
PHYSICAL REVIEW A VOLUME 46, NUMBER 8 15 OCTOBER 1992

Fractal level sets and multifractal fields in direct simulations of turbulence
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The fractal nature of level sets and the multifractal nature of various scalar and vector fields in

hydromagnetic and hydrodynamic turbulence are investigated using data of direct simulations. It
turns out that fields whose evolution is governed by stretching terms (vortex stretching, magnetic-
field line stretching) exhibit "near singularities" that result in a multifractal scaling. Such stretching
terms can lead to a rapid increase in the local value of the Beld. Fields without rapid local increase
have no multifractal scaling. Furthermore, the simulations support recent theoretical suggestions
that the fractal properties of the leveL sets of various fields are quite insensitive to the existence
of stretching. Indeed, all the fields under study (temperature, vorticity magnitude, magnetic-field

magnitude) show rather universal behavior in the geometry of their level sets, consistent with a two-

dimensional geometry at small scales, with a crossover to a universal fractal geometry at large scales.
The dimension at large scales is compatible with the theoretical prediction of about 2.7. The most

surprising result of the simulations is that it appears that the "near singularities" are not efficiently
eliminated by viscous dissipation, but rather seem to be strongest at the Kolmogorov cutofF. The
effects of the singularities do not quite penetrate into the inertial range. We offer a simple analytic
model to account for this behavior, We conclude that our findings may be due to the relatively small

Reynolds numbers, but may also be indicative of generic behavior at larger Reynolds numbers. We
ofFer some thoughts about the expected scaling behavior in the inertial range in light of our findings.

PACS number(s): 47.25.—c

I. INTRODUCTION

If turbulence possesses universal properties, they are
most likely to be manifested in the scaling behavior of
correlation and structure functions in the inertial range.
Unfortunately, the scaling behavior of turbulence is still
ill understood beyond the phenomenological Kolmogorov
picture. However it is felt by many that insight into the
scaling behavior can be gained by understanding the geo-
metrical structures in turbulence, including their fractal
and multifractal properties. If these turned out to be
universal, light might be shed on the question of the uni-

versal scaling behavior of statistical quantities like the
structure functions. Obviously, it would be most prof-
itable to study the geometrical issues directly on the basis
of the equations of fluid mechanics. Recently, the fractal
nature of level sets has been studied on the basis of fluid
mechanics with the aid of ideas from geometric measure
theory [1]. It has been shown that there exists a degree
of universality in the sense that all the fields studied,
be they "passive" or "active, " exhibit a crossover from
smooth to fractal behavior with a dimension that can be
bounded by a universal estimate.

On the other hand, all the theoretical studies concern-
ing the multi&actal nature of turbulent fields have been

limited so far to rather contrived models or phenomeno-
logical guesses. It would be worthwhile to attempt to
connect the existence or nonexistence of multifractal scal-
ing to the underlying equations of motion. In this paper
we take the point of view that the crucial aspect in the
equation of motion is whether the field in question can
be rapidly amplified locally so as to create a singularity.
We are aware of the elusive nature of the singularities in
fluid mechanics, and nowhere in this paper do we claim
to have found a "real" singularity of the type discussed
by Cafarelli, Kohn, and Nirenberg [2]. We shall show
however that direct simulations indicate very strongly
that fields governed by a rapid local stretching have fun-
damentally different scaling properties from fields that
lack such local stretching. From the point of view of the
generalized dimensions it appears that there exist "near
singularities" in those fields that are rapidly stretched.

Our naive expectation had been that if a near singular-
ity were developing it would be felt mostly in the inertial
range, and that it would be smoothed out by viscous ef-
fects on the Kolmogorov cutoff scale. To our surprise we
see quite the opposite. It seems that viscous eEects are
inefficient in taming the near singularities which seem
quite apparent in the viscous range. The model that
seems demanded by the data is of a rather smooth back-
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ground on which near singularities of a rather small am-
plitude are riding. The multifractal analysis picks out
the effect of the singularities only at small scales. Be-
low we shall offer a simple analytic model that captures
the qualitative scaling properties that we see in the data.
The consequences of this model for the scaling behavior
in the inertial range are discussed below.

In the following we shall distinguish between the fractal
dimension D of the level sets and the generalized dimen-
sions Dq of the fields themselves. The former concept
is connected in a simulation to finding all the points in
space for which the value of a chosen field falls within a
prescribed window, and then to computing the dimension
of this set of points. The latter quantities are computed
by boxing space into boxes of size r, and integrating a
chosen field in every such box. Normalizing, one gets
the "measure" of each box of size r, and then computes
the generalized dimensions as usual. (Precise definitions
and procedures are provided in Secs. III and IV.) It has
been pointed out before that the generalized dimensions
difFer from the embedding dimension only if the fields
contain singularities. The computation of these quanti-
ties is therefore a convenient tool to assess the existence
of large variations in the magnitudes of the measure from
point to point.

