0 is required for thermodynamic
stability. The other coefficients a,, . ..,as are chosen in
such a way as to produce a function f(¢@) with three
minima, as discussed above. In the case of oil-water sym-
metry, the coefficients of the odd powers of ¢ in (4) all
vanish identically. For numerical and analytical calcula-
tions, it is often convenient to use a piecewise parabolic
form [33],

ww(¢_¢w )2 fOl' ¢0+ <¢
f($)= o, ¢*+f, for ¢o_<d<dy. (5a)
w,($—¢,)* for $<o,_,

where ¢, and ¢,_ are defined such that f is continuous,
and a piecewise constant form of g,

8w for ¢o, <¢
g(d)=1g,, for ¢q_<d <y, (5b)
g, for $<dy_ .

In the case of oil-water symmetry, the matching points
are ¢o = — o =y

The order-parameter profile, which minimizes the
free-energy functional (2), is determined by the Euler-
Lagrange (EL) equation,

2c0’—2g($)A$—g'($)(VHY '+ f'(¢)—pu=0, (6)
where g'=dg /d¢ and f'=df /d¢.

III. ELASTIC PROPERTIES OF OIL-WATER
INTERFACES: SWOLLEN MICELLES

Consider a large drop of oil with radius R, embedded
in bulk water, with no amphiphile present. The total free
energy of the system is a sum of bulk and interface con-
tributions. The bulk term is the difference in bulk free
energies of the two phases, the interface term is
o[R]47R?, the interfacial tension integrated over the
whole interface. Here, the interface tension depends on
the choice of the dividing surface, which is indicated by
the argument in square brackets. The interface tension
acts to minimize the interfacial area of the drop. There-
fore, a stable drop is only possible if the interior phase
(the oil phase) has a lower bulk free energy than the exte-
rior phase (the water phase). The pressure difference p,
between inside and outside, and the radius of the drop are
related by the Laplace equation [34,35]

p= —l—lzaRR : (7

This implies that a stable drop is not possible at two-
phase coexistence, where p =0, as long as 0>0. In a
square-gradient Ginzburg-Landau theory [36] this can be
seen easily by considering the Euler-Lagrange equation in
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spherical coordinates,

d2

dr 2
where f is normalized in such a way that the free-energy
density of the exterior phase vanishes. This equation cor-
responds to a mechanical particle moving in the potential
—[f(¢)—ued), with a local friction coefficient 2/r.
Therefore, in order to reach the local maximum of the
potential for r — oo, the particle has to start at r =0 with
larger potential energy. Thus, the bulk free energy of the
interior phase is lower than that of the exterior phase, in
agreement with the previous considerations.

When amphiphile is added to the system, the situation
changes. The amphiphiles have two effects. First, they
reduce the interfacial tension, by forming a monolayer at
the oil-water interface. Second, the monolayer has a pre-
ferred (spontaneous) radius of curvature and a bending ri-
gidity, which, like the pressure p, can counteract the in-
terfacial tension. If the interfacial tension is small
enough, oil droplets in water become stable at coex-
istence. An analysis of the EL equation (6) of our Landau
model (2) and (5) shows that indeed stable solutions ap-
pear for p =0 when the interfacial tension is small. It
will become clear in Sec. V below how the parameters
have to be chosen in order to obtain these solutions.

The interfacial free energy (per unit area) of a planar
oil-water interface, located at z =0, is given by

=[" az [c

¢ f(é)—u, ®)

2

3% —
§¢(Z)

g(d)

2
+f(d) 9)

9 —
2z

Here, the profile 4(z) satisfies the Euler-Lagrange equa-
tion (6). We have normalized f in such a way that
f(¢,)=f(¢,)=0, where ¢, and ¢, are the values of the
order parameter far away from the interface. In the pla-
nar case, the first integral of this equation is known to be
[13]

2 (§5"~

where the constant vanishes identically for our normali-
zation of f. For a cylinder and a sphere, both of radius
R, one has similarly

L") 1—g($)F' )+ f($)=const , (10)

F_ 1 ey a1 |2 a-13
v Rd_,fo drr ar2¢R(r)+ — = x(r)
2
tg(de) | L oplr
g R ar R
+f(dr)—pudg | » (11)

where d =2 (3) for the cylinder (sphere). Here, ¢ is the
profile which satisfies the EL equation (6) in cylindrical
and spherical coordinates, respectively. Now, for large
radii R, the profile ¢ (7) will approach the planar profile
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#(r —R). Therefore, we can try an expansion of the form
[22,36]

_ $1(r —R)  ¢y(r —R)
$r(N=¢(r—R)+—F—+ RE T
u u (12)
1 2
u= R + R? + -

Let us first consider only the leading term in this expan-
sion. When the planar profile is inserted for ¢ in Eq.
(11), the invariant (10) can be used to eliminate f:

f drri=lf( ¢)—f drrd g (BN 2 +3c(8")?]

—8,32 ') .
3 cfo dr(¢") (13)
After substituting r —r + R, we obtain
d—1 d 1 2
=["ar |1+~ 5r+E g
f~R "I'"R [c 't R +r J
+3cd 2+2g¢°
—R™2 T dr(g'. 4
R 8,,,32cf‘Rdr(¢) (14)

We expand in powers of R ™!, and extend the lower
boundary of integration to — oo, anticipating errors
which are exponentially small in R. Then, the free ener-
gy of droplets and cylinders is given by

Fophere =0R*+AR +2x+K ,
A

K —
Foy/L=0R+>R+—+O0(R D,

(15)

which is just the form of the Helfrich Hamiltonian, with

o=[""dzp.2), (162)
a=2f" Tdzzp,(2) (16b)
k=f" d2[2c 1, (16¢)
K+2K=f_w dz z%p,(2) (16d)
where
2)=[2g($)($')*+4c(")] . (16e)

We have already shown in Ref. [22] that for the piece-
wise parabolic model (5), the free energy of a drop or
cylinder as a function of the radius R, calculated from the
Helfrich expression (1) with the elastic constants (16),
agrees very well with the full free energy (11). Some de-
tails about the calculation of order-parameter profiles in
the parabolic model will be presented in Sec. IV below.
Here, we want to demonstrate that the equilibrium radius
of drops and cylinders, as a function of the chemical po-
tential of the amphiphile f,, also agrees very well. In the
case of the Helfrich Hamiltonian, the radius is easily cal-
culated by minimizing (15), which implies

172
_ A =

K
sphere — 2’ Rcyl

20

(17
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The f, dependence of the free energy per unit area is
shown in Fig. 1(a), and the equilibrium radii of droplets
and cylinders in Fig. 1(b). The agreement in both cases is
excellent. ’

