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The turbulent velocity field in wave-number space is decomposed into two distinct fields. One is a
purely chaotic field; while the other is a correction fteld, and carries all the phase information. Applica-
tion of this decomposition to a thin shell of wave numbers in the dissipation range allows the elimination
of modes in that shell, with the usual made-coupling problems being circumvented by the use of a condi-
tional average. The (conditional) mean effect of the eliminated modes appears as an increment to the
viscosity, with terms of order A. being neglected, where A, is a dimensionless measure of bandwidth
thickness, such that O~A. ~1. An iteration (with appropriate rescaling) to successively lower shells
reaches a fixed point, corresponding to a renormalized turbulent viscosity. As previously reported [W.
D. McComb and A. G. Watt, Phys. Rev. Lett. 65, 3281 (1990)],the spectrum of the purely chaotic field is
found to take the Kolmogorov —5/3 power-law form, with a value for the Kolmogorov spectral con-
stant of a = 1.6, independent of A, over the range of bandwidths for which the theory is valid.

PACS number(s): 47.10.+g, 47.25.Cg

I. INTRODUCTION

In this paper we present a method of eliminating tur-
bulent modes. This reduces the computation required for
the numerical simulation of the Navier-Stokes equations
in wave-number space. Our method is based on the use
of a conditional average to distinguish between amplitude
and phase correlation effects. It has its roots in the
method of iterative averaging, which was developed over
a number of years as a possible method of applying the
renormalization-group (RG) approach to real fluid tur-
bulence [1]. However, it also incorporates a certain
amount of new thinking, which not only provides a ra-
tional basis for our calculations, but also seems to fit in
with other developments in the subject, particularly those
having to do with intermittency and ideas of phase corre-
lation. Some details of the calculation have already been
given [2], while the formalism underlying our conditional
average has recently been explained elsewhere [3].

However, before going further, we should first em-
phasize that what we are presenting here is a theory of
real fluid turbulence as governed by the usual equations
of Newtonian fluid motion. We are not putting forward
any version of a renormalization-group theory of stirred
hydrodynamics (we shall expand on this point in the next
section). In complete contrast to such approaches, we be-
gin our calculation in the dissipation range of wave num-
bers, where our formal procedures for separating ampli-
tude and phase effects allow us to exploit what might be
called (in the language of fluid dynamics) a boundary-
layer-type of approximation. That is, we can treat the
various scales (i.e., velocity, time, length) of the retained
modes as "standard magnitudes, " compared with which
the corresponding scales in the shell being eliminated
may be regarded as small. All such approximations made
by us will be justified clearly and unambiguously (so far
as we are able) in terms of the normal rules of mathemati-
cal analysis and the known physics of fluid turbulence.

We shall show that exponents for the purely chaotic field
are determined by power counting and that amplitudes at
the fixed point are determined by the numerical integra-
tion of a recursion relation involving small but finite
blocks of modes.

In the next section, we shall state the problem in a for-
mal way. At the same time, we shall try to give a partic-
ularly clear explanation of the way in which mode-mode
coupling (a phenomenon that is of the essence in tur-
bulence) puts difficulties in the way of a straightforward
perturbative application of the renormalization-group
method to the Navier-Stokes equations. This may seem
naive or obvious to some readers, but we believe that cer-
tain quite crucial aspects of this are not well understood
and that it is necessary to understand them clearly in or-
der to appreciate the differences between approaches, and
indeed what our present theory has to offer.

In the rest of the paper, we show in Sec. III how the
conditional average is used to eliminate modes from the
first shell; in Sec. IV, we employ the two-field decomposi-
tion; in Sec. V we derive the recursion relationship for the
elimination of subsequent shells, and present the renor-
malized equations for the velocity field, the energy spec-
trum, and the dissipation rate, along with some details of
the numerical calculation. Section VI concludes the pa-
per with an assessment of the approximations made, a
consideration of their relationship to other work, espe-
cially that involving ideas of phase coherence, and a brief
discussion of the possible applications of our theory.

II. FORMULATION AND STATEMENT
OF THE PROBLEM

We consider incompressible-fluid turbulence as
governed by the solenoidal Navier-Stokes equation in
wave-number (k) space. This takes the form [4]
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—+vok2 u (k, t)=M
& (k)fd j u&(j, t)u~(k —j,t),Bt

D tt(k}=5 p
—k ktt~k~ (3)

In order to introduce a statistical treatment, we denote
the operation of taking an ensemble average by Dirac
brackets, thus ( ). We further restrict our attention to
incompressible fluids subject to turbulent velocity fields
with zero mean, and consider only such fields that are, in
addition, homogeneous, isotropic, and stationary in time.
As a result, the second-order moment takes the form

where vp is the kinematic viscosity of the fluid and the
inertial transfer operator M

& (k) is given by

M p (k)=(2i) '[kgD (k)+k D p(k)j, (2)

while the projector D &(k) is expressed in terms of the
Kronecker delta 5 & as

with the bandwidth parameter A, satisfying the condition
O~A, ~1. In principle, the renormalization-group ap-
proach now involves two stages.

(i} Solve the Navier-Stokes equation (NSE) on
k, k kp. Substitute that solution for the mean effect
of the high-k modes into the NSE on 0 k k, . This re-
sults in an increment to the viscosity vp~v, vp+5vp.

(ii) Rescale the basic variables, so that the NSE on
0 k k, looks like the original Navier-Stokes equation
on 0 k kp.

This procedure is appealingly simple and has a clear
physical interpretation. But, as is well known, it has not
proved easy to put into practice in the turbulence prob-
lem. In order to see why this has been so, we shall exam-
ine the first stage in the program (i.e., the elimination of
the first shell of modes) in greater detail.

We begin by introducing the unit step functions

1 if 0 k kj
8-(k)=

0 f k (k(k (9)

(u (k, t)u&(k', t')) =Q(k, t —t')D &(k)5(k+k'),
0 ifO&k&k,
1 if k, (k(k (10)

where a,P= 1, 2, or 3, and Q ( k, t t') —is the spectral den-
sity. The energy spectrum is introduced by taking t =t',
summing over a =P and setting Q (k, O) =Q (k), thus

E(k)=4nk Q(k),
Now consider the turbulent velocity field in wave-

number space u (k, t), on the interval 0 (k (ko, with ko
being defined through the dissipation integral

e= f 2vok~E(k)dk = f 2vok'E(k)dk, (6)
0 0

where c is the dissipation rate and vp is the kinematic
viscosity. This definition ensures that kp is of the same
order of magnitude as the Kolmogorov dissipation wave
number. For turbulence at high Reynolds number, kp is
large and so the number of modes to be resolved in a
computational simulation becomes very large indeed, in
even the simplest case. Accordingly, there is both funda-
mental and practical interest in the problem of how one
reduces the number of modes that it is necessary to calcu-
late in order to achieve an accurate representation of a
real (i.e., laboratory or environmental) turbulent flow. In
view of its success in other problems involving many de-
grees of freedom, it is natural to turn to the renormaliza-
tion group for the answer to this question and this we
now do.

A. Renormalization group applied to turbulence

M p (k)=8 (k)M p (k),
M+p (k)=8+(k)M p (k) .

Then, using (11), we can decompose Eq. (1) into separate
filtered forms for the low-wave-number and high-wave-
number components, viz. ,

—+vok u (k, t)
at

=M
& (k) f d jI u& (j,t)u (k —j, t)

+2u p (j, t)uy+ (k —j, t)

+utt (j,t)ur+(k —j, t) j

and

(12)

—+vok u+ (k, t)
at

=M+& (k)fd'j{ u& (j, t)ur (k —j, t)

so that we can define filtered forms of the velocity field
and inertial transfer operator, as follows:

u (k, t)=8 (k)u (k, t),
u+ (k, t) =8+(k)u (k, t),

In order to introduce the renormalization-group ap-
proach to turbulence, we divide up the velocity field at
k =k, in the following way:

+2up (j,t)u+(k —j, t}

+up (j, t)ur+(k —j, t)I . (13)

u (k, t) for 0(k (k,
u (k, t)= '

u (k t} for k (k(ko,
where k, is defined by

kq =(1—
A, )kp,

('7)

The main problems that arise due to mode coupling are
now obvious by inspection. Equation (12) for u con-
tains terms in u+, and evidently these are the terms that
we wish to eliminate by solving Eq. (13). However, Eq.
(13) for u+ contains terms in u . Therefore, substitution
for u on the right-hand side of Eq. (12}introduces a tri-
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B. Stirred hydrodynamics