There have been various attempts to quantify the frac-
tal nature of turbulent flows in the laboratory. For sev-
eral types of turbulent flows Meneveau and Sreenivasan

[3] and Prasad, Meneveau, and Sreenivasan [4] estimated
the generalized dimensions Dq of the dissipation field
from a time series. Constantin, Procaccia, and Sreeni-
vasan [5] found the dimension of isoconcentration sur-
faces for a passive scalar using spatially resolved two-
dimensional dye images.

Recently, the fractal dimension of isovorticity sur-
faces in hydrodynamic turbulence has been estimated
both analytically [1] and from numerical simulations [6).
There is generally a crossover at some intermediate scale
(about ten Kolmogorov dissipation lengths) from a two-
dimensional geometry at small scales to D = 2.5+ (/2
at large scales, where ( is the scaling exponent of the ve-

locity difFerences. This shows that while at small scales
isovorticity surfaces are smooth structures, at large scales
these surfaces are more and more wrinkled, giving rise to
a fractal dimension larger than 2.

Because of the close analogy between the vorticity
equation and the induction equation, the same methods
and ideas should carry over to the case of magnetohy-
drodynamic (MHD) turbulence. The analogy between
the equations governing the evolution of the vorticity
w = V x u in ordinary hydrodynamics (in the absence of
magnetic fields, gravity, and rotation) and magnetic field

B in MHD has often been helpful: in the context of MHD
turbulence, for example, Batchelor [7] used this analogy
to explain the possibility of spontaneous magnetic field

generation (the dynamo effect). Numerical simulations
of homogeneous three-dimensional Navier-Stokes turbu-
lence have revealed that the turbulent flow is organized
in the form of thin, elongated vortex tubes with a length
close to the integral scale and a typical thickness of the
order of a few Kolmogorov dissipation scales [8, 9]. In

numerical simulations of MHD turbulence, magnetic flux
tubes, analogous to vortex tubes in ordinary hydrody-
namic turbulence, have been observed [10, 11], thus sub-
stantiating the close analogy between w and B.

A fractal analysis of hydrodynamic and MHD turbu-
lence has direct astrophysical applications because the
flow pattern (e.g. , the granulation) and the magnetic field
on the solar surface seem to exhibit a fractal nature that
has been studied in recent years [12, 13]. Different expla-
nations have been offered for the fractal dimension of the
solar magnetic field at the surface including, for example,
a nonuniformity of the stretch-twist-fold dynamo mech-
anism [14], and a random occurrence of magnetic fields
has been described by percolation theory [15]. Similarly,
the flows on scales of mesogranules have been modeled by
random processes and the fractal dimension of a set of ad-
vected tracers has been estimated [16]. These approaches
remain unsatisfactory in that they ignore the dynamical
evolution of the velocity and the magnetic field as gov-
erned by the MHD and Navier-Stokes equations.

Here we analyze the data for homogeneous turbulence
of Vincent and Meneguzzi [9] with a resolution of 240
Fourier components, and for convective MHD turbulence
of Nordlund et at. [11] with a resolution of 63s mesh-
points. In the first case the flow is driven by a constant
forcing at large scales, whereas in the latter turbulent
convection develops from a constant heat flux imposed
at the bottom of a plane layer and cooling above. In ad-
dition, we also analyze the data of a run of decaying tur-
bulence performed by Vincent and Meneguzzi [17] using
256s Fourier components. Here, the Reynolds number
is smaller (140 instead of 1000) and the Kolmogorov
cutoff better resolved than in the run for forced turbu-
lence. The MHD simulation is tailored to describe the
fiow and the magnetic fields in deeper layers of the Sun,
and therefore a number of physical features are included,
such as rotation and density stratification. Furthermore,
the lower half of the layer is stably stratified allowing
penetration from above. Since the dynamics in this lower

layer is much less chaotic, we exclude it from the subse-

quent analysis. The magnetic difFusivity is sufficiently
small so that a weak seed magnetic field is amplified,
until saturation is reached, where kinetic and magnetic
energies are almost in equipartition. The physical param-
eters of this run are Rayleigh number 10s, Taylor number
10s, Prandtl number 0.2, and magnetic Prandtl number

4, and the Reynolds number fluctuates around 300; see
Ref. [11].

By comparing the data sets of hydrodynamic and
MHD turbulence we may get some feeling as to what
extent our results are sensitive with respect to such addi-
tional physics. Furthermore, since the numerical meth-

ods employed in the two cases are different (spectral and
mesh point methods, respectively) we have an additional
check on the numerical reliability of the data presented.