Several comments are in order. First, note that our re-
sult (16) agrees with the results obtained for the standard
square-gradient theories, i.e., for ¢ =0, g =const >0, in a
low-temperature expansion [37-39]. In this case, k=0
and K>0. Second, Helfrich [40] has given a purely
mechanical derivation of the elastic moduli, which leads
to the identification of p,(z) as the stress profile through
the monolayer. However, the mechanical derivation gives
a result for kK, which agrees with (16d) only for k=0, and
makes no prediction for k. We believe that this discrepan-
cy is due to a change of the stress profile as the mono-
layer is bent, which is not taken into account in Ref. [40].
A typical stress profile of a monolayer, calculated from
Eq. (16e), is shown in Fig. 2. Third, the freedom in the
choice of the dividing surface (which defines the position
of the interface for a given order-parameter profile) has

0.2

F/A

0.1

0.0 1

1.40 1.42 1.44

cylinder

1.40 1.42 1.44

fo

FIG. 1. (a) Free energy per unit area of stable droplets,
cylinders, and planar oil-water interfaces and (b) equilibrium ra-
dius of droplets and cylinders, both as a function of the parame-
ter f, (related to the surfactant chemical potential) of the piece-
wise parabolic model (5), with ¢ =1, g,=g,=4.6, g,, = —4.5,
0,=0,=4, 0,=1, ¢,=2, and ¢,= —1. The full lines are ob-
tained from the full EL equation; the dotted lines are calculated
from the Helfrich expression (1) with the elastic moduli (16).
The vertical dashed line marks the transition to a spatially
modulated phase (see Sec. V).
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FIG. 2. Stress profile p,(z) through the monolayer, Eq. (16e),
for the piecewise parabolic model (5). The parameters are the
same as in Fig. 1, and f(=1.42.

been discussed in Ref. [22], a discussion we do not want
to repeat here. However, it is important to note that the
results [(16a) and (16c)] for the interfacial tension o and
the bending rigidity « are independent of this choice. In
this paper, we always use the equimolar surface to define
the position of the interface.

For the case of droplets and cylinders stabilized by a
pressure difference, i.e., off oil-water coexistence, we want
to calculate now the corrections to the free energy, which
arise from the fact that for a drop or cylinder of finite ra-
dius the order parameter profile deviates from the planar
profile. We assume that the order-parameter profile as
well as the chemical potential difference between inside
and outside can be expanded in a power series in the in-
verse radius R ~! of droplets and cylinders around the
planar profile (with R ~'=0), see Eq. (12). This calcula-
tion is somewhat tedious, and is therefore delegated to
Appendix B. The result of this calculation is, see Eq.
(B30),

Fl¢]=Fy[¢]+F[4]

— AR [ dr{(d —1)[g($)F'$+2c"4}]

+%lu‘lr¢,1} ’ (18)

where A is the area of the interface, and [see Eq. (B7)]
farpg=—d—10., . (19)

With (12), p=p,;/R+ - -+, (19) can be easily recognized
as the Laplace equation (7).

For the square-gradient theories with piecewise para-
bolic free-energy density f, the free energy of spheres and
cylinders can be calculated exactly. This gives us the op-
portunity to check the result (18) explicitly. It is shown
in Appendix C that the two expressions do indeed agree
to order R 2.

Thus, the distortion of the profile gives correction
terms to the interfacial free energy F,/A of the order
R 72, terms which can be comparable in size with the
contributions (16) of k and K. These correction terms de-
pend via ¢, on the geometry of the interface in a rather
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complicated way. Since we have studied only two
geometries of the interface, our result can always be ex-
pressed in terms of renormalized values of k and k. In or-
der to check the validity of the Helfrich Hamiltonian, we
would need to consider at least a third geometry. The re-
sults of Appendix C imply that for droplets off oil-water
coexistence, the correction term in (18) can be much
larger than the approximation (16d) for &, so that the ex-
pression (16d) is of little use in this case.

IV. TRANSITION TO THE LAMELLAR PHASE:
EFFECTIVE INTERACTIONS BETWEEN MONOLAYERS

In addition to the three homogeneous phases, oil, wa-
ter, and microemulsion, our Landau models contain vari-
ous spatially modulated phases, in particular the lamellar
phase. This can be most easily seen from the behavior of
the scattering intensity (3). For large, negative g,, (this
can be achieved by increasing the surfactant concentra-
tion, or their amphiphilicity), the scattering intensity in
the microemulsion develops a singularity at a finite wave
vector ¢*. This signals the existence of a transition to a
modulated phase, with a typical length scale of order
2m/q*.

The transition from the homogeneous ordered phases,
oil and water, to the lamellar phase is driven by two
physical mechanisms: (i) the reduction of the interfacial
tension of the oil-water interface, and (ii) the interaction
between these interfaces. Both effects can be studied by
considering two oil-water interfaces, located at a distance
21 apart, and calculating the free energy as a function of
the distance 2/. For very large separation of the two in-
terfaces, the profile becomes a simple superposition of
two oil-water interfacial profiles, and the free energy is
twice the interfacial tension of the oil-water interface.
For smaller separations 2/, the free energy has also a con-
tribution from the interaction of the two interfaces,
which we want to extract [41-44]. We consider again
the piecewise parabolic model. However, the same
methods can be used for more general forms of f and g as
well.

For the piecewise parabolic model, the general solution
of the EL equations for an order-parameter profile, vary-
ing in one dimension z, within one parabola i € {o,w,m },
i.e., the parabola describing the oil, water, or microemul-
sion phase, respectively, is given by

4 z
$(2)="3 Cye'", (20)
j=1
where the exponents y; are solutions of the characteris-
tic equation

cvii—8gvEtw =0. 21)

For g, > \/4cco,-5gdoy,-, all solutions y;; of (21) are real,
whereas for g; <gg, ; all solutions are complex (and differ
only in the sign of their real and complex parts). In the
bulk microemulsion phase, g,, =g4o,» is called the disor-
der line [45]. Its significance is that the bulk correlation
function changes from simple exponential decay to an ex-
ponentially damped oscillation at this line, and thus dis-
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tinguishes ordinary and structured fluids [11].

The full profile is obtained by matching the partial
solutions in the various parabola. The amplitudes are
then determined from the condition that the profile and
its first and second derivatives, plus the invariant (10), be
continuous everywhere. For the symmetric oil-water
profile, one has

B, sinh(B,z)+ B, sinh(B,z), z€[0,],]

b(2)= - ez — —au (22)
b+ A V+de ¥, 2>,

and ¢(—z)=—¢(z). We will frequently denote the oil-
water profile as the “kink” below. The exponents a, ,
and f3, , denote the solutions with positive real parts of
the characteristic equations (21) in the outer and inner
parabola, respectively. The amplitudes 4,, 4,, B,, and
B, and the length scale /, are determined by the con-
tinuity conditions at z =/,. This can only be done nu-
merically.