The theoretical study of stationary isotropic turbulence
has the strict status of a gedanken experiment and re-
quires the introduction of hypothetical stirring forces in
order to sustain the turbulent against viscous dissipation.
Accordingly, for many years, attempts to renormalize
perturbation theory [4] have been based on the iterative
solution of (1) with a random force added to the right-
hand side, thus

r

8—+vok u (k, t) = A,oM &r (k )

x f d j u&(j, t)u (k —j, t)

+f (k, t), (14)

where a bookkeeping parameter A,o (=1) has been placed
in front of the nonlinear term. Evidently, the random
force must (like the velocity} satisfy the continuity equa-
tion and, in order to make it suitable for perturbation
theory, it is necessary to choose it to have a distribution
that is multivariate normal and highly uncorrelated in
time. Then it is possible to set up a perturbation series in
the bookkeeping parameter, thus

u (k, t)=u' )(k, t)+clou~" (k, t)+Lou~('(k, t)+

(15)

where the Navier-Stokes equation has to be solved itera-
tively for the coefficients u "(k,t), u' '(k, t) and so on, in

terms of the zero-order field, as given by

u (k, t)=D t)(k) fdt'Go(k;t, t')ft)(k, t'), (16)

where Go is the Green's function representing the purely
viscous response of the fluid, and which satisfies

—+v,k' Go(k; t, t') =5(t t') . —a

The specification of the random stirring forces is comp-
leted by the choice of correlation. For a well-posed prob-
lem, it is important that correlations observed between
the velocities should not be due to correlations between
the arbitrarily chosen stirring forces, and accordingly it is

pie nonlinearity in the u, thus immediately violating
form invariance and preventing the implementation of
the second stage of the renormalization-group program.

This is the fundamental problem that prevents the
standard application of perturbation theory in this area,
but if we go ahead anyway, then we encounter the further
problem that averaging out the high-wave-number modes
requires the property

&u u+u+) =u &u+u+) .

In general this cannot be true, as u and u+ are just
parts of the same velocity field and are not statistically in-

dependent. In the next two sections, we shaB give a brief
account of the two main lines of approach to these prob-
lexns, viz. , stirred hydrodynamics and iterative averaging.

so that the choice of a value for y amounted to a choice
of model.

In order to give a brief account of their way of imple-
menting the renormalization group, we shaB make a tem-
porary change of notation. Let us for the moment re-
place our decomposition of the velocity field by

u (k, t) for O~k &bA

u (k, t} for bA~k~A, (21)

where the bandwidth parameter b satisfies 0 b ~ 1.
Then, using an abbreviated notation, the FNS adaptation
of the perturbation theory discussed above may be sum-
marized as follows. We seek to eliminate the u from
(12) by solving Eq. (13) in terms of the arbitrary stirring
forces. Symbolically we write the zero-order term as

uo =Go(k}f (k}, (22)

where the stirring force has been decomposed into f
and f, in the same way as the velocity field. The gen-
eral solution for u may then be written as

u (k}=u(o)+Lou())+A (2)+ (23)
Averages over the high-k modes present no problem now.

usual to choose the force-force covariance to satisfy

&f (k, t)ft)( —k, t')) =D ))(k)W(k)5(t —t') .

It is then a simple matter to show [4] that stationarity re-
quires that the rate at which the stirring forces do work is
the same as the rate of viscous dissipation, or

f 4n.k W(k)dk =E, (19}
0

where e is given by Eq. (6).
Since the late 1950s, the aim of renormalized perturba-

tion theories has been to find a way of summing certain
classes of the primitive perturbation series to aB orders,
having used the Gaussian properties of the zero field to
evaluate moments. In 1976, Forster, Nelson, and
Stephen (FNS) [5] used this formalism in an ingenious
way to evade some of the problems that arise due to
mode-mode coupling. However, they did not claim that
the result was a theory of turbulence. Instead, they
claimed only to have established the long-wavelength
properties of a randomly stirred fluid. The result was a
new class of models, now referred to generically as
"stirred hydrodynamics. "

The approach by FNS was motivated by the applica-
tion of renormalization-group methods to dynamical crit-
ical phenomena, and could be regarded as a way of tailor-
ing the turbulence problem to make it resemble a form of
the Ising model, complete with an upper critical dimen-
sion of d =4. They took the turbulent modes to be re-
stricted to the range 0~k~A, where the cutoff wave
number A was chosen to be smaB enough to exclude iner-
tial efFects (which would mean that it would be orders of
magnitude smaller than the Kolmogorov dissipation
wave number}. The specification of their class of models
was completed by the choice of a power law for the force
correlation function, as defined by Eq. (18), thus
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As the stirring forces are multivariate normal, it follows
that so also are the zero-order terms in the expansion for
the velocity. The calculation then proceeds to the renor-
malization of the viscosity, the stirring forces, and the
bookkeeping parameter. An important feature of the
analysis [5] is that the triple nonlinearity in the u, men-
tioned as a stumbling block in the previous section, turns
out to be an irrelevant variable. That is to say, it be-
comes negligible as the iteration proceeds to a fixed point.
There are various restrictions on this result, but the prin-
ciple one is that it is only valid asymptotically, as k tends
to zero.

A full discussion of the FNS theory will be found ei-
ther in the original reference ([5]) or in Ref. [4], but we
shall not pursue it here. From our present point of view,
it is sufficient to make the point that this is not a theory
of turbulence and does not pretend to be. However, re-
cently these ideas have been given fresh life, most notably
by the correspondence principle of Yakhot and Orszag [6],
which is a hypothesis that, if the stirring forces are
chosen to give the same energy spectrum as in a real tur-
bulent Aow, then the associated numerics will also be
correct for that How. This is a bold assumption, and so
far its main justification has been that it produces some
good values for representative constants when compared
with experiments and computer simulations. However, it
remains to be seen whether or not some more fundamen-
tal justification can be found. Another approach is the
work recently put forward by Avellaneda and Majda [7],
who have adapted FNS theory to develop "exactly renor-
malizable" models of stirred hydrodynamics. It seems a
reasonable hope that this development could play the
same role in turbulence theory as the Ising model does in
studies of critical phenomena.

C. Iterative averaging

The FNS theory may be seen as a way of applying the e
expansion of critical phenomena (and, originally, quan-

I

turn field theory) to stirred hydrodynamics. That is, FNS
derive differential relations for the renormalized quanti-
ties and seek a fixed point in the coupling-constant space.
In contrast, the method of iterative averaging is based
upon the derivation of a recurrence relation, which elimi-
nates finite blocks of modes while maintaining the form
invariance of the dynamical equation (i.e., the NSE, in
this case). The end result is a fixed point that corre-
sponds to a renormalized viscosity.

The difference between the two approaches may be un-
derlined by noting that in the first method, FNS ensure
that the nonlinear coupling is small by restricting their
attention to a particular region (small wave numbers)
where the viscous and stirring terms are in approximate
detail balance, whereas in the second method, we begin
our elimination scheme in a region (large wave numbers)
where the viscous effects are dominant and the nonlinear-
ity is (by definition) inherently small. This seems the
more natural way to apply the renormalization-group
program to turbulence, a fact that seems to have been
first recognized by Rose [8], who employed a straightfor-
ward iterative perturbation method to the explicitly
linear problem of passive scalar convection. However,
we shall discuss Rose's type of approach as applied to the
velocity field rather than the passive scalar case, as in this
way we can make it clear just where the difficulties lie
when we tackle turbulence directly.

Let us make some plausible physical assumptions
about the modes that we wish to eliminate. If we take k,
to be of the same order as the dissipation wave number,
then we can assume that the u+ are small and that they
are rapidly varying on the time scales of the u, so that
we may solve (13) to first order by neglecting the time
derivative on the left-hand side. We then substitute the
result into Eq. (12), which is then averaged in such a way
that the u are held constant, but the average of u+ van-
ishes. Denoting the conditional average by ( )„the re-

sult, as given by McComb and Shanmugasundaram [9], is

—+vok u (k, t)= M ti (k) fd j up (j,t)u~ (k —j, t)
at

(k) f d j f d p M+, s(j)( voj) 'I (ur (k —j, t)u, (p, t)us (j—p, t)),

+u (k —j, t)(u~ (p, t)us (j—p, t)), ] . (24)

The two problems mentioned in our preliminary discus-
sion are now quite obvious. First, as pointed out previ-
ously ]9], the equation for u now contains a triple non-
linearity ( u u u )„which breaks the form invariance
of the equation of motion under renormalization-group
(RG) transformation (and which will only be the lowest
order of such terms that arise in subsequent iterations).
Second, it should be noted that the conditional average
(u+u+), is not the same as the ensemble average
( u + u + ), unless there is a spectral gap between the u

and the u+ modes.
As Rose [8] studied the passive convection of a scalar

contaminant (P, say), he did not encounter the first of

these two problems in precisely the form just discussed.
Instead, he was faced by an analogous term
( P u u )„which he treated as part of a new scalar
diffusion equation. This new equation then exhibits form
invariance under RG transformation, hence reaching a
fixed point for the renormalized diffusivity. But of
course, his procedure still involves an arbitrary trunca-
tion, which has to be repeated in every cycle of iteration
in order to preserve the form invariance. Evidently the
problem with the triple nonlinearity is a serious obstacle
in the way of pursuing a straightforward perturbation
theory.