II. EVOLUTION EQUATIONS AND
STRETCHING

In this section we discuss the equations of motion of the
various fields that are available in the MHD simulation,
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s;~ = 2(8,%i~ + B~tc,) (2)

The same equations are obeyed by the vorticity magni-
tude ur = IwI in hydrodynamics (without gravity and
stratification), except for the additional constraint w =
V x u; for B there is no such condition.

Using this form of the equation, the dimension of the
level sets of these fields can be found using the analytic
methods developed by Constantin and Procaccia [1]. We
thus expect a crossover behavior in the computed dimen-
sion, where the crossover is from D = 2 to D = 2.5+(/2,
occurring at a typical scale A' which is about one order
of magnitude larger than the Kolmogorov cutoff scale.
For ( = 0.4 the dimension at large scales is expected to
be about 2.7.

In the equations like those for the velocity and tem-
perature fields, stretching terms are absent. For a com-
pressible, perfect gas the equation for the temperature T
1S

+u VT —eV T = AT+t (3)

where f~ = —(p —1)V u, p is the ratio of the specific
heats (= ss in our case), and ~ = K/p is the heat difFusion
coefficient, where K is a constant and p is density. The
dots on the right-hand side of (3) denote viscous and
Joule heat terms, which do not explicitly depend on T.

Note that (3) is of similar form to (1), except for the
structure of the terms f~ and fz on the right-hand side.
In the two equations these terms can cause a local ex-
ponential increase or decay of B (or T), depending on
the sign of f~ (or f~) On the a. verage, however, the
stretching terms in the vorticity and induction equations
are always positive [7], while the corresponding term on
the right-hand side of Eq. (3), namely, TV u, gives-
a strongly negative contribution on the average (see be-
low).

The magnitude of the gradient of the temperature P =
I
VT

I
satisfies

displaying their similarities and difFerences. In particular
it is important to point out the significant role of the
stretching terms is~8~u; and B~B~u, that occur on the
right-hand side of the vorticity and induction equations
[7]. The equation for the magnitude of the magnetic field,
B = IBI, can be written in the form

BB
t

+u VB —ilV B= fBB,

where f~ = B;B~s;~ rt(B~—B;)~ '7 u—and B, = B;/B are
the components of the unit vector in the direction of B.
Here, only the symmetric part s;~ of the velocity gradient
matrix enters, where s;z is the usual rate of strain tensor
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and it is therefore interesting to compare the multifrac-
tal behavior of B and P. However, the stretching term
in fp has the opposite sign to that in f~ and we may
therefore expect that this term gives a negative contri-
bution on the average, so that the P field would not show
multifractality. Nevertheless, we cannot exclude a priori
the possibility that there is generation of near singulari-
ties in P, even though there is no exponential growth of
the temperature gradient on the average. Indeed, it has
been found in other contexts that the gradient of a pas-
sive scalar can exhibit a multifractal behavior, see, for
example, Raznshankar and Gollub [18]. Below, we show
that in our context of low Prandtl number convection
the stretching of the temperature gradient is not strong
enough to develop multifractality.

Note that the T and P fields are dominated by a strat-
ification component which varies slowly with depth. It is
therefore reasonable to consider instead P' = 7'T', where
T' denotes the deviation of T from the average stratifi-
cation. The equations for T' and P' have similar terms
on the right-hand side to (3) and (4), and the same ar-
guments therefore apply. We recall that the simulation
results used here are obtained by solving the full equa
tions, and T' and P' are then obtained by subtracting the
average stratification.

In order to describe the nature of the stretching terms
further, we show in Fig. 1 histograms of the probabil-
ity density functions of S~ = is;isi s;~, S~ = B,B~s;~,
Sp = P,'P's;~, and T'V u. The kurtosis of these dis-
tribution iunctions is rather high (390, 190, 220, and 16,
respectively), indicating that stretching comes from only
a few burstlike events. The skewness of the four distribu-
tions is positive (12, 4.7, 5.3, and 3.3, respectively), indi-
cating that large positive contributions are clearly more
probable than negative ones, and that positive values of
T'V u are far more probable than negative values. Since
both T'V u and Sp~ occur with a minus sign in Eqs. (3)
and (4), respectively, we conclude that local exponential
growth in T' and P' cannot be dominant.