For the double-kink profile of an oil-layer in water, we
make the ansatz

—¢, + A4,cosh(a,;z)+ A,cosh(a,z),
z€[0,1—1,]

Bi(z—1)
i€

d(z)= , z€[1—-1,,1+1,] (23)

—ay(z—1=1 ay(z—1=1})

VhChe” )
z€[I+1) =]

+¢,+C,e

and ¢(—z)=d¢(z). Here, 2/, is the “width” of a single
oil-water interface. The eight amplitudes
A,,A4,,B;,i=1,...,4 and C,,C, and the two length
scales [ and [/, are determined by the continuity condi-
tions at z=[/—1[,;=I, and z =[ +1/,, as discussed above.
Here, we want to minimize F with the additional con-
straint that the distance of the two interfaces is 2. We
therefore have to give up one of these matching condi-
tions, the continuity of the invariant (10). In order to get
an analytic result, we assume that compared to an infinite
separation of the two kinks, only the central part of the
profile, in the interval [ —Ij, +/;], is modified. In this
case, only the continuity of the profile and the first
derivative at z =+/; can be maintained. This leads to
the amplitudes

$o— oy, itanh(a, 1)
a stanh(a; ,lo)—a, tanh(a, 1/o)

(24)

A, ycosh(a; ,ly)=

Here, ¢o=¢, —d, and ¢ is the derivative of the kink
profile at ¢=¢,=d¢y,, determined numerically. The
profile (23) with the amplitudes (24) can then be inserted
into (2) to calculate the free energy. The result is a
lengthy expression which we do not want to reproduce
here. It can be expanded for large / =I,+/;, which
yields the asymptotic behavior
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—2a210+ L.

Fl21]=2F+Vie o4 v,e 25)
with Re(a;) <Re(a,), where
4c(a;+ay)a; Ha, 6o—do)?
V., =+ 1F ) (@) 190~ 26)

’ a;—a,

For g, >g4o,,» Where g4, ,, is the disorder line of the
water-rich phase, the amplitude of the contribution with
the slowest decay in (25) V, is always negative, so that
the effective interaction is always attractive at large dis-
tances. Since V, >0, there is a global minimum at a finite
distance of the two kinks. For g, <g4, ,, the effective in-
teraction oscillates, with the first minimum of the interac-
tion potential being the global minimum. Thus, in both
cases there is an attractive interaction between oil-water
interfaces, so that the transition from oil-water coex-
istence to a lamellar phase is always first order (this may
change when fluctuation effects are taken into account).
The transition occurs when the positive interfacial ten-
sion is just balanced by the attractive interaction. We
can conclude that the transition from oil-water coex-
istence to the lamellar phase is driven by the decrease of
the oil-water interfacial tension.

However, there are two possible exceptions: (i) when
(a;$o—¢o)—0, so that ¥, —0", and (ii) for g, —&do,w>
so that (@, —a,)—0. For the equilibrium distance /, we
obtain from (25) and (26)

_ Nayfo—y)?
Aa,—a)T,= In a—;ﬂfﬂ—‘ﬁ% : @7
as(a¢p— o)
£, ' (@)
20 ,’::‘-
10 /" “‘\
3.5 4.0 45 gw
b
ORI o
. R
\ z z
0 20 10 20
-0.5
4

FIG. 3. System with oil-water symmetry. (a) The equilibrium
thickness 7, of an oil layer in water, as a function of g,, along
the line o =0; the dashed line is the approximation (27), the full
line is the solution of the EL equations. (b) Order-parameter
profiles of the lamellar phase at coexistence with oil and water,
for g,=4.8 and 4.19. The calculations are for the piecewise
parabolic model (5) with the parameters ¢ =1, g, =—4.5,
0,=w,=4, w,=1,¢,=1,and ¢,=—1.
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3.9 4.1 43 gw

FIG. 4. System with broken oil-water symmetry. (a) The
equilibrium thickness 7, of an oil layer in water (dashed line),
and of a water layer in oil (full line), as a function of g, =g,,
along the line 0=0. Both curves are calculated from Eq. (27).
(b) Order-parameter profile of the lamellar phase at coexistence
with oil and water, for g,=4.6 and f,=1.413. The calcula-
tions are for the piecewise parabolic model (5) with the parame-
tersc=1,g,=—4.5,0,0,=4, 0, =1,¢,=2,and ¢,=—1.

The limit g, —g4, ,, can be made in (27) and leads to a
finite separation I, at the disorder line of the water-rich
phase. The numerical analysis of Egs. (25) and (26)
shows, however, that V| vanishes at a point g* in the vi-
cinity of the disorder line. The kink separation is expect-
ed to diverge logarithmically at this point. Our numeri-
cal and analytical results for the equilibrium distance of
two kinks are shown in Fig. 3(a). The approximation (25)
and (26) is obviously very good.

We have calculated the interaction of two interfaces in
order to predict the spacing of monolayers in the lamellar
phase. Indeed, the lattice spacing of the lamellar phase
shows the swelling behavior as g, —g*, as demonstrated
in Fig. 3(b). Thus, for the special case g, =g?*, the phase
transition from oil-water coexistence to the lamellar
phase should be a second-order transition.

The interaction of oil-water interfaces can also be cal-
culated in the case of broken oil-water symmetry. We use
again the piecewise parabolic model, with g, =g,. In this
case, the thickness of an oil layer in water diverges at a
different value of g, than the thickness of a water layer in
oil. This is shown in Fig. 4(a). The asymmetric order-
parameter profile of the lamellar phase can be seen in Fig.
4(b). Thus, in the case of broken oil-water symmetry, the
lamellar phase can be swollen by either increasing its wa-
ter or its oil content.
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V. PHASE DIAGRAMS

Our Landau model has three homogeneous phases by
construction. We have already argued in the preceding
section that there is also a lamellar phase at large, nega-
tive g,,. In fact, there are other spatially modulated
phases, which we want to present now, together with the
location of the phase transitions between them. There
are some technical reasons, which will become clear
below, to present results for both the piecewise parabolic
model and the ¢® model.

