
PHYSICAL REVIEW A VOLUME 46, NUMBER 8 15 OCTOBER 1992
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The efFects of additive Gaussian white noise on the onset of Rayleigh-Benard convection are studied
by means of a phenomenological model, the stochastic Swift-Hohenberg equation. The strength of the
noise term arising from thermal fluctuations is given for both free-slip and rigid horizontal boundaries.
As was already pointed out by previous authors this term contains the small parameter ksTlpdv,
where p is the mass density, d the plate separation, and v the kinematic viscosity. For typical liquids this
parameter is of order 10 . Experiments involving fluctuation efFects may be interpreted in terms of this
model if the noise strength is treated as an adjustable parameter, which turns out to be larger than the
typical thermal value by four orders of magnitude. The efFects of fluctuations on the bifurcation of an
infinite system are studied, and the earlier arguments of the present authors leading to a first-order tran-
sition are reviewed [Swift and Hohenberg, Phys. Rev. A 15, 319 (1977)]. The conditions under which the
multimode model can be approximated by a single-mode stochastic amplitude equation are investigated,
and an earlier analytic approximation scheme for calculating the response to a time-dependent Rayleigh
number is applied to the multimode model. A comparison with available experimental and numerical
simulation data is presented.

PACS number(s): 47.25.Qv, 05.70.Fh, 05.40.+j

I. INTRODUCTION

Macroscopic pattern formation in hydrodynamics, e.g.,
Rayleigh-Benard convection or Taylor-Couette flow, is
usually discussed by means of the deterministic Navier-
Stokes equations, or by suitable simplified models derived
from them [1,2]. It is known, however, that these equa-
tions must in principle be supplemented by thermal noise
terms to describe the fluctuation effects of molecular de-
grees of freedom [3]. On the other hand, certain experi-
ments appear to require externally applied stochastic
forces for a suitable physical interpretation [4]. It is thus
reasonable to study the effects of external noise of arbi-
trary strength F &(1 on the hydrodynamic description of
pattern-forming bifurcations, both to assess the influence
of the known thermal noise and to model other possible
sources of external noise. The present paper analyzes a
simple phenomenological model of spatiotemporal pat-
tern formation, the stochastic Swift-Hohenberg (SH)
equation [5], and compares the results to presently avail-
able experiments on Rayleigh-Benard convection [4] as
well as to numerical simulations. Our primary aim is to
review and clarify earlier work and to present the results
in a form that will stimulate further experimental and
theoretical research.

The earliest discussions of the effects of noise on
Rayleigh-Benard convection were by Zaitsev and
Shliomis [6] and by Graham and co-workers [7,8], who
derived the fundamental estimate of the dimensionless
strength of thermal noise F,h -k~ T/pdv, where p is the
mass density, d the plate separation, and v the kinematic
viscosity. This number represents the ratio of a micro-

scopic to a macroscopic energy and is therefore very
small (typically 10 ), so that thermal noise can usually
be neglected. The original calculations as well as subse-
quent ones by the present authors [5] were for the unreal-
istic free-slip boundary condition, but a later calculation
by van Beijeren and Cohen [9] showed that a similar re-
sult held for the rigid case. The physical circumstances
under which F,h can become larger have been discussed
by Ahlers [10],but we shall not consider such cases here.

In 1977 the present authors introduced a simplified
model [5] of the Rayleigh-Benard instability (now known
as the Swift-Hohenberg model), in order to understand
the critical behavior associated with fluctuation effects at
the bifurcation. We pointed out that although the
critical region would be extremely small
( ~R —R, ~ /R, -F ~ = 10 ), because of its symmetry the
convective instability belongs to a new universality class,
first discussed by Brazovskii [11]. The renormalization-
group theory for this transition has never been systemati-
cally worked out, but the self-consistent solution of Bra-
zovskii could be adapted to the relevant two-dimensional
case and a fluctuation-induced first-order transition was
found [5], with the size of the jump scaled by the small
parameter F . Although the main current interest in
the SH equation stems from its use by subsequent authors
as a simplified deterministic model of spatiotemporal pat-
tern formation near the convective threshold [12], the
possibility of finding physical systems with a significantly
larger thermal noise, and experimental evidence that non-
negligible external noise (of unknown origin) is present at
the Rayleigh-Benard instability of ordinary fluids
[13—15,4], warrant a reconsideration of the original sto-
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chastic SH model. The present paper will review the ar-
guments of Ref. [5] and give a self-contained statement of
the main results, correcting some minor errors and incon-
sistencies (and a large number of misprints), but not go-
ing beyond the basic approximations of the earlier work.
One exception is that we will incorporate the estimate of
E,„given by van Beijeren and Cohen [9) for the case of
rigid horizontal boundaries, since the original work in-
volved the unphysical approximation of free-slip boun-
daries. As it turns out, the expression for E,h is the same,
when written in terms of the appropriate physical param-
eters.