A way around this difficulty was given by McComb [1],
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who introduced a variant of Reynolds averaging in which
the equation of motion is first conditionally averaged
term by term and then subtracted from the unaveraged
equation. The result is an equation for the high-k modes
that does not contain a term nonlinear in the low-k
modes, and hence the problem of the triple nonlinearity,
as outlined above, does not arise. This method was called
iterative averaging and gave some reasonable results, in
that the recursion relation for the effective viscosity
reached a fixed point and the theory gave an acceptable
value for the Kolmogorov spectral constant. However,
over the years it became clear that there was something
amiss with the method. In particular, calculations re-
vealed the unphysical feature that the values obtained de-
pended on the rate at which the modes were eliminated (a
feature it shared with Rose's method [8]). This behavior
was attributed to an inadequate treatment of the relation
between the conditional average and the ensemble aver-
age [10],and it was later found that this was indeed part
of the explanation [2]. We shall not develop these points
any further here, as in subsequent sections we shall be
presenting the correct form of our theory with full
mathematical rigor.

We shall close this section with a few general remarks
about the work that has been discussed and its relation-
ship to other more mainstream work in fluid turbulence.
It should be appreciated that research in turbulence ex-
ists as a discipline in its own right (as a branch of fiuid
mechanics). Yet, in the area that is the subject of this pa-
per, we have the situation that the impetus originally
came from various branches of theoretical physics, in-
cluding critical phenomena and quantum field theory,
where theorists have been interested in possible new ap-
plications for techniques that have proved successful in
their own often overcrowded fields. One result of this is
that beginning with the pioneering paper by FNS, publi-
cations in the general area of RG field-theoretic methods
and mode-coupling formalisms as applied to turbulence
have almost invariably been couched in specialized and
arcane jargon, to such an extent that they are not readily
accessible to theorists working in the field of turbulence.

In contrast, the paper by Rose [8] is a readable and in-
telligible account of how renormalization group might in
principle be applied to the subgrid modeling problem in
turbulence. It could also be argued that having eschewed
the artificial simplicities of stirred hydrodynamics, Rose
was forced to introduce concepts such as conditional
averages and Markovian approximations in order to
make progress with his analysis.

We are not, of course, saying that these concepts were
new to turbulence research at that time: such tools had
been in use since the early 1960s in research on intermit-
tency and coherent structures and also later in certain
phenomenological theories (see, in particular, the paper
by Tchen [11]). Nevertheless, their introduction in the
context of renormalization group has undoubtedly
proved helpful to later workers in the field. Accordingly,
it is arguable that Rose's paper is of interest because it
has made some of the basic ideas of RG accessible to a
wider audience; it has also, even if indirectly, drawn at-
tention to some of the fundamental problems.

III. MODE ELIMINATION USING
A CONDITIONAL AVERAGE

Our purpose in this section is to formulate the opera-
tion of taking a conditional average and then to use this
average in such a way that we can eliminate the triple
nonlinearity referred to in the previous section. A full
treatment of the formalism has been given elsewhere [3],
and we shall concentrate here on the application of the
method.

The basic idea is quite simple. Putting it at its most
basic level, we select from the full ensemble of turbulence
realizations a subensemble, the members of which have
their low-k modes equal to u (k, t). Then we perform
averages of functions of the u+(k, t) over this subensem-
ble.

However, there is more to it than this. If u(k, t) is the
solution of the Navier Stokes equation, corresponding to
prescribed boundary conditions, then we are faced with
(in principle) a deterministic process and to prescribe u
is to prescribe u+. That is to say, if u is invariant under
our conditional average, then so also is u+. In order to
get around this problem, we invoke the defining charac-
teristic of deterministic chaos. This is to the effect that
any uncertainty in the specification of the system will be
amplified exponentially, so that as time goes on the
difference between almost identical solutions will increase
to the point of unpredictability.

In the present case, we replace the concept of time go-
ing on by the number of steps of the cascade in wave
number. That is, our ideas about the turbulent cascade,
and particularly ideas about localness of energy transfer,
suggest that if we prescribe conditions at wave number
k, , then u+(ks, t) will be unaffected provided that ko is
much larger than k&. In other words, as the bandwidth
becomes large (A,~ 1), the conditional average of u+ be-
comes free of constraint and we can expect that

On the other hand, for kook&, it is intuitively clear that
the conditional average must tend to become effectively
deterministic, with

(u+(ks, t) &, ~u+(ks, t) .

We shall return to this at a later stage, but for the
present it should be appreciated that the point at issue
here is one of phase correlation. If two realizations are
slightly out of phase at wave number k&, then we can
(given the nature of turbulence) expect that this phase
difference will amplify exponentially so that phase corre-
lation will decline throughout the band as one moves
from k, to ko. Hence, for u +(ks, t) to be chaotic, despite
the prescription u+(k~, t)=u (kt, t), it is a requirement
that the bandwidth be large enough. This imposes a
lower bound on possible values of the bandwidth parame-
ter A, .

We may take account of these various aspects by intro-
ducing a fuzzy criterion for our conditional average. We
now choose as our subensemble the subset of realizations
for which the low-k modes differ from u (k, t) by a small
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&u-e-), =&u-), (C-),=O. (25)

Second, this does not imply a similar independence be-
tween 4 and u +, and in general we must have

amount N (k, t). Obviously @ is an arbitrary criterion
(apart from the constraint that u +@ must be a possi-
ble solution of the Navier-Stokes equation) and should be
chosen to satisfy the conditions that we wish to impose
upon our average. We shall introduce these formally in
the next section. But here we should lay emphasis on two
points. First, the function 4 is arbitrarily chosen and
so is independent of u,' hence we have

(u (k, t)u (k', t))o=u (k, t)u (k', t), (28)

(@ (k, t))o=0, (29)

but Eq. (28) can only be satisfied as an approximation,
and requires 4 (k, t) to be small, in the sense that we can
write

(4 (kt,)C&tt (k 't,)) o-—0. (30)

and so on, for products of the low-wave-number modes of
any order.

In order to satisfy Eq. (27), we choose 4 (k, t) such
that

(u (k, t)u& (k', t')), = u (k, t)(utt (k', t')),
+(4 (k, t)uz (k', t}), .

A. Conditionally averaged equations
for high and low wave numbers

(26)

Thus invariance of products of low-wave-number modes
under conditional averaging holds only to the second or-
der of small quantities, and in practice Eq. (28) must be
rewritten as

(u (k, t)u (k', t))o=u (k, t)u (k', t)+O((4 4' )o) .

(u (k, t))o=u (k, t), (27)

Let us now denote the operation of taking a condition-
al average over the modes in the band k& k ~ ko by an-

gle brackets, with a subscript 0. This change of notation
permits the subsequent generalization to subscripts
1,2, . . . , n, as we remove shells of wave numbers progres-
sively. Then we list the ideal defining properties of the
conditional average as

(31)

We now conditionally average both Eqs. (12) and (13),
which are, respectively, the low-k and high-k filtered
Navier-Stokes equations.

First, we obtain the conditionally averaged NSE on the
interval 0 ~ k ~ k

&
by replacing each u (k, t } with

u (k, t)+4 (k, t) in Eq. (12), and average according to
Eqs. (27) and (31) to obtain

—+vok u (k, t)=M &~(k) f d j { u& (j, t)u (k —j, t)+2u& (j, t)(ur+(k —j,t))0
at

+2(4tt (j, t)u+ (k —j, t) )o+ (utt (j,t)u (k —j, t})o+0 ((4& 4 )o)I . (32)

We now repeat the steps just taken, but this time we apply them to Eq. (13) for the high-k modes. Thus replacing u by
u +@ in Eq. (13), we get

—+vok u+(k, t)=M+&r(k) fd j { u& (j, t)u~ (k —j, t)+2u& (j,t)4r (k j, t)+OP (j—, t)4~ (k —j, t)
at

+2us (j,t)u+(k —j, t)+24& (j,t)u+(k j, t)+u& (j,t)u—+(k —j,t)I, (33)

and taking the conditional average of each term according to Eqs. (27) and (31) gives

—+vok (u+(k, t))o=M+&r(k) f d j { u& (j, t)u~ (k j,t)+&4& (j,t)4—(k j,t))o-
at

+2u& (j, t)(u+(k —j, t))0+2(@tt (j, t)u~ (k —j,t))o

+(us (j, t)u+(k j,t)) —
I . (34)

This may seem a rather laborious proceeding, but in fact we shall need both of these high-wave-number equations in the

next section.

