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Molecular-dynamics simulation of compressible fluid flow in two-dimensional channels
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We study compressible fiuid flow in narrow two-dimensional channels using a molecular-dynamics
simulation method. In the simulation area, an upstream source is maintained at constant density
and temperature while a downstream reservoir is kept at vacuum. The channel is suKciently long
in the direction of the flow that the finite length has little effect on the properties of the fluid in the
central region. The simulated system is represented by an efn.cient data structure, whose internal
elements are created and manipulated dynamically in a layered fashion. Consequently the computer
code is highly efBcient and manifests completely linear performance in simulations of large systems.
We obtain the steady-state velocity, temperature, and density distributions in the system. The
velocity distribution across the channel is very nearly a quadratic function of the distance from the
center of the channel and reveals velocity slip at the boundaries; the temperature distribution is
only approximately a quartic function of this distance from the center to the channel. The density
distribution across the channel is nonuniform. We attribute this nonuniformity to the relatively high
Mach number, approximately 0.5, in the fluid flow. An equation for the density distribution based on
simple compressibility arguments is proposed; its predictions agree well with the simulation results.
The validity of the concept of local dynamic temperature and the variation of the temperature along
the channel are discussed.
PACS number(s): 47.40.Dc, 47.60.+i

I. INTRODUCTION

The technique of molecular-dynamics (MD) simula-
tion has been widely used to study nonequilibrium flu-
ids. Because of limitations imposed by finite computa-
tional capacity with regard to both memory and speed,
this method has been used principally to determine the
behaviors of fluid systems on time and distance scales
within a few orders of magnitude of r, and r„respec-
tively. Here, r, 10 s sec is the collision duration and
r, - 10 scm is a molecular size [1]. Only molecular
properties of the fluid can be obtained in this range of
time and distance, and that is also the domain of ex-
perimental neutron-scattering measurements. Realistic
examination of the hydrodynamic properties of flow is
still beyond the reach of most molecular-dynamics sim-
ulations, although there are many attempts to simulate
larger systems on longer time scales. Among these are the
work of Koplik, BanxDavar, and Willemsen [2,3], Han-
non, Lie, and Clementf [4], and Bhattacharya and Lie
[5, 6]. In particular, Hannon, Lie, and Clementi have
obtained velocity and temperature distributions across
channels in which flow is occurring. Their results agree
well with simple hydrodynamic predictions for incom-
pressible fluid flow. Also, Bhattacharya and Lie have
obtained similar velocity profiles and have computed
boundary-slip coefficients.

These simulations of fluid flow have a common prop-
erty. Periodic boundary conditions are introduced along
the flow direction in the interest of reducing the amount
of computation needed to obtain useM results. The im-
position of translational invariance along the flow direc-
tion makes it necessary to introduce a "gravitational"

field to induce flow. In order to induce appreciable flow,
this field must be given a strength much larger than the
earth's field g, for example, as large as [2] 10izg. As a
consequence of the gravitational field, regular rescaling
of the particles' kinetic energies is required; hence one
cannot reliably study properties of the fluid having to do
with energy or heat flow. Also, it is not possible to study
variations of the flow properties along the flow direction.

In this paper, we present a method of simulation in
which the channel is of finite length in the flow direction
without periodic boundary conditions. At one end of the
channel is a source region which is maintained at con-
stant density and temperature by introducing particles as
needed. At the other end is a sink region which is main-
tained at vacuum; that is, any particle which moves into
this region is removed from the system. Hence the pres-
sure or density gradient along the channel is primarily re-
sponsible for instigation of the flow. We also use a layered
data structure to improve the efficiency of the computer
code and the utilization of storage. Our methods make
it possible to simulate systems containing 20000 or more
particles for more than 10s time steps on a DECstation
3100 computer.

Section II contains a description of the system simu-
lated and of our numerical techniques. The results are
in Sec. III, and Sec. IV contains a discussion and conclu-
sions.