Bp +u Vp —tcV p = f&p+2

t (4)
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where fP = P,P~s,i —z(B~P, )& ——(P —1)V u. The el-
»psis on the right-hand side of (4) denotes terms arising
from the density gradient and the viscous and Joule heat
terms. Note that fp also has a stretching term, —P;P~ s;~,
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FIG. 1. Histograms of the probability density functions of
S~ = m;m~s, ~, Sa = B;B~s;z, Ss~ = P&'P~s;~, and T'V u.
The average is indicated by a dashed vertical line.
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III. LEV'EL SETS

Using the technique described in Procaccia et aL [6] we
first consider, for the MHD case, the fractal dimensions
of level sets of T', tq, and B. We select a narrow win-
dow and produce in this way a set of about 4000 points.
We then compute the correlation integral C(r) giving
the number of pairs of points whose distance is less than
or equal to r D. (r) is then obtained as the pointwise
slope of ln C versus inr. For T', tii, and B we find that
D(r) is compatible with a crossover from 2 at small scales
to 2.7 at large scales, which is in agreement with previ-
ous results for homogeneous turbulence; see Fig. 2. We
checked that similar results were obtained for different
levels and widths of the window. Notwithstanding, we
should point out that D(r) has a tendency to increase
along much of the inertial range and the plateau at 2.7
is rather small. The same is true for the hydrodynamic
case (see Fig. 2 in Ref. [6]). Thus, before having examined
data at considerably higher Reynolds numbers and much
larger inertial ranges, we cannot rule out the unpleasant
possibility that the points belonging to the level sets are
simply randomly distributed at the largest scales. If so,
one would simply see a crossover behavior between two-
and three-dimensional scaling. The fact that we do not
reach D(r) = 3 even at the highest scales supports the
feeling that this worry should not be taken too seriously
into account.

C, (r) =) p,',

where p, is the weight, or normalized average field
strength, in the ith box V; with size r. For the B field,
for example, we have

p, = B x 8 x, (6)

w here V is the total box size. In practice we evaluate (5)
in the form

1
ln Cq(r)

Q
—1

(
)q ln pmin + ln ) (pi/pmin) l

for q ( 0

(
q —IL,l

qlnp~~+ln) (p;/p~~)q l
for q) 0,!iraq~

1n @min for q ~ —oo, (7)
in@ for q —+ +oo,

)~, lnp, for q=1,

—ln) 1 for q = 0.

both for convective MHD turbulence and homogeneous
turbulence. We use the box-counting algorithm to com-
pute the generalized correlation integral

IV. GENERALIZED DIMENSIONS

In the following we focus on the multifractal structure
of various fields. The term f~ in Eq. (1) can have both
signs, creating exponential growth at those points where
it is positive. Fields whose evolution is governed by such
a term can develop near singular structures, giving rise
to a multifractal nature of these fields, i.e., generalized
dimensions Dq that are smaller than 3 for q ) 0.

Here, we investigate the generalized dimensions Dq [19] f(~) = q~(q) —~(q) ~(q) = —,
dq

(9)

The r-dependent values of Dq can now be calculated from
the slopes of Cq(r) in a log-log plot, i.e. ,

Dq(&) = (8)

The singularity spectrum f(n) can then be calculated
from Dq using
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FIG. 2. Correlation integral (upper row)
and correlation dimension (lower row) of level
sets of T', m, and B for MHD convection.
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at large scales. r is in units of the mesh size.
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where r(q) = (q —1)Dq [20]. The f(a) representation is
equivalent to the Dq representation because of the I egen-
dre transform (9). It furnishes a feeling about the range
of difFerent local scaling exponents a and their density of
occurrence. The higher f is for a certain value of n, the
higher is the probability of finding this scaling exponent,
and vice versa. It should be stressed at this point that in
the computations performed here there is no control over
the convergence of the f(n) curves. It is known from ex-
perience in other fields in which multifractal behavior has
been found that the computation of the f(a) function is
far from trivial. Before we learn to control the calcula
tion all the results should be considered preliminary and
taken as an indication only.
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V. MULTIFRACTALITY

A. Numerical results

FIG. 4. Summary of D]/3 Dgg3, Dy, D2, and D3 of ~,
u, m, and e for forced homogeneous turbulence. The key to
the lines is given in the first panel.
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FIG. 3. Cq(r) for q = +50, +5, and +1 for forced homo-
geneous turbulence. The inset shows the r-dependent values
of the dimension.

There are two aspects of the results that we describe
next that we find most interesting. Firstly, the fields that
we looked at fall into two difFerent classes from the point
of view of their multifractal scaling behavior: fields with
strong stretching show distinct multifractality, whereas
fields that are not strongly stretched show essentially
no multifractality. Secondly, the multifractsl behavior
is best seen in the dissipative rather than the inertial
range. This has come as a surprise for us.