B. Elimination of the triple nonlinearity

We now address the first of the mode-coupling problems that were outlined in Sec. II: see, in particular, Eq. (24).
This arises from the term quadratic in the low-k modes, which occurs in Eq. (33). We rearrange (34), which is the con-

ditionally averaged form of (33), to obtain an expression for M+& (k) Id j u& (j, t}u (k —j, t), thus
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M+& (k)fd ju& (j, t)u (k —j, t)= —+v0k (u+(k, t))0
at

—M+& (k)f d j [ (4& (j,t)4 (k —j,t))0+2u& (j,t)(u+(k —j, t))0

+2(4& (j,t)u~ (k —j, t))0+(u& (j, t)ur (k —j,t))0] .

We then substitute this back into Eq. (33}to get

(35)

Bt
—+v0k u+(k, t)=M+p (k) f d j [2up (j, t)ur+(k j—, t)+up (j,t)ur+(k —j, t)j+H (k, t), (36)

where H (k, t) is given by

H (k, t)=M+& (k)f d3j
r
—2u& (j,t)(u+(k —j,t))0—(u& (j,t)u+(k —j, t))0+2u& (j,t)4 (k —j, t)

+24» (j,t)u (k —j, t) —2(4& (j,t)u (k —j, t))0+At| (j,t)4 (k —j, t)

—(4tt (j,t)4 (k j,t)—)0)+ —+v0k (u+(k, t))0 .
at

(37)

We shall show in the next section that the contribution
from H (k, t) is at the second order of small quantities.
We conclude here by noting that the corresponding pro-
cedure used over the years in the method of iterative
averaging [1,10] could be criticized as being heuristic in
the sense that the Reynolds-style decomposition used
would really require one to Fourier transform to physical
space time, carry out the derivation, and then transform
back. In fact this was how it was done in the original
reference, but the present method can claim full
mathematical rigor.

IV. FIRST-SHELL ELIMINATION USING
THE TWO-FIELD DECOMPOSITION

Our objective now is to solve Eq. (36) for the condition-
al average (u& (j,t)u+(k j, t—))0 and substitute the re-
sult back into (32) in order to have a closed equation for
the low-wave-number modes. In order to do this, we
shall ultimately have to reckon with the need to relate
conditional averages to full ensemble averages. Accord-
ingly, we begin this section with the two-field decomposi-
tion that is our basis for this procedure.

I.et us write the exact decomposition

u+(k, t) =v+(k, t}+6+(k,t), (38)

where v+(k, t) is any other realization of our turbulent
ensemble. In other words, U+ (k, t) has exactly the same
statistical properties as u+(k, t), but has no phase rela-
tionship to u (k, t) It follows by .definition that b, (k, t)
is simply the phase difference (in the band of modes to be
eliminated) between the two realizations. It also follows
that from the point of view of the realization under study,
v+ (k, t) is the purely chaotic part of the field and b, (k, t)
is the correction field that carries all the phase informa-
tion.

We are now in a position to write down an expression
relating the conditional average of the high-wave-number
part of the velocity field to its full ensemble average.
Taking the conditional average of both sides of Eq. (38},

I

it may be shown [3] or it is intuitively obvious that

(u+(k, t))0=(U+(k, t))+(b, +(k, t))0 . (39)

( u+(k0, t) )0= ( u+(k0, t) ) = ( v+(k0, t) ), (40)

where the last step follows from the definition of v+, as
another realization of the turbulence ensemble with the
same statistical properties as u+, but with no phase rela-
tionship to u

This now leads us toward a natural ansatz for the rela-
tionship between v+ and u+. Relying on the fact that we
are dealing with a problem in continuum mechanics, we
take U+ (k, t) to be given by a first-order truncation of the
expansion of u+ (k, t) in Taylor series about k=k0 thus

U+(k, t)=u+(k0, t)+(k —k0) VA. u+(k, t)iq q +O(A. ) .

(41)

Note that we conclude that terms of order A, have been
neglected because the maximum value of ~k —

k0~ is A,k0.

Now we seek a relationship between v+ and u+, which is
such that the conditionally averaged correction term
(h, +)0 may be neglected as small. In other words, we
need an ansatz for the correction term and naturally this
will depend on the physical nature of the system that we
are studying.

In the case of macroscopic Quid turbulence, we are
guided by the well-established idea that turbulent energy
transfer in wave number takes the form of a cascade and
is therefore to some extent local in wave number. In
terms of our present approach, we take this to mean that
in any particular realization, the mode-mode coupling is
short range in k space. Thus on a statistical picture,
based on many such realizations, modes that are widely
separated may be taken to be independent of each other.
Hence, providing that the bandwidth parameter A, as
defined by Eq. (8) is not too small, we can assume that
u+(k0, t) is independent of u+(k&, t) in the sense that we
can write
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Hence from Eqs. (39) and (41), it follows that we have

(a+(k, t) &,=o(x') . (42)

while on the other hand, k must be small enough for us to
neglect terms that are of order A, in Eq. (41).

It also fo1lows, therefore, that we are simultaneously
imposing both upper and lower bounds on acceptable
values of A, . On the one hand, A, must be large enough for
us to assume that u+(ko, t) is independent of u+(k„t),

A. Two-field decomposition of the low-

and high-wave-number equations

Let us begin with the high-wave-number equation. We
substitute u

+ =V++6,+, as in (38), into Eq. (32)

—+vok u (k, t)=M p (k)f d j [ up (j, t)u (k —j,t)+2up (j, t)(A~ (k —j, t)&0
at

+2(4p (j, t)h+(k j,t—) &0+(up (j, t)u~ (k —j, t) &o+O((4 4 &0)] .

From (42) and (30) the terms ( b, +
&0 and (4 b,

+
&0 are assumed 0 (A, ) at lowest order, and are discarded, leaving

(43)

—+vok u (k, t)=M p (k)fd'j [ up (j, t)u (k —j, t)+(up (j, t)u (k —j, t)&o
at

+o((a+ &„(a-a - &„(e ~'&, )] . (44)

We should note that we are now left with an equation
that differs from the Navier-Stokes equation (to order A, )

only by the presence of the nontrivial mode-coupling
term. We may eliminate this by using Eq. (36) to form an
equation for M pz(k) J d j (up (j,t)uz (k —j, t) &0. To
do this we take the following steps.

(i) Rewrite Eq. (36) for [(8/Bt)+vJ ]u~ (j,t) on the
left-hand side and multiply it through by u (k —j,t).

(ii) Rewrite Eq. (36) for [(8/Bt)+volk —jl ]ur+(k —j, t)
and multiPly it by u p ( j, t).

(iii) Add the two equations formed by steps 1 and 2 and
I

take the conditional average. The result is a first-order
differential equation in the time variable for the quantity
(u p (j, t)u + (k —j, t) &z.

(iv) Solve the differential equation using an integrating
factor.

(v) Integrate with respect to j and multiply by
M p (k).

(vi) Use the symmetry properties of M pz(k) under

p~y and symmetry of the integral under j~k —j to re-

group terms.
This procedure yields

M p (k)fd'j (up (j,t)u+(k jt—)&0,

=2M Pr(k) fd'j f '
dt'exP[ —(vaI'+ volk —jl')(t —t') ]MPs, (j)

X f d p[2us (p, t')(u, (j—p, t')u~ (k —j, t')&, +(us+(p, t')u,+(j—p, t')u+(k —j, t')&o]

(45)

(Hp(j, t)u~ (k —j, t) &0= Mps, f d p[ —2us (p, t)(u,+(j—p, t) &o(u+(k —j, t &o

(us+(p, t)u+(j p, t)&o(uy (k jest)&o

+2us (p, t)(4, (j—p, t)u+(k —j, t)&0

+2(@s (P, t)u,+ (j—P, t)u+ (k —j, t) &o

+2M pz(k) f d j f dt'exP[ —(vcJ +volk —jl )(t t')](Hp(—j, t')u+(k —j, t')&0.