II. MODEL AND NUMERICAL METHODS

The geometry of the system is indicated in Fig. 1. The
channel has a length L in the x direction and width m
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FIG. 1. Diagram of the two-dimensional channel showing
the source and sink regions. Walls are indicated by solid lines.
Average cross-channel distributions presented in some of the
following figures are obtained in region II which is equidistant
&om the two ends of the simulation area, excluding the source
region. The lengths of the channel in the z and y directions
are denoted in the text by L and m, respectively; the length
of the source in the 2: direction is called Ly.

in the y direction. Flow is along the z direction with
the source region at 0 ( z ( L q and the vacuum or sink
located at x ) L The .channel is closed at x = 0 so that
particles cannot escape into the region x ( 0. Typical
channel sizes that we have investigated are L = 400o,
w = 100o, and LI = 100cr, where o is the particle-size
parameter (diameter) in the Lennard-Jones potential

which we have employed for the interparticle interac-
tions. The interaction is truncated at r & 2o [7]. In
addition to s and o, the only other parameter describ-
ing the properties of the molecules is the mass m. We
have used values appropriate for argon, i.e. , o = 3.4A,
s/k = 119.76 K, and m = 6.67 x 10 2s

g; k is the Boltz-
mann constant. We also introduce a basic time constant
r = gmcr~/48' = 3 x 10 ~s sec.

Our procedure for handling collisions of the particles
with the walls, which are the surfaces z = 0, y = 0,
and y = ur, is to give the recoiling particles a Max~ell-
Boltzmann velocity distribution on a half-space. For ex-
ample, after colliding with the wall at x = 0, a particle
is given a velocity v = v,x+ v„y(where v ) 0) with a
probability proportional to exp[—m(v~+ v~)/2kT] where
T is the specified wall temperature. Certainly, this model
for the particle-wall collisions is only a crude approxima-
tion to what must happen at a real wall. It does allow
for energy transfer to and from the fluid and will main-
tain a given temperature or mean kinetic energy in the
system. Undoubtedly, the microscopic properties of the
fluid, such as the velocity distribution of the particles,
close to the wall are strongly affected by the wall-particle
collisions. In particular, the behavior of the fluid tem-
perature and drift velocity in this region and the energy
transfer between Quid and wall are suspect. This point
seems to us sufBciently important that we have embarked
on further simulations incorporating a different, presum-
ably more realistic, treatment of the wall-fluid interface.

The molecular-dynamics simulation proceeds in the
conventional manner except that when the particle den-

sity in the source region drops by a small amount, typi-
cally after several hundred time steps, we inject particles

into this region in order to bring the density here back
up to some prescribed value. That is done by, 6rst, let-
ting the end wall (x = 0) act as a piston and uniformly
compress the particles in the source region (but not the
remainder of the channel) by a sufficient amount to bring
the density in this compressed volume up to the desired
level, and, second, restoring the end wall to its original
position and injecting an appropriate number of parti-
cles into the empty space next to the wall. These added
particles are given a Msacwell velocity distribution at the
same temperature T as that of the walls. By making
this adjustment to the number of particles sufficiently
frequently, we only have to inject a few particles each
time and the relative amount by which the source region
is compressed is very small. By comparison, the entire
system typically contains 10000—20 000 particles, and the
source region is one-fourth of the channel.

The initial state of the system is always taken to
have some preset density of particles with a Maxwell-
Boltzmann velocity distribution in the source region and
no additional particles elsewhere. Thus, as time pro-
ceeds, particles make their way down the channel, driven
by the pressure or density gradient, and are removed at
the far end. After a sufficiently long time a steady state is
achieved and various quantities such as the distributions
of flow velocity, particle density, particle-current density,
and temperature, may be computed. We typically run
the simulation in the steady state for some 10s time steps
with one time step being bt = 3 x 10 r 9 x 10 Is sec.
In addition, some 10s time steps are needed for the sys-
tem to reach the steady state.

The most critical part of a molecular-dynamics sim-
ulation is the force calculation [8] which would require
~ N2 steps in a brute force calculation if N is the num-
ber of particles. Given short-ranged interactions, such as
the Lennard-Jones potential, one typically uses Verlet's
neighbor list[8] to lower the number of steps to NN„
where N, is the maximum number of particles that can
Gt within the range of a particle's potential. This method
has high memory requirements and also requires a num-

ber of steps ~ Nz to update the neighbor list. A superior
method [8] in large systems is to divide the simulation
area into cells and use two arrays HEAD and LIST to store
linked lists. This method uses no extra memory and has
linear performance, i.e., O(N) steps. However, the refer-

ence locality is broken when molecules in a given cell are
stored in a long array LIST for a large system. This can
be detrimental to the performance of the computer code.