As pointed out by Ahlers, Cross, Hohenberg, and
Safran (ACHS) [13], there are physical situations under
which even tiny fluctuating forces might be observable,
mostly associated with the dynamic response of a system
being swept through the threshold by external change of
Rayleigh number R (t). Experiments [13—16,4] involv-

ing linear ramps [R (t) Ro—+R, t ] and sinusoidal modu-
lation [R(t)-Ro+Ricoscot] were successfully analyzed
in terms of a stochastic amplitude equation [16], as well
as the stochastic SH model, with the noise strength F
treated as an adjustable parameter. Its value turned out
to be roughly four orders of magnitude larger than the
predicted thermal noise strength F,h

—10, and there is
at present no convincing interpretation of the origin of
the observed noise. Although there is general agreement
on the orders of magnitude of the expected thermal noise
and of the observed value of F, considerable confusion
remains on the precise values and on the relationship be-
tween the stochastic SH model and a single-mode sto-
chastic amplitude equation, due to unfortunate errors
and misprints in earlier work [5,7,9,13], as well as to an
abundance of different definitions and conventions. The
present work seeks to clarify this situation.

The analysis of experiments in terms of stochastic
models involves either analytic or numerical evaluation
of the predictions of the model. Since even the one-mode
equation demands considerable numerical effort [16] (in
order to obtain a proper average over realizations of the
stochastic force), and numerical solutions of the stochas-
tic SH model have only recently been undertaken [17], it
is useful to derive approximate analytic methods. Ahlers
et al. [13] proposed a reduction of the multimode field

equation to a one-mode amplitude equation, though it
was later pointed out by van Beijeren and Cohen [9] that
the evaluation of the effective one-mode noise amplitude
F of ACHS was not applicable to a large aspect ratio sys-
tem with many linear modes initially excited. This ques-
tion is considered here once again, and we show how the
effective single-mode noise F depends both on the
geometry and on the strength of the noise, being only
simple for sma11 noise. Besides an evaluation of F, ACHS
also generalized an approximation first introduced by
Suzuki [18], to obtain an analytic evaluation of the
response of the one-mode model to an arbitrary time-
dependent Rayleigh number R (t) This approx. imation
was found to be very poor under certain circumstances,
however, and in a recent paper [16], the present authors
and Ahlers reconsidered this problem. These authors in-
troduced a slightly modified approximation scheme

II. THE STOCHASTIC SH MODEL
AND THE SINGLE-MODE EQUATION

A. Stochastic SH model

The stochastic SH inodel was derived in Ref. [5] for a
laterally infinite system with stress-free horizontal boun-
daries. The appropriate modification for rigid boundaries
follows from the work of van Beijeren and Cohen [9].
For completeness we summarize the essential arguments
here, and correct a number of errors in earlier work. The
starting point is the set of Oberbeck-Boussinesq equations
for the velocity u and temperature T, supplemented by
Langevin noise terms to represent random molecular
motion [5,3],

B,u+u Vu= V(P/p)+vV u ga—?z+V—s,
V.u=O

B,T+u. V T=~V T—V q~,

(2.1)

(2.2)

(2.3}

where P is the pressure, p the density, v the kinematic
viscosity, g the acce1eration of gravity, a the thermal ex-
pansion, a the thermal diffusivity, and V=(V, B, ) the
three-dimensional gradient, with respect to the vector
(x,y, z)=(x,z). The noise terms are assumed to possess
a Gaussian distribution with correlations given by

(s; (x,z, t)si (x', z',.t')) =(ksT jp)2v6(x —x')

x 6(z —z')6(r r')—
X(6,,6, +6, 6,i), (2.4a)

which agreed rather well with direct simulations of the
one-mode model, for ascending and descending ramps
and for sinusoidal modulation of R. The present paper
generalizes this approximate treatment to the stochastic
SH model, and makes comparisons with available experi-
mental and numerical data. Up to now there is little to
distinguish the quantitative success of the single-mode or
multimode models, but it is hoped that the present work
will stimulate more detailed investigations of the latter
model.