The term (Hp(j t)uz (k —j, t) &o can be shown to be 0((6,+ &0)=0(A. ) at lowest order, from (42). Recalling from Eq.
(37) the form of H (k, t), we obtain

+2(C s (P, t)u,+ (j—P, t) &,(u~ (k —j, t) &,

+(@s (p, t)@, (j—p, t)u+(k —j, t)&o

+(4s (p, t)4, (j—p, t)&0(u~ (k —j, t)&o]

+ (u+ (k —j, t) &0
—+v+2 (u p (j, t) &o .o Bt

(46)
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We again use the decomposition of the high-wave-number modes given in Eq. (38) and the properties of the v field

that indicate that (u+ )s= (5+ )s and that ( b, + )0=0(A, } is small; we also know that 4 is small from Eq. (30), so we

can conclude that

(H&(j, t)u~ (k —j,t))0=0(A, ) (47)

at lowest order.
Using Eq. (38) once more, we decompose the term ( u,+ u+ )0 and retain only the leading-order term, discarding the

terms of 0 (A, ). In this way, we end up with Eq. (46) in the form

M.»(k) fd'J(u~ (j,r)u,+(1 ],—r)),
=2M»(k) fd3j f dt'exp[ (—vj +vo~k j—~2)(t r')—]M&+&,(j)

x f d p [ 2u s ( p, t '
)( v,+ (j—p, t '

)U
&

(k —j, t '
) ) + ( u s+ ( p, t '

)u
+

(j—p, r
'

)u
+

( k —j, r ') )0]

+O(A, )

Equation (44) for the explicit scales (to order A, ) and
Eq. (48) for the term representing mode coupling between
the retained or explicit modes and the modes in the band
or shell being eliminated (again, to order A, ) jointly
represent our first-shell elimination. In the next section,
we develop a calculation in which the (conditional) mean
effect of the eliminated modes is found to be an increased
viscosity. In this way, turbulent collective interactions
may be said to renormalize the bare molecular viscosity.

(48)

I

locity modes in the band will evolve very much more rap-
idly (i.e., on shorter timescales) than the retained modes.

Of course, these statements become less true as one ap-
proaches (from above) the wave number dividing the re-
tained modes from the explicit modes. However, bearing
in mind that these approximations will appear under in-
tegral signs, it may be appropriate to state the basis for
the proposed boundary-layer approximations as

V. EFk ECTIVE VISCOSITY
AND THE RECURSION PROCEDURE and

f [u,+(k, r)]'d'k « f [u, (k, r)]'d'k (49)

In carrying the work further, we have to make two ap-
proximations that seem to be justified on physical
grounds (i.e., in terms of what we know about the proper-
ties of turbulence). These are what we have earlier de-
scribed as "boundary-layer"-style approximations. That
is to say, it may be helpful to draw a loose analogy be-
tween the relationship of the thin viscous boundary layer
on (say) a flat plate to the free stream, and the relation-
ship borne by the narrow band of modes in the viscous
dissipation region to the remainder of the turbulent
modes.

In the present case, the two essential features upon
which to base such an approximation may be identified as
follows. (i) In general, the velocity components in the
band are very much smaller than the velocity com-
ponents of the retained modes, and (ii) in general, the ve-

1

—f u+(k, )rd' k» —f u (k, t)d'k .
at - '

at
(50)

Now let us consider how to apply these ideas to the
solution of Eq. (48). First, we note the presence of the tri-
ple moment of the form ( u +u + u + )0. Application of
the two-field decomposition to this term would give zero
(due to homogeneity) at lowest order, and it is necessary
to calculate this term iteratively. This applies to all or-
ders of conditional moments in the band, and it is clear
that the moment closure problem is still with us. Howev-
er, in view of our first boundary-layer approximation, it
seems reasonable on physical grounds to neglect
u+u+u+ in comparison to u u+u+, and this we shall
do.

Accordingly, we write Eq. (48) as

M & (k)f d j (u& (j,t)u+(k —j, t})0

=4M
& (k) fd'~ f' dr'e p[ x~, ( ji)(—r 'r)] M,„—( j)fd'pu, (p, ~ )(U,+(j—p, ~)U+(k —j,~')),

where co2(j, l)=v0(j +1 ), and 1=~k—j~. Noting that
the v+ field is homogeneous, isotropic, and stationary, we
can also write

(~,+(j—p, r)U+(k —j,&))

=Q,+(k j)D,r (k—j)5(k —P), (—52)

where D &(k j) is the projection—operator defined by
Eq. (3); this form is just an extension of Eq. (4) to the U+

I

field, as indicated by the subscript on Q„(k—j). Substi-
tuting from Eq. (52) into (51) then gives us

M»(k) fd j (u& (j,t}u„+(k—j, t})0

=4M p (k)f d jMps, (j)D, (k —j)Q„+(~k—
j~ )

x f "exp[ —co2(j, l)r]us (k, t 7)d'7 . —
0

(53)
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Now we make our second boundary-layer-type approx-
imation, which is based on the assumption that the u
are slowly varying on the time scales of the u+. We do
this by expanding us (k, t —~) in a Taylor series in r
about ~=0, and truncating at zero order, thus

f exp[ —to2(j, l}~]us (k, t r—)d~
0

= f exp[ —co2(j, l)~][u& (k, t)+O(~)]dr . (54)
0

Thus with these two approximations, Eq. (48) for the
mode-coupling term may be written in the form

M py(k) fd j (utt (j,t)u+(k j—, t})0

where the increment to the viscosity is given by

L (k, j)Q„+(Ik —jl }
5vo(k)= d j

k vol' +voIk —jI

with

0 ~ k ~ k „.k, ~j, Ik —j I

+ ko,
and the coefficient L (k, j ) takes the form

L(k, j)= 2M tie(k)Mtt s(j)Ds (k j—)

[p(k +j }—kj(1+2p, )](1 lJ, )kj-

k +J' 2kJP

(62)

(63)

=4M tie(k) f d j Mp+q, (j)
v(j +vo k —j

X f d pu& (p, t)Q, (k —j)

where p is the cosine of the angle between the vectors k
and j.

Alternatively, we can reexpress this result in terms of
an e6'ective viscosity, viz. ,

XD, (k —j)5(k —p) . (55) V) —Vp+ 5VP, (64)

The important thing to note about this result is that it
is linear in the retained modes u and so may be inter-
preted in terms of an increment to the viscosity. We may
make this interpretation as follows. Substitute the above
result into Eq. (44) and write the equation for the re-
tained modes as

T tt(k)uIi (k) (57)

can be deduced by comparison with Eq. (55). For isotro-
pic fields, it may be shown [12] that

T p(k)up (k)=B(k)D p(k)u~ (k)

=B(k)u (k) (58)

with

B(k)= TrT &(k),
1

for a d-dimensional system. Thus in d =3, we may make
the replacement

a 2—+vok u (k, t) —T ti(k)utt (k, t)
fjt

=M &r(k) f d j u& (j, t)u (k —j, t)+f (k, t), (56)

where the form of the increment

which acts on the left-hand side of Eq. (61).
Lastly, we may truncate the series for v+, as given by

Eq. (41), at zero order,

v+(k, t)=u+(ko, t),
or, at first order, thus

v+ (k, t) =u+ (ks, t)+(k —ks) Vu+ (k, t)Ik =k

(65)

(66)

We shall mainly concentrate on the first order in this
work.

A. Inductive treatment of the nth shell

We may extend the above procedure to further shells,
as follows.

(i) Set u (k, t) =u (k, t) in the equation for the explicit
modes, so that we now have a new NSE with e6'ective
viscosity vi(k) for Fourier modes on the interval
0&k &k, .

(ii) Make the decomposition into retained modes and
modes to be eliminated, but this time at k =k2 such that
u

+ (k, t) is now defined in the band k2 & k ~ k, .
(iii) Repeat the procedures used to eliminate the first

shell of modes in order now to eliminate modes in the
band k2 k k, .

We define the nth shell in this procedure by

T ti(k)uti (k, t)= i Ttip(k)u (k, t), (60)
k„=(1—1,)"ko, 0~1,~1, (67)

and Eq. (56) may be written as

—+(vo+5vo}k u (k, t)
at

=M g~(k) f d j utt (j, t)uy (k —j,t)+f (k, t), (61}
I

which is just a generalization of Eq. (8}. Then by induc-
tion, relation (64) for the first-shell effective viscosity gen-
eralizes to

v„+,(k)=v„(k)+5v„(k) .

