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Velocity-tuned resonances and resonance Suorescence in a standing-wave field
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The dynamics of quantum Auctuations in an atom interacting with a standing-wave field is studied.

The spectrum of resonance fluorescence is calculated using a formulation based on optical Bloch equa-

tions for two-time correlation functions and continued-fraction methods. The spectra are calculated

both under resonant and nonresonant conditions. The resonance condition in the context of a standing-

wave field corresponds to a velocity-tuned or Doppleron resonance that in turn depends on the intensity

of the pump. The Doppleron resonances are extracted from the positions of maxima in the total intensi-

ty of fluorescence. The spectral features are explained in terms of the eigenvalues of the appropriate

"Floquet" matrix.

PACS number(s): 42.50.Hz, 42.50.Lc, 42.50.Vk

I. INTRODUCTION

The quantum dynamics of an atom in an intense
standing-wave electromagnetic field is extremely rich
with many interesting consequences. Considerable work
on this subject has been done in connection with elec-
tromagnetic forces on atoms. The multiphoton absorp-
tion from the two components of the standing wave leads
to a number of resonances in observable properties such
as fiuorescence [1—3]. Consider multiphoton processes
for a Doppler-broadened two-level system. The atom is
affected by two traveling waves Doppler shifted in oppo-
site directions. The nonlinear processes involving (1+1)
photons from one wave and I photons from the other
wave produce resonance at the velocity

~oV=+
(21 + 1)kt

where coo is the atomic frequency, and col and kI are the
frequency and wave vector of the standing wave. The po-
sition of the multiphoton resonance is shifted by the in-
tensity of the field [3]. Kyrola and Stenholm [2] included
the effects of atomic relaxation and calculated the
excited-state population as a function of the velocity. For
increasing intensity they found that the velocity-tuned or
Doppleron resonances are shifted and new ones appear.
There have been two recent measurements [4,5] of the
Doppleron resonances. The experiments measure the
fluorescence produced by a beam of excited atoms in the
field of a standing wave. The fluorescence is monitored
using a third beam. These experiments demonstrated
Doppleron cooling.

The theoretical and experimental works so far have
been concerned with average behavior of atoms in
standing-wave fields. However, the complete quantum
dynamics of an atom is not only determined by quantities
like dipole moments and populations, but also by fluctua-
tions [6] in such quantities. In particular, the spectrum

of the fluorescence produced by atoms is useful in under-
standing the role of quantum fluctuations. With this in
view we study the spectral features of the radiation pro-
duced by an atomic beam in a standing wave field. The
organization of this paper is as follows: In Sec. II we
show how the calculation of spectrum produced by an
atom in a bichromatic field can be adopted for the
standing-wave case. In Sec. III we present numerical re-
sults. We identify the positions of Dopplerons. In Sec.
IV we present perturbative and nonperturbative methods
to understand the numerical results of Sec. III.

II. SPECTRUM OF RESONANCE FLUORESCENCE

E=e[cos(kt r tot t)+cos(—kt r+cott)] . (2.1)

For an atom moving with velocity v, the field at the posi-
tion of the atom can be written as a sum of two traveling
waves

—i 002t g —
i&itE(vt, t) =—e ' +—e ' +c.c. ,

2 2

where

(2.2)

D, co2=coI +D, D =kr. v . (2.3)

Thus the calculation of the spectra in a standing-wave
field is basically the calculation of the spectra in a bi-
chromatic field, which has been extensively studied [7,8].
However, in most of the previous studies one concentrat-
ed on the case of atomic frequency on resonance with the
central frequency of the fully modulated field [9], whereas
for the study of Dopplerons one has to consider situa-
tions where the detuning b, =coo—cot&0 [cf. Eq. (1.1)].
Thus new features will emerge that were not contained in