In our implementation of the MD simulation we build

a specially tailored data structure to provide a better
mapping between the physical problem and the memory
partition of modern computers. It is shown schemati-

cally in Fig. 2. A node, which is roughly speaking a
piece of computer memory, is created for every parti-
cle introduced into the system. All the information for

that particle is stored in the node. The memory of the
node is deallocated when the particle moves out of the
system. The system is divided into cells to reflect the
short-ranged nature of the interaction. The neighbor-

ing environment of every molecule is implemented by a
dynamic one-way link list in each cell. This one-to-one
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FIG. 2. Schematic representation of the data structures
employed in the molecular-dynamics simulations. Each node
stores all information such as position, acceleration, etc. of a
particle. The simulation area is divided into rectangular cells.
Particles (nodes) in each cell are linked by pointers to form s
dynamic link list.

dynamic management of the simulated systems enables
a high degree of reference locality and efflcient usage of
computer resources.

This data representation also enables layered struc-
tures. We already see the atom-node layer and the
cell layer. Further layers can be built on top of these
to take into account the structures of, e.g. , polyatomic
molecules or other complex objects. Hence this method
of constructing the data improves the code reusability
and makes simulation of complex systems relatively easy.
We have, for example, extended our code to simulate the
flow of a fluid composed of propane (CsHs) molecules.
With this data structure, we are able to achieve on a
single DECstation 3100 computer a speed of 3 x 10 s

sec/particle per step, comparable or superior to that ob-
tained in some [3, 9] but not all [10] simulations done on
supercomputers for comparable systems.

the fluid expands and moves down the channel; however,
collisions with the walls, which are also at T = s/k, will
compensate somewhat for this eEect.

Figure 3 shows the particle-current density along the
channel, J~, in units of 1/(o7), as a function of x/a.
Different sets of points correspond to different intervals
of y. For example, the points labeled "0—10" represent
an average of the current density for 0 & y & 10cr, and
of the current density for ta —10a ( y ( m. Because
the distribution is symmetric around the line y = m/2,
we can average over the data from strips symmetrically
placed on the two sides of this line. We have done so
in order to obtain smoother results. The current density
averaged across the entire channel is also shown. The
constancy of this density outside of the source region, as
a function of x, is an indication that the system is indeed
in the steady state. The data in this figure, as well as
in all of the following ones, are obtained by averaging
over a million time steps after discarding results from an
initial one million steps during which the steady state is
achieved.

Two other features of J are worthy of comment. First,
the current density increases approximately linearly with
x in the source region reflecting the fact that there is
a hard wall at x = 0 where J~ must vanish. Sec
ond, the current densities in different intervals in the
y direction are not all independent of x in the middle
(100a ( x ( 300a) of the channel but show roughly lin-
ear variation. Moreover, this variation is such that J~
increases (decreases) along the pipe far from (close to)
the walls. Correspondingly, we find that at the smaller
values of x, there is a flow of particles, described by J„,
toward the center of the channel while at the other end
there is a flow toward the sides. This behavior is present
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III. RESULTS

All of the figures in this section are for steady-state flow
with L = 400cr, and m = 100cr = Lq, in the source region,
T = s/k and n = 0.25/as. The lone exception is the in-
set in Fig. 5 which is for a narrow channel with m = 40o.
Also, the density at small 2: is larger than 0.25 in this
narrow channel. The wall and source region tempera-
ture is well above the critical temperature T, —0.55''/k
of the two-dimensional Lennard-Jones fluid [11] and the
density is well below solid densities n, & 0.8/a so that
we will have a one-phase system unless sufBcient cooling
takes place at some point along the channel to produce
a much lower temperature. Some cooling is expected as
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FIG. 3. The particie-current density J, in units of 1/a~
snd averaged within various intervals b,y/tu across the chan-
nel as indicated by the legends, is shown as s function of x/a .
Also shown as a solid line is J averaged across the entire
channel. These results are for a channel with m = 100~ and
L = 400cr; the source snd wall temperature is T = j./k; snd
the averages are taken over 10 time steps after an initial 10
steps during which the system reaches the steady state.
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because the system is not a great deal longer than wide.
In a channel with the same length but a width of only
40', the variation of J~ with x is relatively much less as
is the magnitude of the transverse current density J„.