We first present the results for pure hydrodynamics.
The simulation in this case is such that the smallest re-
solved scale is the Kolmogorov cutoff scale. The value of
Di of the ui Beld shows a pronounced crossover from 2.7
at small scales to 3 at large scales; see Figs. 3 and 4. The
fact that the Dq's for various values of q are clearly dif-
ferent f'rom each other shows the multifractal structure
of the ur field, and indicates the presence of near singu-
larities in qs. Note that the Dq's remain strongly difFer-
entiated at the Kolmogorov cutoff scale, the lowest scale
that this data reaches. This implies that if the values
of Dq are indeed caused by near singularities, then these
remain well defined even at these scales. In contrast, for

the velocity field, u = ~u~& all Dq's are 3, although at
large scales there is a weak crossover to values somewhat
smaller than 3. This latter feature can be caused by the
presence of a large-scale fiow that gives rise to consider-
able variations of p; for large r.

Two fields that are of primary interest in the multi-
fractal picture of turbulence are the local rate of energy
dissipation s(x) oc s, . and the square of the vorticity
magnitude urz. The idea to account for intermittency ef-
fects by replacing the average dissipation rate s = (s(x))
by the local one [21] could also be justified if one took isa
instead of s(x) oc s2, because 2(sz ) = (uiz). Here, angu-
lar brackets denote the average over the total volume. It
is therefore useful to consider both fields. In some cases
we confirmed that the pointwise fields sz and urz look
rather different. The two last panels in Fig. 4 show the r
dependence of Dq for these two fields. For isa the infor-
mation dimension levels ofF at Di - 2.2 for the smallest
scales, while for s this value is more like 2.5. Thus, at
the smallest scales there is a clear difFerence in the multi-
fractal scaling of the two fields. In fact, Kida and Qhki-
tani [22] have shown that the regions of large dissipation
are typically concentrated around vortex tubes (see also
Ref. [17]), which seems to be consistent with our result
that 3—Di is smaller for the dissipation field than for the
isa field. Since here we do not find good scaling in the
inertial range, we do not know whether this difference in-
dicates anything about the relevance of either field to the
standard ideas about multifractal corrections to the iner-
tial range scaling exponents. It is possible that at much
higher Reynolds numbers the multifractal scaling that we
find here at small scales penetrates more efficiently into
the inertial range. The model that we shall develop in
Sec. VB suggests this possibility rather strongly, but at
this point we cannot be sure.

Figure 5 shows the q dependence of the generalized di-
mensions and the singularity spectrum f(n) for urz and s.
In this graph the solid line is obtained by solving Eq. (9)
using for Dq an average over the values at r = 2, 4, 8,
and 16 mesh sizes. The + signs denote the results for Dq
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and f(n) obtained at these r values without averaging,
giving some impression of the maximal scatter.

In MHD convection the B field shows a similar trend
to the ui field in the hydrodynamic case, but here the
crossover is less strong: for example, Di varies only from

22.9 to 2.95; see Fig. 6, where we show Dq(r) of ui, iU,
u, P', B, and the Joule dissipation density J2, where
J =

~
J~ and J = V x B/po is the electric current. Never-

theless, both the ui and B fields show a clear multifractal
structure for small r. Here too, the multifractal struc-
ture persists down to the smallest scales. In this MHD
simulation the Kolmogorov cutoff is not as well resolved
as in the case of homogeneous turbulence. This may be
part of the reason why the Dq's of our MHD data are,
at small scales, less clearly differentiated than those of
homogeneous turbulence. For the density and tempera-
ture fields we find that all dimensions are close to 3. This
indicates that there are no singularities present in these
fields, which is to be expected in the absence of strong
stretching terms. The q dependence of Dq and the sin-

gularity spectrum f(n) of the qii and B fields are shown
in Fig. 7.

Both the velocity and the temperature gradient fields
show a crossover from Di 3 at small scales to somewhat
smaller values at large scales; see Fig. 6. This confirms
that these fields do not possess near singularities. Again,
at large scales Di decreases somewhat, which indicates
that there is a large-scale variation in these fields. The
same trend is also seen in the ur field. This is not surpris-
ing, because in eonveetion with strong density stratifica-
tion there is a large-scale fiow, and typically a few strong
downdrafts, that contribute to the nonuniformity of p,
for large r This a. rgument also applies to the ui field
in convection, where the Coriolis force sets the down-
drafts into rapid rotation and thereby produces intense
vertical vortex tubes that contribute to inhomogeneity
at large scales. This explains the observed crossover to-
wards smaller Dq in the ui data for convection.

We cannot expect that the dimensions estimated for
the level sets will coincide with the Di of the field, be-
cause the level set data indicate the degree of wrinkling
and eonnectivity at larger scales, whereas the results of
Di give information about the structures (singularities)
at small scales. Nevertheless, since Di is the dimension
of the points representing "most" of the field, one might
expect [1] a correspondence with the isoset diznension
if most of the field is concentrated about the singular
structures. In fact, when comparing Di of iU~ for hydro-
dynamic turbulence (Fig. 4) and of ui, B~, J2 for MHD
(Fig. 6) we see that, for large values of r, Di is actually
compatible vrith the value 2.7.