Consider a two-level atom with excited and ground
states denoted, respectively, by ~1) and ~0) and separated
by frequency coo. The atom interacts with a standing
wave field
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previous studies. For the calculation of the spectrum we
follow the method of Agarwal et al. [7]. We recall the
basic equations from their work so that the paper is self-
contained. The optical Bloch equations for the polariza-
tion and inversion can be written in the matrix form as

g,) ~d~ —— (2.11)

where PI~' is the steady-state limit of P'~'(t). Note further
that

Bd' =M/+(M+e '"'+M e'"')/+I,
at (2.4) The total intensity of fluorescence is proportional to the

population in the excited state

where I "p|i(r) = [43(&)+ 1 l/2 . (2.12)
Q=~, —co2, P) = (S+(t) ) =pa),

y, = (s (r) ) =p„, y, = (s'(r) ) =p„—p (2.5)

The inelastic component of fluorescence in the steady
state is equal to

Here 8* are the dipole-moment operators and S' is the
inversion operator. The nonzero elements of the matrices
M, M+ are

1
M&& ™22 l k2 7 M33 = 1/T)

2

M»=M23 = —M3, /2= —M3z/2=ig*/2,

(M+ )23
= —(M+ )3) /2 = ig /—2,

(M ),3= (M )32—/2=ig '/2,
I3 =r)/T, ,

(2.6)

where 62=Np N2 T~ and Tz are, respectively, the lon-
gitudinal and transverse relaxation constants, g is the
population inversion in the absence of the applied field,
a~d g is the Rabi frequency of the field defined by
(d F/R) Eq.uation (2.4) is written in a frame rotating
with frequency co2.

The spectral freatures of fluorescence are obtained
from the dipole-dipole correlation function. This correla-
tion function can be obtained from (2.4) and the
knowledge of the correlation matrix 4(t +r, t) with com-
ponents

4,(i+7,r)=(S+(r+r)S .(r)) —(S+(t+r))(s (r)),
4,(t+ t)r=(s (r+r)S (t)) (,S (t+r))(—S (t)),
4,(r+r, r)=(s'(r+r)S (t)) (S'(r+r))i'S—(r)) .

(2.7)

I;„=I I„=—,
'(—1+$'3 ') — g ~QIJ'~ . (2.13)

J= oo

The coupled equations for P'J', 4"' are solved using
continued-fraction methods [10]. We discuss the numeri-
cal results in Sec. III.

III. NUMERICAL RESULTS

In this section we discuss in detail the spectral features
of the fluorescence produced by atoms in a standing-wave
field. We consider the case of radiative relaxation so that
T2 =2 T

~ p = —1 . We present results for a range of
values of the parameters such as the detuning of the field
and the intensity of the field.

In Fig. 1 we show the behavior of the total intensity of
fluorescence as a function of the Doppler shift
k& v T, —=DT, . We also exhibit the elastic component of
the fluorescence. We find a number of peaks (dips) in the
total intensity (I,~). These peaks or dips correspond ex-
actly to Doppleron resonances given by the modification
of (1.1) due to the large intensity of the standing-wave
field. Note that for the first Doppleron resonance the in-
version is zero since the total intensity is equal to —,. It
may be added that these Doppleron resonances are the
analog of the subharmonic Rabi resonances [10—12],
which have been extensively studied experimentally
[9,12] and theoretically [10,11], particularly using fully
modulated pump fields. For the parameters of Fig. 1,
these Doppleron resonances occur at DT~ =25 ~ 12 11.25,
6.83, 4.82, 3.28, etc. The recent experiments [4,5] estab-
lish the existence of these Doppleron resonances in the

y(r) — g y(j)(i)&
—jn

J= oo

@(r+r,r)= g e' '(r)e '""+'
J = —oo

(2.8)

Furthermore, the steady-state inelastic S;„(co)and elastic
components of the spectrum can be obtained as follows:

Using the quantum-regression theorem, one can prove
that the matrix 4 satisfies Eq. (2.4) with I=O and
8/Bt~8/B~, e +—' '~e —' "+'. The time dependence of
P(t) and @(t+ r, t) is of the form
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S;„(co)=@I '[i (co —co2) ]+c.c. , (2.9) DT