A. Piecewise parabolic model

The advantage of the piecewise parabolic model is that
all order-parameter profiles, which vary in a single coor-
dinate, can be calculated very easily with very high nu-
merical precision. In particular, the expressions (16) for
the elastic moduli of the oil-water interface can be evalu-
ated almost exactly. However, this advantage turns into a
disadvantage for the calculation of order-parameter
profiles, which vary in several coordinates, because the
loci of the matching points become one- or two-
dimensional hypersurfaces, which themselves have to be
determined numerically.

We have used two approaches to determine the order-
parameter profiles and free energies of modulated phases
in two and three coordinates. The first is the effective in-
teraction approach, which works for hexagonal crystals of
cylindrical, and for cubic crystals of spherical micelles.
The idea is that we can use the results (25) and (26) for
the effective interaction of planar interfaces also for
(weakly) curved interfaces. Consider two spheres of ra-
dius R, with their centers located at z=+D /2. We as-
sume that the total interaction energy can be obtained by
integrating the effective interaction V4(d) over the pro-
jection of the spheres into the z=0 plane. Here
d=[D —2(R*—x?)!"?] is the distance of two pieces of
the micellar surface in the z direction, with distance x
from the axis of rotational symmetry (the z axis). Thus,
the total interaction energy is given in this approximation
by

V.(D,R)= fORdx 2mxV gD —2(R?—x%)'2]

2 ViR —qp-2p)
e

A similar expression can be obtained for cylinders. This
approach works best when the packing of spheres or
cylinders is rather loose, so that the form of the interac-
tion used in (28) is a good approximation. The second is
the Fourier approach, where the order parameter is writ-
ten as a Fourier series,

N
)= 3 ¢gcos(K-r). (29)

i=0 KEB,

The sum runs over all reciprocal lattice vectors of the
studied lattice structure, where B; denotes the ith shell of
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the reciprocal lattice (i.e., reciprocal lattice vectors which
are all related by symmetry operations). Since all the lat-
tices considered here have point symmetry, sin(K-r)
terms in (29) are not required. In practice, the sum has to
be restricted to a limited number of shells, of course.
This approach works best (i.e., the series converges most
rapidly) when the cylinders are at close distances, so that
all length scales are of comparable size. As mentioned
above, it requires a large computational effort, because
the loci of the matching points have to be determined in
each step of the minimization procedure. Therefore, we
have used it only for the two-dimensional, hexagonal lat-
tice. The Fourier approach (with finite N) yields an
upper bound for the local minima of the free-energy func-
tional.

The free energies of fcc crystal, hexagonal, and lamel-
lar phases are shown in Fig. 5 as a function of f,. Since
the free energies of all phases fall on almost parallel lines,
a small difference in slope, like for the free energy of the
hexagonal phase from the effective interaction and the
Fourier approaches, can make a relatively large
difference in the position of the phase boundaries, or
determine if a phase appears at all in the phase diagram.
From diagrams like Fig. 5 for various values of g,,, we
have constructed the phase diagrams shown in Fig. 6.
Figure 6(a) is the phase diagram of a system with oil-
water symmetry, while this symmetry is broken in the
phase diagram of Fig. 6(b). In the latter case, the results
for the hexagonal phase from the Fourier approach have
been used. The order-parameter profile of the hexagonal
phase is shown in Fig. 7.

Now, we want to compare these phase diagrams with
the results for the elastic moduli, which are shown in Fig.
8 as a function of f, and g,,. The first point to note is
that in both the symmetric and the asymmetric case, the
general behavior of o, «, and K is very similar. Also, in
both cases the transition from oil-water coexistence to the
spatially modulated phases occurs very close to the line

0.0
F/V

-0.04

-0.08

-0.12

0.72 0.76 0.80

fO

FIG. 5. Free energy densities of lamellar, hexagonal, and cu-
bic phases, as a function of f, for the piecewise parabolic mod-
el with the parameters c¢=1, g,=g,=4.6, g,=—3.5,
w,=w,=4, 0,,=1, ¢,=2, and ¢,=—1. The free energy of
the cubic phase is calculated with the effective interaction ap-
proximation, the free energy of the hexagonal phase by both ap-
proximations, as discussed in the text.
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FIG. 6. Phase diagrams of the piecewise parabolic model. (a)
System with oil-water symmetry (¢, =1, ¢,=—1). (b) System
with broken oil-water symmetry (¢, =2, ¢,=—1). All other
parameters are identical in both cases, ¢ =1, g,=g,=4.6,
w,=w, =4, and w, =1. The correlation function changes its
behavior at the disorder line (DOL) from oscillatory to mono-
tonic. The peak of the scattering intensity moves away from
wave vector ¢ =0 at the Lifshitz line (LL).

where the interfacial tension of the oil-water interface
vanishes. The deviation of the line of phase transitions
from the line o =0 is a measure for the magnitude of the
attractive interaction between monolayers. In the sym-
metric case, Fig. 8(a), the spontaneous curvature vanishes
identically. Therefore, we expect to see only modulated
phases with zero mean curvature, the lamellar phase, or
an ordered bicontinuous phase. This is indeed what is
seen in Fig. 6(a). Due to the large computational effort
required, we have not been able to study the stability of

"

®
®

N\
Y

(=

FIG. 7. Contour plot of the order-parameter distribution in
the hexagonal phase for the piecewise parabolic model. The in-
terior phase is water. The distribution is calculated by the
Fourier approach with 12 shells. The parameters are the same
as in Fig. 6(b), and f,=0.808, g,, = —3.5.
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the bicontinuous phase here. This will be done in the
next subsection. In the asymmetric case, Fig. 8(b), the
spontaneous curvature is nonzero, and cubic phases of
swollen micelles, as well as hexagonal phases of cylinders,
can be expected, as are indeed found in the phase dia-
gram, Fig. 6(b). The saddle-splay modulus is negative
over a large part of the o =0 line, which indicates the ex-
istence of droplet phase, again in agreement with the cal-
culated phase diagram. These structures seem also to be
favored below the o =0 line by the negative saddle-splay
modulus ¥; however, with increasing surfactant concen-

(@)

A=0

o
—
o
N
o
o
N

FIG. 8. Contour plots of the interface tension o, the spon-
taneous curvature modulus A, the saddle-splay modulus K, and
the bending rigidity « for (a) a system with oil-water symmetry,
and (b) a system with broken oil-water symmetry. The parame-
ters are the same as in Fig. 6. The dashed line marks the posi-
tion of the phase transition between oil-water coexistence and
the spatially modulated phases.
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tration (which is favored by small or negative f, and
large and negative g,,), the packing constraints always
favor the lamellar phase. Finally, there is a small interval
of positive K along the o0 =0 line, where bicontinuous
structures can be expected. We will study in the next
subsection if these structures can be stable in this region
of the phase diagram.