Our results of a crossover in the scaling of the dissipa-
tion field are in good qualitative agreement with the ex-

erirnental measurements by Sreenivasan, although thereper
one considers only a one-dimensional cut through th~ ~ le
data.

B. A simple analytic model

In order to try to understand the results presented in
Sec. V A ere consider now an elementary model in which a
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The two terms in Eq. (11)are comparable when the index
i takes the value i„

i, = (a/b)'/i'-. &r-' -=gr. (12)

Obviously, for i & i, the singularity dominates the value
of p; whereas for i ) i, the background dominates the
value of p;. We can proceed now to evaluate the gener-
alized dimensions

1/~

) p', = aqraq

i=0

-aqr q

/.
1+) i q +) bqr'

i=1 i=i'

(1+ y qdy +bqrq (1 —()
1

aq +q 1-Q
+ r' '

, + b'(1 —() (»)

where Q = q(1 —n). Here we have only considered values
of q such that 1 —Q & 0. (For smaller q the effect of the
singularity is not felt at any value of r.) The two terms
on the right-hand side of (13) are comparable at a length
scale r, which, for a « b, is

"=[( /b) (1 —1/q)]'/i'-'l (14)

The weaker the singularity, the smaller r, becomes. For
r ) r, the efFect of the singularity is unfelt, and the
generalized dimensions would be all Dq = 1. For r & r,
the singularity dominates and the generalized dimensions
would be Dq = aq/(q —1), cf. Eq. (8).

The upshot of this calculation is that if indeed we have
rather weak singularities riding on a uniform background,
we begin to measure the generalized dimension only on
small scales, and these depend on the relative amplitude
of the singularity compared to the background. Notice
that r, increases with q (i.e., the singularities become pro-
gressively dominant at larger r as q increases), but r, does
not exceed a q-independent limit which is (a/b) /&

It appears that the behavior presented in our figures is

field A(x) which takes values on a one-dimensional space
has a "typical" background value b, on top of which a
singularity is riding:

A(x) = ax '+b,
with o, & 1. For simplicity we shall take x to be in
the unit interval [0, 1], and the singularity is at the origin
x = 0. The constants a and b are free except that A(x) is
taken to be normalized on the unit interval, i.e., a/n+b =
1. The aim of the exercise is to see at what length scale
(as a function of a/b) the generalized dimensions become
sensitive to the existence of the singularity.

The procedure for calculating Dq starts with integrat-
ing the field on boxes of size r We. box the unit interval
into 1/r such boxes, and integrate

25,) +. + w .+.. +- ~ .-
' r'P'

+ ~.--.+ g r'

2.o-
~+ r

1.5 .

3.0:P*~
+-. +~ ~

2.5 +. + + .r+'
0 ' -~ +

2.0 .
-

q= 1/3, 2/3
. q=i

q=2, 3

10 100 10
r

100

FIG. 8. Summary of Dqga, D~~3, Dq, D2, and D3 of m
and e for decaying homogeneous turbulence. The key to the
lines is given in the second panel.

qualitatively in accord with this picture. Of course, we
do not necessarily believe that there is only one singular-
ity at any time in our data, but the general features are
probably preserved in more general situations.

Obviously, one immediate prediction is that if the am-

plitude of the singularities increases when the Reynolds
number goes up, then, since the Kolmogorov cutoK goes
down, r, must eventually get into the inertial range.
Thus, if our simple model has anything to do with reality,
we can predict that for high Reynolds numbers the effect
of the singularities would be felt in the scaling properties
of the inertial range. It is very likely however that for
realistic values of the Reynolds number the scaling prop-
erties at sufficiently large scales (in the inertial range)
would be consistent with pure Kolmogorov scaling, and
only for smaller scales (still in the inertial range) the ef-
fects of the singularities would begin to change the scal-
ing exponents. The smaller q is, the longer the range of
pure Kolmogorov scaling is. When q increases, anoms
ious scaling can be seen sooner.