S,l(co) = g 5(co a)2+j 0)~PIJ'~—
J= oo

(2.10) FIG. 1. Total intensity (and its elastic part) of fluorescence as
a function of the Doppler shift DT, for g T, =AT, =20.
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FIG. 3. Inelastic spectra when one is away from any of the
Doppleron resonances. The parameters are chosen as

g T) =ET) =20, DT) =8.
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(ro co&)T& = —bT&+(2n+—1)DT&, (3.1)

where n is an integer and 5 is the atom laser detuning
(defined by setting D =0). It may be noticed that the po-
sitions of the elastic peaks are independent of the field in-
tensity, whereas the inelastic peaks do depend on the
Rabi frequency of the pump. In Fig. 3 we exhibit the
spectra when the conditions for Doppleron resonances
are not satisfied. So these in a sense correspond to off-

total fluorescence produced by an atom in a standing-
wave field. It is also to be noted in Fig. 1 that higher-
order Doppleron resonances have subnatural linewidths;
for example, the fourth resonance has a linewidth of
about T, /3.

We next show in a series of figures the spectral features
of the fiuorescence under conditions of resonance. By reso-
nance we understand that the parameters like the detun-
ing, the Doppler shift, and the intensities are such that
the condition for a given Doppleron resonance is
satisfied. Figure 2 shows the sensitive dependence of the
spectral features on the order of the Doppleron reso-
nance. In some cases [Figs. 2(f) and 2(g)] we have also
shown the elastic spectra. According to Eq. (2.10) the
peaks in the elastic spectra occur at
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FIG. 2. Spectrum of Quorescence S;„(co) as a function of
(co—coo)TI for the same parameters as in Fig. 1. These spectra
are taken at different Doppleron resonances, which according to
Fig. 1 occur at DT, =25.12, 11.25, 6.83, 4.82, 3.82, etc. Parts
(a)—(e) correspond, respectively, to these Doppleron resonances.
In parts (f) and (g) we have also shown elastic peaks that have
been obtained by averaging the spectra, Eq. (2.10), over the
detector linewidth taken to be 0.01/T&.
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FIG. 4. Same as in Fig. 1 but now the Rabi frequency of the
pump field is smaller gT& =10. The Doppleron resonances
occur at DT& =21.25, 8.22, 4.91, etc.
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resonant spectra. We also show the nature of the spectra
when the Rabi frequency is smaller than the atom-field
detuning. The elastic component of the total fluorescence
exhibits a behavior (Fig. 4) different from that in Fig. 1.
One, for example, sees that at the third Doppleron reso-
nance both I and I,~

exhibit maxima. Figure 5 gives the
spectra at first, second, and third Doppleron resonances.
We will be able to understand some of these spectra in
terms of a perturbative approach in the next section. It is
interesting to observe that at the second Doppleron reso-
nance each peak splits into two.
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IV. INTERPRETATION OF THK SPECTRA
IN A STANDING-WAVE FIELD
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In this section we explain the spectral features of Sec.
III. We first give a qualitative discussion and then
present a quantitative approach. Let us consider Mollow
spectra [6] obtained if the atom were interacting with two
beams and if the interaction between beams were unim-
portant. In such a case we expect resonances at

co"'=coo (b, D—), a)o—(b, D)—+[g—+(b, D) ]'—
(4.1)

FIG. 6. Plot of eigenvalues a& and a2 as a function of the
Doppler shift D for gT, =ET, =20.

~(2)—~o (g+D) ~0 (g+D)+.[g2+(g+D)2]1/2

(4.2)

Now imagine that 6=D, then the field co, is close to reso-
nance, whereas the field co2 is away from resonance. Thus
one can imagine that co2 will perturb the spectra pro-
duced by co&. This perturbation can be shown [13]to pro-
duce fluorescence at ~"'+2nD where n is an integer.
Similarly, one can produce fluorescence at cu' '+2nD.
The spectral positions in Fig. 5 can be explained by these
considerations. The situation gets more complicated for
higher-order Doppleron resonances or for higher intensi-
ties of the pump. In such cases we have to calculate the
spectral positions by Floquet analysis. To do this we con-
sider the interaction Hamiltonian of the atom in the field
(2.2). We write it in the rotating-wave approximation,

S'
0

30 (4.3)
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which in the frame rotating with frequency coz=~I+D
becomes

62S g [S+(e—' '+1)+c c ], b, 2=. .~0 co& D. — —

(4.4)
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FIG. 5. Spectrum of fluorescence S;„(co)for the same param-
eters as in Fig. 4. Parts (a)—(c) correspond to different Dapple-
ron resonances, i.e., to DTj =21.25, 8.22, and 4.91.