B. ¢° model

We now turn to the Landau free energy with g (¢) and
f (@) given by the polynomials (4). The purpose of this
section is to investigate the stability of bicontinuous cubic
phases in the phase diagram. We therefore restrict our-
selves to the symmetric model, with ¢— —¢ symmetry.
Here, the particular form for f,

F(d)=(d—0,)(d+d,) >+ f,) (30)

with ¢, =1, is used (we also set c =1). We can get a very
good estimate for the transition line from oil-water coex-
istence to the lamellar phase, by approximating the oil-
water interfacial profile by [46]

é(z)=¢,tanh(z /§) (31

and identifying the transition with the line where the in-
terfacial tension vanishes. A minimization of the free-
energy functional with respect to & yields

—aq 58018 _— 1+5f,
12 12

3 =0. (32)
The condition that the surface tension vanishes gives
another equation for &:

5gotgy  _, 1 +5fo

ET44 2 £+ 2 =0. (33)

These two equations combined give the simple approxi-
mation

5g80t+8,

1+5f,= 2

(34)

for the location of oil-water-lamellar coexistence. We
will see below that (34) is a remarkably good approxima-
tion for the transition line.

The phases we have compared are the lamellar phase,
the simple-cubic (sc) bicontinuous phase, for which the
¢(r)=0 surface is the Schwarz P surface, and the single-
diamond (sd) bicontinuous phase, for which the ¢(r)=0
surface is the Schwarz D surface [3]. The free energies of
all these phases are calculated with the Fourier approach
(29). For the sc phase, with lattice constant a, we have
the symmetry

r+2(1,1,1)

o|IT 3

=—¢(r) (35)

so that only the lattice vectors K=(27/a)(n,n,,n;)
with (n,+n,+n;) odd have nonvanishing amplitude.
For the sd phase, a fcc lattice with Dbasis
d,==(a/4)(1,1,1), the symmetry relation (35) also
holds, so that only Fourier components of lattice vectors
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FIG. 9. Free-energy densities of lamellar, cubic bicontinuous,
and diamond bicontinuous phases, as a function of f,, for the ¢°
model [(4) and (30)] with the parameters c=1, ¢,=1,
go=—2.1,and g,=4V'1+ f,—g,+0.1. The number of shells
used in the Fourier series (29) was N <25 for the simple-cubic
phase, and N =< 12 for the diamond phase.

with {n,n,,n;} all odd contribute in this case.

The free energy of these three modulated phases is
shown in Fig. 9 as a function of f, for g,= —2.1, which
is the region of the phase diagram where k was found to
be positive in Sec. V A. The lamellar phase is found to be
the phase with the lowest free energy in the whole range
from coexistence with the microemulsion to coexistence
with oil and water. However, as the transition to the mi-
croemulsion is approached, the free energies of the bicon-
tinuous phases and the lamellar phase become essentially
degenerate. Although this means that the bicontinuous
phases are not stable in the phase diagram (at least not
for the parameter values investigated so far), this result
indicates that the microemulsion itself should have a
bicontinuous structure. The order-parameter distribu-
tions of the ordered bicontinuous phases are shown in
Fig. 10.

Thus we arrive at the phase diagram of the ¢® model
shown in Fig. 11. As mentioned above, the approxima-
tion (34) for the lamellar — oil-water transition works so
well that it is essentially indistinguishable in Fig. 11 from
the true transition line. The transition from the lamellar
phase to the microemulsion is second order, and is there-
fore located at go=—gg, ,» = —2V 1—2f,. Note that in
contrast to the piecewise parabolic model of the preced-
ing subsection, the disorder line is here a function of f.

VI. WETTING OF A WALL BY THE
LAMELLAR PHASE

When a first-order transition between two phases ¥,
and y, is approached from the side of the y,; phase, the
nucleation of y, often occurs at the walls of the con-
tainer, if the walls favor this phase [47,48]. Two situa-
tions can occur.

(i) The thickness of the layer of the y, phase stays
finite, when the y,/y, coexistence is reached. This is
called incomplete wetting.
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FIG. 10. Order-parameter distribution in the bicontinuous
phases, for the ¢° model [(4) and (30)] with f,=0.0001; all other
parameters are the same as in Fig. 9. (a) Fourier components of
the simple cubic (lattice constant a =7.78) and the diamond
phase (a =17.64). The crosses (+) indicate positive, the dia-
monds (Q) negative amplitudes. k, is the magnitude of the
shortest wave vector. (b) Contour plot of the order parameter
in the plane z =0 for the simple-cubic phase.
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FIG. 11. Phase diagram for the ¢° model [(4), and (30)] with
c=1,¢,=1, and g,=4V 1+ f,—go+0.1. The dashed line in-
dicates a second-order transition. The dotted line is the approx-
imation (34) for the lamellar — oil-water transition; it is essen-
tially indistinguishable from the true transition line.
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(ii) The thickness of the y, layer diverges at coex-
istence. This is called complete wetting.

We want to consider here a system, which is at oil-water
coexistence, but the whole system is prepared in the oil
phase (v,). When the chemical potential of the amphi-
phile increases, the system is driven towards the first-
order transition to the lamellar phase (y,). Since the wall
is a planar defect, we think it is reasonable to expect that
the lamellar phase will be nucleated by the wall. We
want to find out under what circumstances complete wet-
ting occurs.

The wall can be attractive for either oil or water. This
is described by a local chemical potential u; at the wall.
Furthermore, the interactions of the molecules and their
entropy (missing neighbors) will in general be different at
the surface, as compared to the bulk. This is usually de-
scribed in square-gradient theories by a local interaction
term f,(¢)=w,4>. Since our Landau model involves ad-
ditional derivatives in the bulk, we also want to include a
gradient term g (¢)(V¢)? at the surface. This term is re-
lated to a local chemical potential of the amphiphile at
the wall. Here, we take g,(¢)=g, =const. Thus, to study
the behavior of oil-water-surfactant mixtures near a wall,
we consider a free-energy functional of the form

Hol= [ drL,16,Y6,V81+ [ d7'rL[4,V4]
(36)
with
L=f($)+p,d+g(d) Vo). (37)

The Euler-Lagrange equations are obtained as usual from
the first variation of F:

57= [ d¢ e N
=194 5e " Vawe TA%ae |4
+ [ a7 oL, -V oL, +5‘£‘ 5
N R 7 LA TVl Ll
+ [ a7 0 1+ 2L lysg) (38)
v T 5ae ™ sve | V08

where n is the surface normal, directed outward. To
derive (38), Gauss’s integral theorem has been used re-
peatedly. We see from (38) that in addition to the bulk
EL equation, which follows for the fact that the first in-
tegral must vanish identically, there must be two bound-
ary conditions, since the integrands of the last integrals
must also vanish identically at any point of the boundary.
With £L,=f(¢)+g(#)(V$)*+c(Ad)? and L, from Eq.
(37), the boundary conditions are

0=2g($)(VéIn—2c(VAS)n+g (#)V)1+fl(d)+pu, ,
39)
0=c(Ad)n+g,($)Vé .