In Sec. II the derivation of the stochastic SH model is
outlined, starting from the equations of hydrodynamics
supplemented with fluctuating forces to represent
thermal noise. The dimensionless strength of the thermal
noise at the convective threshold F,h is obtained for free-
slip boundaries and quoted from the work of van Beijeren
and Cohen [9] for the rigid case. The conditions under
which the system may be approximately reduced to a
one-mode equation are spelled out and the corresponding
value of the effective noise Fderived. Section III summa-
rizes in a self-contained way the results of SH using the
Brazovskii approximation to obtain a fluctuation-induced
first-order transition in an infinite system. The ensuing
linear correlation function near threshold is also present-
ed. In Sec. IV an approximate solution of the stochastic
SH model generalizing the result of Ref. 16 is obtained
for arbitrary time dependence of Rayleigh nuinber R (t}.
Comparisons of the theory with available experimental
and numerical results are made in Sec. V.
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(qz (-x, t)qz;(x', t')) =(ks T'/c„)2@5(x—x')

X5(z —z')5(t —t')5.. . (2.4b)

where c„ is the constant-volume heat capacity per unit
volume. The temperature is taken to be

T(x,z, t) =Ti+(T„—Ti)(z/d)+8(x, z, t),

(A24) below, and

3qp+R, =170.89 (free slip)

385.28 (rigid )

(see Appendix A). It follows that

(2.11a)

(2.11b)

where T„and TI are the fixed temperatures of the upper
and lower plates, respectively, which are separated by a
distance d. We shall introduce dimensionless variables in
which distance, time, and temperature are scaled by d,
d /a, and av/agd, respectively, and define the Rayleigh
number

gad (Ti —T„)R=
KV

(2.6)

A well-studied model for the deterministic problem
[s=qz =0 in (2.1) and (2.3)] near the convective thresh-
old R =R, is a two-dimensional theory involving a gen-
eralized real order parameter f of the form [5]

d'or), Q(x, t)=[e P~(V +—qo) gsP ]—P(x, t)

(8') =c '( y') =c '(JV—1), (2.12)

d'or),

2 (x,y, t ) = [e+ go[ i)„(i—/2q o )t)„]2

—gp(A( ]A(x,y, t), (2.13)

for the complex function A defined by

P( x, t ) = [ A (x, t )e ' +c.c.], (2.14)

to lowest order in e.
The precise sense in which the SH model (2.7) is

equivalent to the original problem is that for a solution
involving small deviations from a pattern of parallel rolls
perpendicular to x, both systems lead near threshold to
the same amplitude equation,

(2.7a} with [19]

7= —fd x I ,'ef ,'g—sf —,'—P~[(V—+—qo)g]], (2.7b)

where the real constants 7 p qp and gp given in Table I
depend on the horizontal boundary conditions, and the
Prandtl number o =v/lr, and

f0=3' 3 ~

The correlation length coefficient go in (2.13) is

Co=4qoPo .

(2.15a}

(2.15b)

e=(R —R, )/R, (2.8)

is the reduced Rayleigh number. The above equation will
be referred to as the (deterministic} Swift-Hohenberg
model.

The real field variable 1( is related to the vertical veloci-
ty u, =z.u and the temperature 8 in such a way that the
Nusselt number is to lowest order in e simply given by

(iV—1)=S ' fdxf (x), (2.9)

where S is the area of the cell. Moreover, as shown in
Eq. (A15) of ACHS the field 1( is related to the tempera-
ture 8, Eq. (2.5), by

8(x,z, t ) =c8o(z)f(x, t ), (2.10)

where 80 is a normalized eigenfunction quoted in Eq.