In Fig. 4 we show the particles' mean velocity in the
x direction, u, in units of o/v, as a function of the po-
sition across the channel y/to. The velocity is evaluated
in region II of the channel which is the middle third of
the flow area excluding the source region. In this part of
the channel the end efFects are minimized. The velocity
u is the macroscopic fluid velocity. One may see clearly
the velocity slip at the walls. Also given in the figure as
a solid line is a parabola which has been fit to the data.
For an incompressible fluid and laminar flow, the velocity
profile is expected to be parabolic. From the figure one
can see that, even though we have a highly compress-
ible fluid, cf. Figs. 5 and 6, the distribution still fits the
parabola quite well.

The cross-channel density distribution in region II is
shown in Fig. 5, and the density along the channel, av-

eraged across the channel, appears in Fig. 6. One can
see that n decreases roughly, but definitely not precisely,
hnearly as z increases. Also, it is significantly lower in
the middle of the channel than toward the sides. The
cross-channel variation is expected for compressible fluid
flow when the velocity is large enough [12]. For Mach
number less than about 0.3, the density variation is usu-

ally not great but when it is around 0.5 or larger, which
is the case in our system, the finite compressibility of
the fluid is highly evident. Exact solutions of the hydro-
dynamic equations for the flow of a compressible fluid
are known only for a few special cases. We propose the
following simple arguments to explain qualitatively the
density distribution observed in our simulations. First,
since the local temperature variation across the channel is
quite small in comparison with the total kinetic-energy
variation, we shall neglect the former. Then to lowest
order in the Mach number M we have the following gen-

~ ~ ~ ~ ~ ~ ~ ~ ~
~ 0

g Olb
A O 0.5

~ ~

0.0 0.2 0.4 O.B

~ This Simulation
Theory
I

0.8 1.0

FIG. 5. The steady-state cross-channel particle density n
in region II in units of 1/o is shown as a function of x/o for
a wide channel (to = 100o) as a function of y/ur. The solid
line is the theory described in the text. The inset displays
the particle density for a narrow channel (to = 40o). Other
parameters are the same as for Fig. 3 except that the max-
imum density in the narrow channel is maintained at about
0.28/o .

and we can identify b,P = P —Pc and b,p = p —po

eralized Bernoulli equation for isentropic flow:

Pp —P=-RQ M,
where c is the speed of sound; P is the pressure at a point
where the flow velocity is u; and Ps is the pressure where
u = 0, or stagnation pressure. The speed of sound can
be approximated as follows:
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FIG. 4. The steady-state average Quid velocity u in region
II is plotted against y/io; u is given in units of cr/7. The pa-.
rameters are the same as for Fig. 3. The solid line represents
the best fit of a parabola to the simulation results.
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FIG. 6. The steady-state average density along the chan-
nel in units of 1/cr is shown as a function of 2;/o. Parameters
are the same as in Fig. 3.
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where po is the stagnation density. Then we have, still
to second order in M,

po

g+ ~M2
po

1+ -,' (4)

kT = m(v —u)2, kT„=mv2 (5)

Using these formulas we have computed T and T&. The
cross-channel temperature distributions in region II, in
units of s/k, are shown in Fig. 7. The two generally
agree quite well except very close to the edges of the chan-
nel where T~ is considerably larger than T„;specifically,
T~ —0.76 and T& —0.67 right at the wall. One should
expect that the two would not agree here because the

This function is plotted as a solid line in Fig. 5 with
u computed from the simulation. For po we use the
density at the downstream end of the source region,

po = 0.23/os. We did not use the mean density in this
region because of the unphysical rescaling we use here
in the simulations to balance the extra heat generated
by bringing in new particles. In addition, the speed of
sound is temperature dependent and is not a constant
throughout the channel leading to a further ambiguity in
connection with the appropriate choice of c. If we sim-

ply choose c to be the ideal-gas value c = /2kT/m with
T = 0.75/k, which is the average temperature in region
II of the channel, cf. Fig. 8, that gives the result shown in
Fig. 5. Qualitatively, the fit is quite reasonable, perhaps
better than one might have expected.