For the special case of planar walls, and f,(¢)=w,¢?
g,(¢)=g,=const, (39) reduces to
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0==2g () F2c¢"" +2w,¢+pu, ,
0=*tc¢"+g, ¢,

(40)

where the upper (lower) sign applies to the right (left)
wall. The EL equation is a fourth-order ordinary
differential equation so that two boundary conditions on
each side determine a discrete set of solutions.

The wetting behavior of the wall-oil interface by water
is expected to be identical for our Landau model with the
wetting behavior in the ¢* model, where it has been stud-
ied extensively [47,48]. In our model, however, there is
also the possibility of a wetting of the wall-oil interface by
the lamellar phase, as the oil-water-lamellar coexistence
is approached from the oil-water side. We want to study
a semi-infinite system in the half space z >0, so that there
are two boundary conditions at z =0, plus the asymptotic
convergence to the bulk oil phase for z— . For a sys-
tem with oil-water symmetry, the order-parameter profile
has the form

¢(Z)=¢[(Z_Ii) )k} )

for z€[l;,1; 1], i€{0,1,...

10=0<ll< '<lk+]=w,

_(122

br(2)=¢,+ e "+ A e ,
4 V4
bi(2)=6,+ EC,'jeyi'f , i<k
J
b 1=

Yi—1,j

¢m’ ¢k—2 ¢u’
:B], Ykzz‘jzaj,...

where a; and B; are the solutions of the characteristic po-
lynomial (21) in the oil (water) phase and the microemul-
sion, respectively. There are 5k +2 coefficients in (41),
the /;,C;; and 4, 4,. On the other hand, we have 5k
conditions for the continuity of the profile and its deriva-
tives, plus two boundary conditions. Nevertheless, it is
not possible to find a solution for arbitrary k. If, for ex-
ample, w, is chosen sufficiently large, ¢(0) will obviously
be in the interval [ —¢g, +¢,], so that only profiles with
k=1,3,5,. .. can exist. For k =1, the profile is simply a
wall-oil profile, for k =3 the wall is covered by an oil lay-
er with approximately the same thickness as in the lamel-
lar phase, etc. Solutions with k =3 only exist in the vi-
cinity of the phase transition of oil-water coexistence to
the lamellar phase. A solution with kK =9 is shown in

.
| U

FIG. 12. Order-parameter profile in the vicinity of a wall,
when the system is close to coexistence of oil-water and the
lamellar phase, with g,=1.5, o, =6.0, and u,=0. The calcula-
tions are for the piecewise parabolic model (5) with the parame-
tersc=1,g,=—4.5,8,=8,=4.4, 0,=0,=4, 0,=1, ¢,=1,
¢,=—1, f,=0.7023, and p=0.
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FIG. 13. Free energy (per unit surface area) of an order-
parameter profile with k matching points (see text) between the
wall and the bulk phase (oil). (a) Wall-oil interface is wet,
g, =1.72; (b) first-order wetting transition, g,=1.56254; (c)
wall-oil interface in nonwet, g, =1.41. The parameters are the
same as in Fig. 12, and u, =0, o, =4.

Consider first the case pu,=0. The free energy as a
function of the number of oil layers is shown in Fig. 13
for various values of g, with o, > 0 fixed, at three-phase
coexistence. The figure shows that g, >0 favors wetting
of the oil-wall interface by the lamellar phase. Within the
numerical accuracy, all solutions with kK =7,9,... have
the same free energy, so that it is very difficult to decide
whether the wetting transition is first or second order.
However, Fig. 13(b) shows that there is a jump from
k =1 to k =5, which strongly suggests a first-order tran-
sition. Interpreted dynamically, the extremely weak
dependence of the free energy on the number of layers for
large k implies that while the first few layers will form
very rapidly, the growth of further layers will be a very
slow process. Such behavior has indeed been observed in
the binary lipid-water system at the fluid-air interface
(49,50].

The full surface phase diagram is shown in Fig. 14 for
us=0. It demonstrates again that the lamellar phase
wets only for g, >0. For u, >0, the oil phase is favored
at the wall, which makes wetting by the lamellar phase

25
9s wet
15
0.5 non-wet
4 6 8 10

FIG. 14. Surface phase diagram at three-phase coexistence of
oil, water, and lamellar phases, with u;, =0. The parameters are
the same as in Fig. 12. The labels “wet” and “nonwet” refer to
the wetting behavior of the wall-oil interface by the lamellar
phase.
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more difficult. For pu; <0, wetting of the wall-oil inter-
face by the water phase competes with wetting by the
lamellar phase. This competition has not been studied
yet.

VII. SUMMARY AND DISCUSSION

A simple Ginzburg-Landau model for oil-water-
surfactant mixtures has been studied. This model uses a
single, scalar order parameter, which is identified with
the local difference of oil and water concentrations. The
same model has been used previously to relate the wet-
ting behavior of the oil-water interface by the microemul-
sion with the behavior of the bulk scattering intensity
[13]. The predictions obtained from this study have by
now been confirmed experimentally [51]. We have shown
in this paper that the same Landau model can describe
ordered phases in oil-water-surfactant mixtures, as there
are a lamellar phase, a hexagonal phase of cylindrical mi-
celles, a cubic phase (fcc) of spherical micelles, and bicon-
tinuous cubic phases. Thus, all the principal phases ob-
served in experiments on self-assembling systems are
present in our model. Furthermore, we have made con-
tact with the interfacial models of oil-water-surfactant
mixtures, where all properties of the system are sub-
sumed in the elastic properties of the surfactant mono-
layers. From a calculation of the free energy of curved
oil-water interfaces, the elastic constants in the Helfrich
Hamiltonian have all been determined. Finally, we have
shown that the wetting behavior of the wall-oil interface
by the lamellar phase can also be described by our model.
Similar behavior has already been observed in two-
component, water-surfactant systems [49,50].

Thus we believe that our Ginzburg-Landau model pro-
vides a “unified” theory of oil-water-surfactant mixtures.
Many properties of these systems can also be described
by other theories, like the lattice and interfacial models;
however, they seem to be more limited in their range of
applicability.