Finally, we want to examine the other possible
crossover in the theory, i.e., at very small scales. As
mentioned before, in the steady-state simulations we do
not see any crossover even at the smallest scales. It is
reasonable to assert that if one stopped forcing the sys-
tem, the very small scales would be tamed first by the
viscosity, and the "near singularity" would become less
and less singular on the smallest scales. In such a case
one would expect that the multifractal analysis would
pick up a second crossover at small scales back to triv-
ial values Dq ——3. In order to check this we have an-
alyzed the data of a recent run of decaying turbulence
performed by Vincent and Meneguzzi [17]. In the last
snapshot of this run the Reynolds number hsd decreased
to about 140 and the Kolmogorov cutofF is now resolved
by a few mesh zones. The resulting dependence of Dq
on r is shown in Fig. 8. There is now a clear tendency
that Dq(r) ~ 3 as r -+ 0, which is in agreement with
our expectations. Moreover, the minimal values of Dq(r)
are similar in both forced and decaying turbulence. This
indicates that the strength of the near singularities is in-
dependent of the Reynolds number. This result may also
enhance the reliability of the simulation of forced tur-
bulence where the singularities are only marginally re-
solved. Therefore we expect that the phenomenon of the
near singularities of the ms and s fields is not going to
disappear as the Reynolds number is increased further.
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VI. SINGULARITIES

It is interesting to find out whether the standard view
that connects the existence of nontrivial generalized di-
mensions Dq to the infiuence of singularities is supported
by the data. Peaks in the various fields are only resolved
up to a few mesh zones, and it is therefore important to
check whether possible near singularities are well resolved
by the mesh. We would expect the strongest singulari-
ties to determine D~, so that the strongest peak in our
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data might be fitted to a functional form ]r —ro], with
6 = D~. In the B field we expect 6 —2.5 (see Fig. 7).
Taking a line section through the maximal peak in B, as
pictured in the upper panel of Fig. 9, we fitted the peak
to this functional form and got reasonable agreement as
shown in Fig. 9. We thus conclude that it is very tempt-
ing to retain the usual interpretation of Dq being related
to the existence of singularities. The surprising conse-
quence is that even at the smallest scales our Dq are
smaller than 3. This indicates that singularities appear
to be sharp even at scales around the Kolmogorov cutoff.
In fact, our results indicate that in the dissipative regime
the near singularities are abundant and not space filling.
Note that Frisch and Vergassola [23] have also considered
corrections to Kolmogorov sealing and the possibility of
strong singularities in the region of the viscous cutoK.

It is noteworthy that our numerical analysis indicates
that in all the cases that we examined the most probable
index a (with respect to the measures defined in the com-
putation for each field) is always smaller than 3. This can
be seen by finding the diagonal tangent f = n to the f(a)
curves. This diagonal is tangent to the curve at the most
probable a, which is also n(q = 1) which is related to the
information dimension Di. On the other hand, the in-

dex n which is exhibited by most of the boxes, i.e. , where

f = 3, turns out to be larger than 3. This n(q = 0) is
the most abundant with respect to the uniform measure.
These numerical results indicate that the comparatively
rare intense events are compensated by very many re-

gions in which the fields are rather "rarified" with a scal-

ing index that is larger than 3. It would be worthwhile to
develop an understanding of this finding. It appears that
the experimental results of Sreenivasan point to the same
direction, and in his one-dimensional "cuts" through the
data the most probable ct is smaller than 1 [25].

0.00—

I—0.5—

40 45
VII. THE CAPACITY DIMENSION

The capacity dimension Ds is obtained from the seal-

ing of N(r; 8), where N(r; 8) is defined by

—1.0

left branch
++g

right branch
—2.5—

—0.5 0.0 0.5
&Og 10( +0)

1.0

FIG. 9. Upper panel: Contours of B in a horizontal cross
section. The heavy line indicates a cut through the maximum
value of B. Middle panel: Cross section of B (solid line) snd
fit to jr —r&&], with n = 0, along the line indicated in
the upper panel. I ower panel: log-log plot of the left- and
right-hand branches of B (dashed lines) together with the fit
(solid line) .

FIG. 10. Visualization of the set of subvolumes of length
r = 8 mesh sizes needed to cover 7070 of the total field ur.
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FIG. 11. De for 8 = 0.7, 0.9, and 0.99 and Dq for n in
hydrodynamic turbulence.

N(r, e)

) p, = 8.

VIII. TWO-DIMENSIONAL SLICES

Recently, the fractal dimensions of solar granulation
and solar magnetic fields have been estimated. For the

Here, 8 is the fraction of the field that is contained in the
minimum number of subvolumes N(r; 8). In Fig. 10 we

visualize the set of subvolumes of length r = 8 mesh sizes

needed to cover 70% of the total field ur.