Now, for the first shell, Eq. (62) for the viscosity incre-
ment evaluated to first order according to Eq. (66) is

5vo(k)= fd'j1
L(k, j) 'Q(l)II=I, +(l —ko)

BQ (l)

v~'+ v, Ik —j I'

I =ko
(69)
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where I = ~k —j~. By induction, this is extended to the nth shell as

L (k, j) '

Q (1) I ( =k + (I —k„)
5v„(k)= d j

v. (i)J'+v. (II —jl) II —jl' (70)

R. Conservation equations for the retained modes

—+v„(k)k u (k, t)=M p (k)
at

X f d j up (j,t)ur (It —j, t)

for wave numbers

+f (k, t) (71)

With the progressive elimination of modes in the range
k„&~k ~ ko, Eq. (44) is iterated to the new form

where we again include a random force, as in Eq. (14).
However, this time, the stirring force is not intended to
act as a basis for perturbation theory. Rather, it is added
purely to sustain the turbulence against viscous dissipa-
tion, so that we may study a stationary system. As it
stands, Eq. (71) expresses conservation of momentum per
unit mass of fluid for the retained modes.

We can then obtain the equation expressing conserva-
tion of turbulent kinetic energy in the retained modes per
unit mass of Quid in the following way. Multiply each
term in Eq. (71) by u ( —k, r), and average over the full
turbulent ensemble. Then sum over a, multiply through
by 2m k, and invoke (5) for the energy spectrum to obtain

—+2v„(k)k~ E(k, t)=2mk2M
& (k)f d j (u& (j,t)u (k —j, t)u ( —k, t))+2@k (f (k, t)u~ ( —k, t)) .

Bt

(72)

The second term on the right-hand side represents the rate at which the stirring forces do work on the fluid in sustain-
ing the velocity field. It can be expressed in terms of the autocorrelation function W(k) of the stirring force, as defined
by Eq. (18), to yield the form [4]

—+2v„(k)k E(k, t)=2mk M & (k)f d j (u& (j, t)u (k —j, r)u (
—k, t))+4nk W(k) .

Bt

(73)

The choice of force spectrum is arbitrary, apart from
the restrictions on its statistics, as specified in Sec. II. In
particular, in order to have a stationary velocity field, the
integral of W(k) over all k must be equal to the dissipa-
tion rate: see Eq. (19). This is in fact our only interest in
the stirring forces: so far as we are concerned, their sole
purpose is to maintain the turbulence against the viscous
dissipation. Accordingly, if we integrate each term in the
above equation with respect to k and, for stationarity, put
the time derivative equal to zero, we obtain

k„f 2v„(k)k E(k)dk =s . (74)
0

This result follows from the symmetry property of the
nonlinear term (which is necessary in order to conserve
energy during inertial transfer). That is, when integrated
with respect to k over the same range as the integration
with respect to j, the inertial transfer term vanishes. It
should also be noted that (74) is the renormalized version
of the usual dissipation integral, as given in (6). The re-
duced upper limit on the integral is compensated for by
the augmented turbulent effective viscosity.

C. Scaling relationships

We now assume that the energy spectrum in the band
is given by a power law of the form

E (k) =as"k', (75)

and make the scaling transformation

k =k„+)k',
where k' is nondimensional,

k„+,=hk„,

(76)

(77)

and, for compactness, we define h =(1—A. ). This
amounts to a choice of power-law behavior for the
effective viscosity as well; and we shall shortly see that
the power-law exponents for the spectrum and effective
viscosity can be fixed by a combination of dimensional
analysis and power counting.

We impose the obvious consistency requirement that
v„(k) and 5v„(k) should scale in the same way. Then the
effective viscosity may be written in terms of the nondi-
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mensional function v„ from the equations for the nth-
cycle increment and the nth-cycle NSE as

v (k k'} al/2&r/2k(s —1)/2- (k') .n n n &n (78)

Substitution of this equation into the renormalized dis-
sipation relation as given by (74) fixes the exponents as
r =—', and s = ——', : the well-known Kolmogorov spec-
trum. With these results, we can scale all the relevant
equations. First, the scaled effective viscosity (78) now
takes the explicit form

v (k k'}=a' s' k ~v (k') .n n n n (79)

Then we scale the recursion relation and the increment
to viscosity in the following way. We start from the rela-
tion v„+,(k)=v„(k)+5v„(k), where 5v„(k) is given by

v„,(k}=a'/ s'/ k„ / v„,(k'},
and this now defines

k'=k ' k

(80)

(81)

Similarly, the increment for the nth cycle has the similar-

ity solution

v (k)=~/s/k /v (k/k )

1/2 1/3k —4/3v
n ~n (82)

Scaling the viscosity increment, as given by (70), we find

Eq. (70}and is restricted to 0 ~ k ~ k„+,.
Now, Eq. (79) for the nth cycle can be extended to the

(n +1)th cycle, thus

5v„(k)= d3j'1 3 kn+& [k„+,L (lt', j') ]as / k„+",/ Q'

( k k ) 4~ 1/2 1/3 k
—4/3

[
-

( P
~ i

) ( k 2 i 2
) +- ~

( I I r
)( k 2 I r 2

) ]
(83)

where j=k„+,j' and I =
~
k —j ~

=k„+,l', and where

Q'=h" ——", h' / (t' —h ')+higher-order terms,

(84)

D. Calculations and results

The basic calculation is the iteration of the recursion
relation, as given by Eq. (89), with the increment to the
viscosity given by (86). The fixed point is defined by the
condition

for the first-order approximation.
This gives an explicit form for the scaled increment as

v„+,(k')=v„(k'):—vN(k') . (90)

5v„(k +,k')=a' s' k„h ' 5V„(k'),

where

(
' j'}Q'

4nk' v„(hj 'j)' +v„(hl')I'

for the wave-number bands

0 k' l l

(85)

(86)

At the fixed point, Eq. (74) for the renormalized dissipa-
tion integral becomes

kNs= f 2v11,(k)k E(k)dk . (91)
0

Hence using the scaled form of the effective viscosity and
the Kolmogorov form for the energy spectrum, we obtain
a formula for the Kolmogorov spectral constant [10],
thus

—2/3

Now, with the substitution of (80), (82), and (83) into
(68), the unscaled recursion relation becomes

a= 2 f v&(k')k' dk' .
0

(92)

1 /2 1 /3 I 4/3 —
( k I

)n+1 +n +1

= a' c,
'/ k / v (hk')

n ~n

+a' E' k h 5v (k')
n ~n 7

and since, from (77), k„+,=hk„, we have

h v„+,(k')=v„(hk')+h ' 5v„(k') .

(87)

In fact, the calculation of the fixed point was done us-

ing co„(k)=v„(k)k instead of v„(k). This cancels the

difficult factor of 1/k in Eq. (70), which causes large
rounding errors in the low-k' range of the integration. It
avoids the introduction of an asymptotic formula for the
integral that was used previously [9].

It is a simple matter to modify Eqs. (82), (89), and (86}
to yield the scaling relation for co„(k) as

It follows that the scaled recursion relation can be writ-
ten

v„+1(k')=h v„(hk')+ h /'5v„(k') .

co (k k')=a' 6' k co (k'),

the recursion relation as

co„+,(k')=h /co„(hk')+h / 5')„(k'),

and the scaled increment

(93}

(94)

Note that this is different from the earlier form, as used

in iterative averaging [1,9].
5'„(k')= f d

41r co„(hj')+co„(Iil')
(95)
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with the wave numbers confined in the usual way,

0~ k' 1;1 j', l'~ h

where I'= lk' —j'l.
In order to carry out the numerical calculation, we

made the k', j', and p ranges discrete and calculated the
increment to co„(k') by quadrature. Then we calculated

co„+,(k') from the recursion relation, and checked for
convergence of co„(k') to a fixed point. The chosen test
for convergence was to check each value of co„(k') at
each k' array point and only accept convergence to the
fixed point when all values of co„+,(k') were within a
tolerance of O. l%%uo of the corresponding co„(k') values.

As previously reported [2], our calculations (as tested
by our theoretical value of the Kolmogorov constant a),
showed some dependence on the bandwidth parameter
for both small and large values of A, with a "plateau" in
between, where a, as calculated from (92), was insensitive
to the chosen bandwidth. Here we show some of the un-

derlying details of the calculation. We begin with Fig. 1,
which shows the iteration reaching a fixed point for a
range of starting values of the molecular viscosity
(vo=0. 1, 1, and 2). The results are given in terms of the
scaled effective viscosity, as defined by Eq. (78), and the
calculations are based on the first-order approximation
[as in Eq. (66)] for U+, at a plateau value of the band-
width A, =O.36. This illustrates the principle of universal-

ity, where the answers are independent of details of the
system. The results depend only on the general dynamics
of the inertial range. This fixed point is valid for any
Reynolds number provided only that the Reynolds num-
ber is high enough for there to be an inertial range. This
is to be expected, since the theory implicitly assumes that
viscous effects play no part in the description of the elim-
inated modes, and these results confirm that view.