Recently, there have been several attempts [52-54] to
derive expressions for the saddle-splay modulus & and the
bending rigidity « of a liquid-vapor interface of simple
fluids, in terms of the microscopic interaction potential.
Far away from the critical point, the ratio K/« is found to
be —2Z in Refs. [52,53] and +2Z in Ref. [54] (where the
discrepancy in the sign will certainly be clarified in the
future). The reason for this ratio to take a universal
value is due to the sharp-kink approximation for the in-
terfacial density profile used in the derivation. From our
analysis of equilibrium droplets, it is clear that the equi-
librium profile, or even the distortions of the profile, has
to be taken into account to get reliable results for the in-
terfacial free energy, and thus for the bending moduli.
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APPENDIX A: EQUIMOLAR RADIUS

The position R, of the Gibbs dividing surface for a
drop in d dimensions, embedded in a system of radius L,
is defined by

Rfd d—1 = (Larri-1¢— 1
J, i =)= [ drriTie—4),  (aD

where ¢_ and ¢, denote the interior and the exterior
bulk phases, respectively, i.e., the two solutions which
minimize the grand potential Q/V =f(¢)—ué. This im-
plies

d [ arriTig=¢_Li+(4,~4 RS,
i (';dr rég’

¢ 0"dr¢’ ’

(A2)

For d =1 we use the notation z, for R,.

APPENDIX B: FINITE CURVATURE CORRECTIONS

We want to present here the details of the calculation
of the correction to the free energy, which arise from the
fact that for a drop or cylinder of finite radius the order-
parameter profile deviates from the planar profile. The
calculations are performed simultaneously for both
spherical (d =3) and cylindrical (d =2) solutions of the
Euler-Lagrange equations. As discussed in Sec. III, we
assume that the order-parameter profile as well as the
chemical-potential difference between inside and outside
can be expanded in a power series in the inverse radius
R 7! of droplets and cylinders around the planar profile
(with R ~1=0),

$=¢+58¢
o . $ H
=¢+ I + e + , (B1)
ot S o ST
u= R + R? +
and that f(#) and g(¢) can be expanded functionally:
F=F(B)+f($)Bd+Lf"($)8$)*+ -+ . (B2)

These expansions are inserted into the Euler-Lagrange
equation (6). Collecting terms of order R ~", we obtain
after shifting the origin to R, that is, r —r +R, the fol-
lowing operators:

— A — Q’
Ap=¢"+(d 1)r+R

=¢"+(d —1)%'—+O(R ~?),

(B3)
24— grinr — "
Ap=¢""+2(d 1)—ﬂ—r+R
(r+R)? r+R

=¢""+2(d —1)%+O(R —2),
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Contributions of order R? in the EL equation (6) vanish
identically, because ¢ satisfies the planar EL equation

28" —2g($)¢" —g"($)( ')+ f'($)=0 . (B4)

To order R !, one has

w=287"+4(d —1)¢"" —2g ($)d) —2(d — 1)g ($)’
—28'($)($18" +6'$1)—8"($)8,(§' )V + [ ()4, -
(B5)

This result can be multiplied by ¢’ and integrated over, so
that after repeated integration by parts

[dru&=[dr[ 261" —4(d —1)($"
+2g($)¢'6" —2(d —1)g ($)(§')?
+g'()p 1" — (¢ )] . (B6)

A comparison with (B4) and (16a) yields

farpé'=—d—1o., . (B7)

We can use the thermodynamic relation p =u¢_ for the
interior bulk phase ¢_, together with (B1), to see that
(B7) is equivalent with Ap/R =—(d—1l)o,
+O(R ™), the Laplace equation (7) for a stable drop.
Next, we want to calculate the free energy of these
solutions. We have to separate the free energy into a
bulk and an interface contribution, F, and F;, respective-
ly, where
Rd

Fy[¢p]=—"-[—ud,++1(4.)]

d

d_pd

+L°—R"
d

¢_ and ¢, are the values of the interior and the exterior
bulk phases, which have been introduced in Appendix A.
Here and in the following, we absorb a factor 2(d —1)7
in all expressions of the free energy. Now, ¢, can be ex-

panded in powers of R ! just as the chemical potential
in (B1),

[—pd_+£(_)]. (BS)

¢:t,1 ¢j:,2
R Ry

Since ¢ , is a minimum of f(¢) and f (¢, o)=0, the ex-
pansion around this point is
b1 | Pio

+
R R?

+ (B9)

2
+ e (B10)

(@ )=3f"(¢0)

Furthermore, for an arbitrary function A (r),
[ ar(r+RY " h(n)

R? LY—R?
=—h(— .
g PRt

fL-R (r +R)*—R¢
— dr - v -
—R d

h(L —R)

h'(r), (B11)
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so that the bulk contribution to the free energy reads
Jar(r+R T [ —po+1f"($)(84)]
=F,[¢]+B,+B,, (Bl2)

where

(r +R)*—R*

Bl=fdr 4

ud',

p (B13)
B,=—R473 [dr rg;[%f”(¢)¢%]+0(Rd_4) .

Here, we have already expanded B, in powers of R ~};
expanding B, also, we obtain

d—1

By =p, |[R*7(0)+R? 3 T

X2(0)+x, (1) ] ]

+u,R4 73y, (0)+0 (R4, (B14)
where the notation
xiG)= [drrig) (B15)

has been used. The separation of bulk and interface
terms is found to give the simplest expressions when the
equimolar radius (see Appendix A) is used to define the
interface position. Therefore, we identify R with R,, and
then drop the index again for convenience. For R — o,
R, approaches z,, the position of the equimolar surface of

the planar interface,
z,=x1(0)/x,(0) , (B16)

compare (A2). With Eq. (A2), R=R,, and the substitu-
tion r —r + R one arrives at

[ (r+R)¢p'dr
[¢ar 7
A1, . (B17)
fr¢dr——Wfr¢dr+O(R ),
or
x1(0)=—% i5‘—1)(2(0)+)(1(1) +0(R7%. (B1®)
This yields the simple result
B,=0(R™%). (B19)

Now, the total free energy is given by

Fl¢]= f_LR_Rdr(r +R)! ¢"+——f+‘; &

’

+g($)¢" )+ f(d)—pud

(B20)

expanded to order R ¢ 3, this gives
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5
F[¢]=F,[¢]+F,[$]+ 3 F,,

i=1

Fy=R°72 [dr[f($)¢,+2g ()F'¢;
+g'(¢)¢ ¢, +28 "¢V ], (B21a)
Fy=(d—1DR?7 [drr(f(3)¢,+28()F¢1+8"($)d "9,