FIG. 7. Sarnes as in Fig. 6, but now the Rabi frequency is

small gT& =10.
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TABLE I. The eigenvalues of % or the Floquet matrix and the transition frequencies m"', co' ', and
co'" for different Doppleron resonances and for the nonresonant case (DT& =8) and for g T~ =LTD'

=20.

DTj

25.12
11.25
6.83
3.82
8.00

(ol] &2)T$

19.01
4.33
1.50
0.60
5.37

5.12+50.24n
—8.75+22. 50n

—13.17+13.66n
—16.18+7.64n
—12.00+ 16.00n

24.13+50.24n
—13.08+22. 50n
—11.66+ 13.66n
—15.57+ 7.64n
—16.62+ 16.00n

—13.89+50.24n
—4.41+22. 50n

—14.67+ 13.66n
—16.78+7.64n
—17.37+ 16.00n

For the purpose of finding the eigenvalues of the Floquet
matrix one can either quantize [14] the time dependence

Ui

e ' or rewrite the Schrodinger equation as

where

y(n)(r) e 2iDnty—(r) (4.6)

g g+yn —1 g g —
pn +1

2 2
(4.5)

Let us denote the two components g(("', $0("' of the column
matrix g'"' as the components of an infinite dimensional

g in terms of the states
~ l, n ) and ~O, n ). We can now

write Eq. (4.5) in matrix form. The matrix, which needs
to be diagonalized, is

[i,n —1) )O, n —1) ~i, n) (O, n) ~l, n+1) ~O, n+1)

-'a, -2D
2 2

A

A
—

—,
' 5 —2D
2 2

A

A

—,'bz

0
0
A

0
0

0
0

io, n)
[i,n+1&
)O, n+1&

0
0
0

0
0
0

A

0
0

lg
2 2

A

0

A

—,
' h2+2D

A

0
A

——'52+ 2D2 2

(4.7)

where
A, '"=2nD+a(, A''=2nD+a, z . (4.9)

The eigenvalues of the matrix % are

20.5

(4.8)
The behavior of a& and a2 is shown in Figs. 6-9 for two
difFerent values of the Rabi frequency of the pump field.
Figure 8 (9) gives the behavior of a( and a2 as a function
of Rabi frequency (detuning of the field). The spectral
features can be obtained from (4.9). The transition fre-
quencies are
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FIG. 8. Eigenvalues as a function of the Rabi frequency of
the pump field for DT, = 10, AT& =20.

FIG. 9. Eigenvalues as a function of the detuning hT, for
gTl =20, DT) =10
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o ~2+ 2~D

0 52+ 2nD+ a j, czz

o 52+2nD —ai+o' (4.10)

Note that if the pump is on resonance, i.e., 6=0, then
a& =+2 =0 and the peak positions are independent of the
field intensity. An interesting consequence of this is that
the field inhomogeneity does not broaden the spectral
peaks if 5=0.

The spectral positions in Figs. 2, 3 and 5 can be under-
stood in terms of (4.10). For example, for
gT&=ET, =20, the transition frequencies are given in
Table I. These values match very well the spectral posi-
tions in Figs. 2, 3, and 5. However, for DT, =3.82 the
peaks are not resolved [Fig. 2(e)] since the numerically

evaluated spectra use 1/T, =1. For DT, =6.83, the
peaks are just resolvable [Fig. 2(d)] [15].

Thus in conclusion we have shown how the spectral
features in a standing-wave field depend on the intensity
and detuning of the field. We have shown how the spec-
tra1 features depend on the Doppleron resonance under
consideration. We further showed how the peak posi-
tions follow from the structure of the dressed states in a
standing-wave field.
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