In Fig. 2, the development of the real (unscaled)
effective viscosity is shown under the iteration from an
initial value of 1. The results presented are again for the
first order in A, and for a value of A, =O. 36, and thus lie in
the plateau region. The final value of n given is where the
scaled effective viscosity reaches the fixed point.

10'-

10'-

n=6

10'-

10 '

10 ' I

10 ' I

10 ' I

10 '
I

10'

FIG. 2. Development of the total (unscaled) effective viscosi-

ty during the iteration.

As more modes are eliminated, so the effective viscosi-

ty rises. Also, it is clear that the effective viscosity shows
the characteristic asymptotic trend to a constant value as
k becomes small compared to the cutoff wave number.
This behavior reflects, of course, the increasing validity
of the concept of an eddy viscosity as the retained and el-
iminated scales become more widely separated. It should
be noted that this graph employs a set of units in which
both vo and k0 are equal to 1.

In Fig. 3, we return to the scaled eddy viscosity in or-
der to illustrate the effect of varying the bandwidth pa-
rameter. Clearly the two extreme values of A, , for which
results are shown here, are outside the range of validity of
our theory. However, the different ways in which they
behave is of interest. For wide bands (A, =O. 74), we know
that our first-order truncation of the Taylor series in
wave number will be less accurate. But the weaker
dependence on the wave number observed in this case
reflects the greater scale separation possible with a wide
band, whereas for narrow bands (A, =O. 1) the dependence
on wave number is markedly increased over a much wid-
er range of k values, reflecting the fact that the condition-
al average is much more deterministic in this case.

It should be noted that the effective viscosity is depen-
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FIG. 1. Convergence of the scaled effective viscosity to the
fixed point for several values of the initial molecular viscosity
(value of scaled wave number: k' =0.01).

FIG. 3. Dependence of the scaled effective viscosity on wave
number, showing the effect of varying the bandwidth parameter
A, .
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FIG. 4. Calculated values of the Kolmogorov spectral con-
stant a, showing the dependence on the bandwidth parameter A,

for (a) a first-order calculation, and (b) a zero-order calculation.

dent on A, over all A, values, and thus it is not possible to
argue for the existence of a special value of the parameter
from this data. However, as reported previously [2], our
calculation of the Kolmogorov constant clearly indicates
such a special region.

In Fig. 4, we show both the zeroth- and first-order ap-
proximations to our calculation of the spectral constant
a. There is a region on both curves where the value of a
is independent of the bandwidth. The first order shows a
range of A, values for which the Kolmogorov constant is
independent of A. much larger than that for the zeroth or-
der, where the breakdown of the Taylor series affects the
results at much smaller values of A, . The graphs show a
tendency to converge as A, ~O. A precise convergence
would be expected if the Taylor series were the only ap-
proximation, but, the breakdown in our assumption of
pure chaos affects the results in this region.

The arguments above lead to the selection of the value
of the Kolmogorov constant from the plateau region.
The first order yields a value of 1.60+0.01 in the range
A, =0.25 —0.45. The zeroth order yields a result of
1.62+0.01 in the range A, =0.14—0.25. These results lie
in the generally accepted range of values for a, which is

1.4—1.8. Clearly, the value of a does not represent a
definitive test of a theory, but it seems fair to conclude
that our theory is in good agreement with the experimen-
tal values for a.

Lastly, we note that the a value is not exactly indepen-
dent of A, in our "plateau region, " as the graph is the re-
sult of a numerical calculation. The results of the u cal-
culation depend on the fixed point of the effective viscosi-
ty, which is only calculated to 0.1%. The error in the a
value reflects this, and we feel that we are justified in cal-
ling this region a plateau to an accuracy of about 1%.

VI. DISCUSSION

The calculation presented here was based on the itera-
tion of the scaled recursion relation as given by Eq. (89)
along with Eq. (86) for the scaled increment. As we have
seen, the iteration reaches a fixed point in the sense that
the scaled effective viscosity Vz(k') is unchanging for
values of the iteration cycle number n greater than N.
This procedure corresponds to the elimination of modes
on kz &k ~ko. The evolution equation for the retained
modes is given by Eq. (71) with n =N, while the aug-
mented viscosity vz(k) can be obtained from the scaled
form vz(k') by means of Eq. (79).

The fact that the conditional mean effect of the elim-
inated modes has been shown to be linearly proportional
to the retained modes justifies its representation in terms
of an increment to the viscosity. (Indeed, this feature
holds to all orders of approximation [10,12].) In turn, the
renormalization-group calculation leads to the coefficient
of effective turbulent viscosity. It can also be seen from
our results that the interpretation in terms of a coefficient
of viscosity holds good for wave numbers k much less
than k~. That is, vz(k) tends to a constant as k~0.
However, as k~kz, we see that the effective viscosity
depends to some extent on k, tending to roll off towards
kN'

Of course, there is nothing new about this. It has been
known since the phenomenological theory of Heisenberg
in the 1940s (see, for instance, [4] for a discussion) that
the concept of an effective coefficient of viscosity must
break down near the boundary between the retained and
eliminated modes. This can be understood in terms of
the analogy between the randomizing effect of molecular
motions on the hydrodynamic modes (which are normal-
ly many orders of magnitude larger) and the randomizing
effect of small turbulent eddies on larger turbulent eddies.
Obviously, such an analogy must break down as k ~kz,
when the scale separation of the molecular case is entirely
absent in its turbulent analog. The implications for x
space are readily deduced from a consideration of the
Fourier transform of the renormalized viscous term in

Eq. (71), taken in conjunction with the convolution
theorem. Evidently, the turbulent "constitutive relation-
ship" cannot be Newtonian, except as an approximation,
but this is not a surprise.

If we turn to qualitative assessment of our theory, then
we face the situation that the art of numerical simulation
of turbulence has not quite advanced to the point of pro-
viding a definitive form of the effective viscosity. Accord-
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ingly, we have invoked the renormalized dissipation rela-
tion in order to calculate the Kolmogorov spectral con-
stant, which we find to be [based on our first-order ap-
proximation in Eq. (86)] a=1.60+0.01 for a range of
bandwidths characterized by 0.25 ~ A. ~0.45. This is a
reasonable result, and indicates that the various error
terms in our approximation scheme give only a small
contribution to the dissipation integral. It is also perhaps
worth emphasizing again that A, is not exactly a free pa-
rameter, as the theory must break down for either very
small or very large values of the bandwidth: we shall ex-
pand on this shortly. However, within the range of valid-
ity, we note that the calculated value of a is insensitive to
the value of I, to within l%%uo. We shall conclude the paper
by discussing three aspects of the work, viz. , the nature of
the approximations made, the relationship of our theory
to the current "two-fluid" picture of turbulence, and the
potential of the work for practical calculations.

A. Approximations made

There is nothing mysterious or obscure about the vari-
ous approximations made in this work. They are all ra-
tionally based on physical or mathematical grounds and
all have been clearly stated. Nevertheless, it is probably
worth recapitulating the underlying ideas here.

Let us begin by reminding ourselves that our approxi-
mations come in two categories. First, there are what we
have called the boundary-layer-type approximations.
These are to the effect that (i) the modes in the thin shell
being eliminated give a small contribution to integrals,
compared to the retained modes, and (ii) the Markovian
approximation based on the idea that the shell modes are,
on average, fully evolved on the time scales of the re-
tained modes. They are set out in detail in Sec. V, in Eqs.
(49) and (50), and are used to truncate the conditional
moment expansion in the u+, as in the transition from
Eq. (48) to Eq. (51), and to justify the truncation of the
Taylor series for the time dependence of the retained
modes in (54).

In terms of what we know about the rapid decay of tur-
bulence at high wave numbers, these approximations
seem likely to be good. Also, they are amenable to im-
provement by truncation at higher order [10,12]. Howev-
er, the question of just how accurate they are is really a
matter to be settled in conjunction with the application of
our method to numerical simulation of the Navier-Stokes
equations. Accordingly, this point will be deferred until
we treat that aspect in a further paper.

As we showed in Sec. II, the above approximations are
not accessible to straightforward perturbation theory. It
is only our introduction of the combination of a condi-
tional average and the two-field decomposition that al-
lows us to invoke these boundary-layer-type approxima-
tions in the work presented here. In particular, we
should note that the crisis that occurs at the cutoff wave
number where u (ki, t)=u+(k„t) is avoided because in
our method all leading-order terms are evaluated in terms
of the v+, and in general we have u (ki, t)Wv+(k&, t).
This brings us to our second type of approximation:
when we attempt to relate conditional averages to uncon-

ditional ensemble averages. This arises with the intro-
duction of the ansatz relating the v+ field to the u+ field

by means of the Taylor series given in Eq. (41). The
consequences of this approximation are restrictions on
the permitted values of the bandwidth of the modes being
eliminated. We shall discuss this in terms of the parame-
ter A, and take the upper and lower bounds in turn.