+28"471, (B21b)
Fy=R?7 [dr[f'($)¢,+28($)§ 6 +8'($)$ ",
1257451, (B21c)

- d T TN
Fy=R*7 [dr| —r—[47"( @411+ 18" (5)6 4}

+g(8)p7+2g'($)¢' 191 +47 |,
(B21d)
Fs=2(d —1)R?™ [dr[#'¢7+8"4] , (B21e)

where all terms which contain only ¢ are collected in
F,[$]; they have already been calculated in Sec. III. To
simplify this lengthy expression, we first use (B4). This
equation, multiplied by ¢; (i =1,2) and integrated over,
yields

[arlf)9,+28(8)8'¢;+8'($)87¢,+28"4;1=0
(B22)

so that F|, and F; vanish identically. Similarly, again
with (B4)

Jarrif ()¢, +28(5)8 ¢+ ($)d%¢,+28"47 ]
== [dr2(g($)§'¢,+28"41]

which simplifies F,:

F=—2(d —1)R?™ [dr[g($)§'¢,+28"$1] .

(B23)

(B24)

F4 also vanishes identically. The only term left over is
F,. Multiplication of (B5) with ¢, and integration by
parts gives

2d—1) [ dr[g(®)F¢,+28"¢11=1,+1,,  (B25)
where

1= [ar[f"(@dt—pmd] (B26)

1= [drig"($)§?¢} +4g'($)'$,1

+2g($)$ 2 +24772] . (B27)

Finally, (BS) implies

(@10 1 —1y=0, (B28)
and (B26), integrated by parts, gives

1= [drr| =21 @+, (B29)
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so that
F[¢]=F,[¢]+F,[$]
— AR [dr{(d —D[g($)F'¢,+2cF"$}]
+3uréi} (B30)

where A is the area of the interface. This is the result
quoted in Sec. III.

APPENDIX C: AN EXACT SOLUTION FOR ¢ =0

For the square-gradient theories [i.e., ¢ =0,
g(¢)=gy>0] with a double-well potential, the expres-
sions (16) for k¥ and A have been known for quite a while
[32,33]. However, we present here the corrections which
are due to the distortion of the profile for finite radii for
the first time. In the double-parabola approximation, we
have (with g, =1)

Flg)= [ d*r[(VéP+f($)—ub],

c1
i (B—g, )% $>0 (v
FO= 0 6—06_1, #<o0,
where
0 ¢4 =w_¢* (C2)

so that the free energy density f is continuous at ¢=0.

In this case, not only the planar profile but also the

profiles of both cylinder and sphere can be calculated

analytically. This gives us the possibility to compare our

results (16a), (16d), and (18) with exact free energies.
f(¢)—pug can be written as

“’+(¢“‘¢+,y)2+f+» >0
o (¢—¢_ ) +f_, 6<0,

¢j:,p=¢j:+ zwi ’

f(@)—up=

(C3)

2
fiz_ﬂd’i_zs)_i .

The order-parameter profiles are given by two functions,
¢.(r)>0, and ¢ .(r) <0, which are patched together at
¢ =0 such that both the profile and its first derivative are
continuous. Both functions satisfy the EL equation
2A¢=[f'(¢)—pu] for the respective parabola.

The solution for the planar profile reads (. =0)

é_(1—e"*™), x <0

= 6. (1—e ), x>0,

ai=\/w_i

while the free energy per unit area (the surface tension) is
given by

o=V w+¢2++\/2:¢2_ .

Finally, one has

(C4)

(CS)



4850 G. GOMPPER AND S. ZSCHOCKE 46
w ! !
f#wd22"¢'2=w+¢2+(‘2—nﬁ+<—“"w—d’z—ﬁm 5 o pigrra-r?| Ly = (C14)
-+ a- 4 Vo, Vo_
(C6)
. : IS EENELY
so that the elastic moduli are found to be 0_ o4
A=¢% —¢> , We now want to compare with the result (18) obtained
e ¢ (€7 by expanding around the planar profile. This will give us
K= R — an idea of how important the correction terms are. We
Vo, 2Vo_ expand (C8) around the planar profile (C4) to order R ~},
hich gi
while the bending rigidity « vanishes identically. which gives
The solution for the spherical drop is given by Sr +R)=8(r)+ ¢11(Qr) LOR"D+0(e wa_R)
(C15)
R sinh(a _r) u
1= , r€[0,R =L (1= a-r
$—n sinh(a_R) r rel ] 2co_(1 e Ité.re, r<0
(r)= —a,r (C8) =
¢ . I R e O+ rE[R, ] é4(r) ™ (l—e_a+r)+¢ re T 150
+.p o R r ’ ’ ’ 204 " ’ .
The correction terms in (18) can then be calculated:
Continuity of the first derivative at ¢ =0 implies
—1y— —1 _2f$’¢ drz—l?—ﬁl_ jl_¢__
¢+ lar+R7)=—¢_ [a_coth(a_R)—R '] 1 2 |0, o |’
_ I ~2a_R (C16)
=—¢_(a_—R")+0(e ). o r¢'dr-——ﬂ fi_i:,
(C9) 2 T2 e oo
Since R is large compared to the correlation length a”?, ,u% 1 1
terms of order O(e ) can be neglected. Therefore, 4 (3)? ()2

we find for the chemical potential with (C3) that
_ 2(¢__¢+)(U+CU_ —2a_R
RVo,o_ Vo, +Vo )—o,+o_

"

(C10)
Then, the expansion u=u,/R + - - - yields

20¢_—¢ Vo 0
= It (C11)
vV Wy +vVo_
The calculation of the free energy from Eq. (11) implies
for the interfacial free energy

Fs D2 f 2 ’
2 Rl=¢- < (R)]+TR 4, 44 (R)]

=R* Vo, ¢} V0 L )FR(SL 4L ),
(C12)

a_R)

where the terms of order O(e have been dropped.

Since
2—f 4 2
03 =f1 wi¢i,p

we finally arrive at

(C13)

+O0(e T

The simplest case is a system with oil-water symmetry,
i.e., with a symmetric free-energy density f, so that

w,=w_and ¢_=—¢,. In this case we have
= _2¢+\/Z: )
) (C17)
5
K— pre
\/w+
Equation (C14) yields in this case
s ¢
=R¥0—2—— (C18)
41 Vo,
while the correction terms are
g
-2 [Fpdr=—r+2——=,
O
e (C19)
My +
—— | réydr=—4—+.
2 Jréi Vo,

We find that the two results are in complete agreement.
The magnitude of the corrections due to the deformation
of the profile is by a factor of 3 larger than & itself.
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