Also shown as an inset in Fig. 5 is the cross-channel
density distribution in region II for a considerably nar-
rower channel with tv = 40o. In this case the density
is quite constant across the channel except very close to
the edges where it decreases somewhat. By contrast, the
cross-channel velocity distribution for the narrow channel
shows behavior very similar to that for the wide channel
except that the peak velocity in the center is consider-
ably smaller in the former case. The How is sufficiently
slow (the Mach number is around 0.25 midway along the
channel) that at a given z no density decrease is appar-
ent in the middle of the channel as compared with the
density closer to the sides.

For both the narrow channel and the wide one, there is
a significant decrease in the particle density very close to
the walls, i.e., within about 2o of the walls. We believe
this decrease to depend on, and to be a consequence of,
the manner in which we reflect particles from a wall.

The local temperature distribution in the channel has
been obtained from study of the velocity distributions
of the particles within each cell. Of course, one may ask
whether there is a well-defined temperature in an intrinsi-
cally nonequilibrium system. We obtain the temperature
from the equipartition theorem according to which, in the
absence of any flow, kT = mv or kT = mv where the
overlines indicated mean values taken over tie distribu-
tion of particle velocities; both temperatures should be
the same. However, given that there is some flow veloc-
ity u in the x direction as in our channel, then if there is
a Maxwell velocity distribution centered at this velocity,
we may introduce temperatures
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FIG. 7. The steady-state cross-channel temperature dis-
tributions T and T„in region II, extracted from the equipar-
tition theorem by computing the particles' kinetic energies,
are given in units of ejk as functions of y jtu. Parameters
are the same as for Fig. 3. The solid curve is the result of a
least-squares Gt of a quartic function to the simulation results.

velocity distribution is certainly not a moving Mmovell
distribution as a consequence of the particular manner
in which we handle reflections of the particles from the
walls. Rather, the distribution close to a wall is a super-
position of two distributions; the reflected particles have
a Maxwell distribution which is not moving while the in-
cident particles have a net velocity along the z direction.
The solid curve in Fig. 7 is the best fit of a quartic func-
tion to the data. A quartic has been used because that
is the predicted temperature distribution for an incom-
pressible Huid. One can see that the fit is not very good,
indicating that the prediction of incompressible Huid the-
ory is really not appropriate in this case. In addition to
the fact that our fluid is manifestly compressible, the na-
ture of the wall-Huid interaction may be a contributing
factor to deviations of the temperature profile from quar-
tic behavior close to the walls.

Figure 8 shows the average temperature distribution
along the channel. One can see that T~ and T„grace
quite well and that the temperature drop, once the par-
ticles have left the source region, is roughly linear. Sev-
eral factors contribute to the temperature drop. First,
the fluid is expanding, which will increase its potential
energy, and so to the extent that energy is conserved
the mean kinetic energy per particle must decrease. Sec-
ond, collisions with the walls offset this effect because
particles reflected from the walls have on the average a
kinetic energy of kT where the wall temperature T is
the same as the initial temperature of particles injected
into the source region. Finally, there is also the efFect
of the increasing flow velocity along the channel which
has the consequence that, as x increases, more of the ki-
netic energy is going into the How and correspondingly
less energy is available for fluctuations of the particles'
velocities relative to the flow velocity, thereby producing
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a drop in the temperature, as we have defined it, with
increasing x.

FIG. 8. The steady-state temperatures T and T„in units
of s/k, averaged across the channel, are shown as functions of
z/o. Parameters are the same as for Fig. 3.

that finite-size effects associated with the length are not
important in regions farthest from the source or drain.
SufBciently high Mach numbers to allow for the inves-
tigation of compressible fluid flow can be achieved as is
evidenced by the considerable cross-channel density vari-
ations observed. The nonuniformity of this density dis-
tribution can be roughly explained by an equation based
on the Bernoulli equation and the relation between sys-
tem compressibility and the sound velocity. This equa-
tion also predicts, and our results verify, that the density
distribution will be more nearly uniform (aside from the
region within a few mean free paths of the walls) for flow
with small Mach numbers.

We also find that there is good agreement between our
results for the flow velocity and predictions based on the
hydrodynamics of incompressible fluids. Overall, the re-
sults suggest that for fairly high (M ~ z), but subsonic,
Mach number flow, a fairly good picture of the system's
behavior can be obtained from solutions for incompress-
ible fluid flow with some corrections of order Mz to ac-
count for the consequences of compressibility.
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