Of course, since 8 = 1 corresponds to the entire space,
we have De i = Do. It has been argued that for typical
fractal measures lims i De = Di. This has been demon-

strated for simple strange attractors like the Henon map

[24]. Thus, we expect a discontinuity of Ds between 8 ( 1

and 8 = l. In order to check this in our cases we deter-
mine De for m; see Fig. 11. We find that De approaches

Do = 3 continuously as 8 -+ 1. Our data therefore do

not satisfy lime i De = Di Both f.or MHD and hydro-

dynamic turbulence Di is closest to De~a, w. It is not
clear, however, whether the reason why we do not see a
discontinuity of Ds as 8 -+ 1 is due to the fact that the
Reynolds numbers in our simulations are only modest,
so that the multifractal picture holds only on a limited

range of scales.

solar granulation there is a crossover from D = 1.3 at
small scales to 1.9 at large scales [12], and for the mag-
netic field D = 1.54+0.03 at small scales with a crossover
to 2 at large scales [15]. It is not however appropriate to
directly interpret the observed fractal dimension of so-
lar MHD turbulence in terms of the theory and models
presented here, because the observations' resolution is
limited to about 100 km. This is much larger than the
Kolmogorov cutoff E~ LRe ~ . In the upper parts of
the Sun L~ - 3 cm, if we use Re=loin and L - 1000km
for the integral scale L. Thus, we do not expect that the
crossover found in the observations has anything to do
with the crossover observed in the numerical data.

Moreover, the observational data only represent a two-
dimensional slice of the field at the solar surface Un.der
isotropic conditions one would expect that the dimension
obtained in such a way is smaller by one than the di-
mension obtained from analyzing three-dimensional data.
This is true at least for homogeneous fractals (including
nonfractal objects). Our results allow us to test this and
to infer the possible sensitivity to anisotropies necessar-
ily present in convection. We find that the generalized
dimension depends slightly on the depth at which the
slice is taken, but it lies in all cases roughly between 1.8
and 1.9; see Fig. 12. Our results therefore suggest that
the codimension obtained from two-dimensional slices
is somewhat smaller than for the full three-dimensional
data. In contrast, for the fractal dimension of level sets in
two-dimensional slices we find considerable dependence
on depth; see Fig. 13 where we show D(r) for difFerent

layers. In order to improve the statistics we have aver-

aged C(r) over five neighboring layers. In the lower parts
(e.g. , for n = 21 —25, where n is the vertical mesh layer
and n increases downwards) we find a crossover behavior
compatible with the expected one from D = 1 at small
scales to D = 1.7 at large scales. In the upper layers,
however, the level sets do not seem to be smooth at the
smallest scales.
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FIG. 12. Comparison of the generalized dimension of B
obtained from the full three-dimensional data with that ob-
tained from two-dimensional slices taken at three difFerent
heights.

FIG. 13. Fractal dimension of level sets in two-
dimensional slices at difFerent layers (e.g. , n = 1 —5 refers
to the upper layers and n = 26 —30 to the lower ones).
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IX. SUMMARY AND CONCLUSIONS

To summarize this paper we reiterate the three results
that seem central to our investigation.

(i) The fractal geometry of level sets of all the differ-
ent fields seems to present a universal behavior; it crosses
from a smooth two-dimensional scaling (at the same typ-
ical scale A') to a fractal behavior with dimension close
to 2.7. This is in good agreement with our theoretical
expectation.

(ii) The various fields fall into two classes that we

would like to designate class 8 and class ¹ fields in
class S are strongly stretched locally whereas fields in
class N are not. Fields in class S exhibit multifractal
behavior and fields in class N do not.

(iii) The multifractal behavior is seen best in the dis-
sipative range. The near singularities seem to be well

resolved down to the Kolmogorov scale. There is a rea-
sonable agreement between the values of D and the
direct picture of the highest peak in the simulation.

All the results obtained here are in qualitative agree-
ment with a picture of weak near singularities which are
riding on a rather uniform background. In some sense the
scaling properties can be thought of as coming from two
"phases" in equilibrium. One phase has standard, regu-
lar behavior, and the other phase is dominated by rare
but powerful events that at this value of the Reynolds
number are only felt at small scales. This picture seems
to be nicely characterized with the tools of multifractal

analysis. We should note however that, before we gen-
erate a good understanding of the theoretical aspects of
this picture, all the numerical results on Dq and f(n)
should be treated with utmost care and considered as
indicative only.

It is tempting to offer some conjectures about the ef-
fect of singularities on the scaling behavior in the iner-
tial range. It is quite possible that even at much higher
Reynolds numbers (Re)) 10s) one would need to go down
to relatively small scales in order to see the singularities
in the multifractal analysis. Thus, it is likely that at
intermediate values of the Reynolds number the inertial
range would be partly "Kolmogorov-like" (for larger val-
ues of r) and partly "anomalous" (for smaller values of
r) If s. o, one should not attempt to fit a single scaling
exponent throughout the inertial range, but rather find a
Re-dependent crossover between regular and multifractal
scaling. Further experimental evidence is needed before
one can make definite conclusions.
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