The existence of an upper bound A, ,„, say, is easily
seen. As we pointed out in connection with Eq. (41),
truncation of the Taylor series at first order in wave num-
ber is equivalent (after rescaling) to neglecting terms of
order A, in the integral for the viscosity increment. The
effect of this may be seen in Fig. 4, where we plot the cal-
culated value of the Kolmogorov spectral constant
against the bandwidth parameter A, for both zero-order
and first-order approximations. It should also be noted
that these two cases do not become identical as A, ~O.
This is because of the existence of a lower cutoff A. ;„.

The existence of the lower limit on the bandwidth is
rather less obvious, but at the same time has implications
that are rather more profound. It arises, as we said ear-
lier in Sec. III, because the band of modes being eliminat-
ed must be wide enough for the condition
(u+(ks, t) )0= (u+(ks, t) ) to be satisfied for small values
of the arbitrary uncertainty 4 . This is necessary so that
we can neglect terms of order (4 ) in, for example, Eq.
(32). Evidently km;„may be seen as a measure of the dis-
tance in wave-number space, over which phase correla-
tions die away. Again, Fig. 4 shows clear evidence of the
breakdown of the theory as the bandwidth tends to zero.

B. Relationship to the "two-quid" picture of turbulence

The idea of a two-fluid model or picture has been a re-
current one in turbulence. Recently it has taken on new
importance as part of the growing recognition of the need
to bridge the gap between two of the main topics of tur-
bulence research; viz. , coherent structures on the one
hand, and the energy spectrum on the other. A full dis-
cussion of these topics has been given elsewhere [4], but it
will be of interest to make a few remarks here.

Research in coherent structures has its roots in obser-
vations ca. 1950 of quasiregular patterns in turbulent
shear flows. The discovery of the remarkably regular roll
vortices of the mixing layer, in the late 1960s, was the
seed about which the subject crystallized; it is now a ma-
jor activity in which the emphasis is on order rather than
chaos. Its progress has largely relied on flow visualiza-
tion, and this predisposes the subject toward a view based
on the single realization in x space with a natural concen-
tration on the concepts of phase and phase coherence. It
is also the case that many turbulent coherent structures
resemble the vortex forms of classical (inviscid) hydro-
dynamics, and this gives a growing bias towards a
description of turbulence in terms of vorticity fields and,
in particular, their topological properties. Indeed, the
evolution equation for the vorticity (which is obtained by
taking the curl of each term in the Navier-Stokes equa-
tion) provides a natural framework for a qualitative
description of the energy cascade in terms of vortex
stretching, with the transfer of energy to small eddies be-
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ing accompanied by the formation of extended vortex
filaments. Such vortex filaments are the coherent struc-
tures of isotropic homogeneous turbulence, and it has
been known for decades that they are responsible for spa-
tial intermittency or spottiness of the turbulence.

At the same time, from a different viewpoint, research-
ers have studied the energy spectrum of turbulence,
where the emphasis is on a statistical view, based (in prin-
ciple) on an ensemble of many realizations. The measure-
ment of the spectrum has been the subject of much in-
genuity; its presentation and analysis have emphasized its
universality (at least, at large enough wave numbers), and
it has been the theoretical target for some, ranging from
engineers to quantum theorists. It has led, quite natural-
ly, to a picture of turbulence as a random phenomenon,
characterized by the transfer of energy through many de-
grees of freedom. Naturally, concepts of order and
coherence never arise. As is well known, the energy spec-
trum is dependent only on the amplitudes of the harmon-
ics of the velocity field, and not on their phases. That is,
the combination of Fourier transformation of the two-
point pair correlation of velocities and full ensemble
averaging suppresses all phase information. Accordingly,
such a description of the field is unable to distinguish be-
tween pure chaos (Gaussian) and coherent motion (non-
Gaussian or intermittent}.

However, it is when one considers higher-order mo-
ments that the spectral approach has to acknowledge the
existence of coherent structures and, in particular, inter-
mittency. The whole question of intermittency correc-
tions to the power laws for spectra has formed an impor-
tant interface between the two topics [4], although prob-
ably it is true to say that attempts to predict such correc-
tions have suffered from their inability to take phase
correlations into account.

At the present time, there seems to be a growing
awareness of the need to take both phase and amplitude
into account in spectral treatments of turbulence. As re-
cent examples, one may instance the analytical demon-
stration that the presence of intermittency imp1ies phase
coherency [13], or the numerical demonstration that an
artificial reduction of phase coherence in the spectral rep-
resentation is equivalent to the destruction of the vortex
filament stretching mechanism, which is the I-space pic-
ture of the energy cascade [14]. Results of this kind offer
support to the view that turbulence must be seen in terms
of the interplay between order (or coherent structures)

and disorder (pure chaos). It is an entirely tenable point
of view that neither aspect can be profitably studied any
longer in complete isolation from the other.

Unfortunately, there are, as we have pointed out ear-
lier, difficulties in the way of taking phase coherence into
account in analytical spectral theories, and it is in just
this area that our present work can offer an alternative
methodology. If we consider the basic vortex stretching
mechanism, then it is clear that there must be some de-
gree of phase coherence between neighboring wave num-
bers. However, if we try to find out the extent of such a
relationship in k space by considering the pair correla-
tion, then Eq. (4) conveys the message that the ensemble
average of such coherence is zero, which is of no help.
Clearly (as we said earlier), the pair correlation in k space
is not a suitable measure of this effect. In contrast, our
conditionally averaged pair correlation of the u+ does not
satisfy a relationship like (4). In fact, the requirement
that this procedure must satisfy the constraints embodied
in Eqs. (27) and (28) ensures that phase correlation is of
the essence in this procedure. Our formalism then defines
phase difference as the difference between realizations in
the turbulent ensemble. Thereafter we have to find an an-
satz in order to express our conditionally averaged pair
correlation in terms of the ensemble-averaged form that
satisfies (4). Our choice is the hypothesis that phase
correlations die away quite quickly in wave number (a
property that must be related in some way to the idea of
"localness, "which is associated with the energy cascade),
but there may well be better ones.

C. A.pylications to real turbulent simulations

Ultimately any turbulent theory will be judged by its
ability to assist with real problems involving the trans-
port of scalar contaminants such as heat and mass, or in-

volving flows that are anisotropic and inhomogeneous.
Our present theory has been extended to the case of pas-
sive scalar convection in isotropic turbulence [12]. With
appropriate restrictions, the spectrum in the inertial-
convective range of wave numbers is found to take the
usual Kolmogorov form with a calculated Corsin-
Oboukhov constant of 1.02+0.01 for the range
0. 17~ A, &0.33. The theory has also been applied to the
general case of shear flows, with appropriate generaliza-
tions to inhomogeneity and anisotropy. A full discussion
of this additional work will be presented in a further pa-

per.

Electronic mail address: w.d.mccomb@uk. ac.ed

[1]W. D. McComb, Phys. Rev. A 26, 1078 (1982).

[2] W. D. McComb and A. G. Watt, Phys. Rev. Lett. 65, 3281

(1990).
[3] W. D. McComb, W. Roberts, and A. G. Watt, Phys. Rev.

A 45, 3507 (1992).
[4] W. D. McComb, The Physics of Fluid Turbulence (Claren-

don, Oxford, 1990).
[5] D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev.

Lett. 36, 867 (1976).
[6] V. Yakhot and S. A. Orszag, J. Sci. Comput. 1, 3 (1987).
[7] Marco Avellaneda and Andrew J. Majda, Commun. Math

Phys. 131, 381 (1990).

[8] H. A. Rose, J. Fluid Mech. $1, 719 (1977).
[9] W. D. McComb and V. Shanmugasundaram, Phys. Rev. A

28, 2588 (1983).
[10] W. D. McComb, in Direct and Large Eddy Simulation of

Turbulence, Vol. 15 of Notes on Numerical Fluid Mechan-

ics, edited by U. Schumann and R. Friedrich (Vieweg,
Braunschweig, 1986), Vol. 15.

[11]C. M. Tchen, Phys. Fluids 16, 13 (1973).
[12]A. G. Watt, Ph.D. thesis, University of Edinburgh, 1991.
[13]Tsutomu Sanada, Prog. Theor. Phys. 84, 12 (1990).
[14]E. Levich, L. Shtilman, and A. V. Tur, Physica A 176, 241

(1991).