Free slip Rigid

qo

ko

277T /4

317 0'

2 ca+1
8/3H
n-/&2

2/v'3H

1708

19.65cr

o +0.5117

0.148

3.117
0.062

TABLE I. Values of basic convection parameters appearing
in Eq. (2.7} in the free-slip and rigid regimes.

r,a,y= — +f(x, t ),5

fdx[ ,'e4' —.'g34' —,'Po[—(V—'+qp —}y—]'],

(f(x, t )f(x ', t') ) =2Fro5(t t')P()5(x x—'), —

(2.16a)

(2.16b}

(2.16c)

Since g3 is sensitive to finite size it is usually taken from a
fit to static experiments [4]. The higher-order gradient
terms which are present in the SH model and not in the
amplitude equation (2.13) do not come from a systematic
expansion of the original system (2.1)-(2.3}. On the other
hand, these terms lead to an equation which has an im-
portant advantage over the complex amplitude equation
(2.13), in that it is rotationally invariant in the x yplane, -

and it can therefore describe roll patterns with arbitrary
orientation.

The stochastic equations with s, qrAO in (2. 1)-(2.3),
linearized near threshold, lead to correlation functions
for velocity and teinperature which were first derived by
Zaitsev and Shliomis [6). The result appears also in Eq.
(13) of SH [5] or Eq. (D14) of ACHS [13] for free boun-
daries, and in Eq. (6.17) of Schmitz and Cohen [20] for
the rigid case. From the relation between the hydro-
dynamic variables and the field f we can thus infer the
correlation function for g in linear approximation near
threshold. We then suppleinent Eq. (2.7) with a Gaussian
white-noise term whose strength is fixed by requiring that
it yield the correct (fg) correlation function (see Ap-
pendix A). The stochastic SH model thus becomes [21]
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where the noise strength coefficient F can be shown to be
(see Appendix A)

F=F,~ = k~ T 2o.qp

pd v' koroR.
(2.17)

(f„f„)=(f ) =0,
F~ =(FoCo)'F =F/2eoko .

(2.18c)

(2.18d)

It is remarkable that Eq. (2.17) holds for both free and
rigid boundary conditions, when expressed in terms of
the appropriate constants [22]. The thermal noise (2.17}
is scaled by the small parameter ktt T/pdv, which
represents the ratio of the thermal fluctuation energy
ktt T to a characteristic (dissipative) energy of convection
(pd )(v/d ) . It is the mismatch between the microscopic
energy scale in the numerator and the macroscopic scale
in the denominator of F which limits the effects of
thermal fluctuations on the convective threshold. Nu-
merical estimates of the magnitude of F,z have been
given by Ahlers [10] for various materials, and under
favorable circumstances its value can reach 10 . As
mentioned in the Introduction, we shall use the stochastic
SH model (2.16) near threshold, treating F as a single ad-
justable parameter.

When the P field satisfies the stochastic equation (2.16),
the amplitude equation corresponding to (2.13}is

'r d, A(x, y, t)= fe+g [8„(i/—2q )8 ]'
—

go ~
A

~ ] A +f„(x,y, t ), (2.18a)

with a complex Gaussian noise satisfying

(f&(x,y, t)f&(x',y', t'))

=2F„goro5(x —x')5(y y')5(t t')—, (2.18b)—

propriate lateral boundary conditions which we do not
need to specify. Then the amplitude function satisfies the
equation

F,B, A = [V(t) g—, A ']A(t)+ f(t),
(f(t)f(t') ) =2Fr05(t —t'),

(2.19b)

(2.19c)

where vp E' and g3 are suitably renormalized coefficients
which depend on system size [see, e.g. , Eqs. (2.23)—(2.28)
of ACHS]. Moreover, the noise strength acting on the

mode A is given, as in Eq. (D19}of ACHS, by

F=F(P()/S) . (2.20)

Note, however, that the reduction of (2.16) to (2.19) holds
only in the restricted range

Ec (2.21)

where e„ the threshold shift, is itself proportional to
S '. Thus for systems consisting of more than a few
rolls, S = (L/d )2 & 1, the direct reduction to a one-mode
model employed by ACHS is not useful quantitatively.

Let us consider the opposite limit of a laterally infinite
system (S~ ao },and define the real amplitude function

A '(t) =—JV(t) =(1('(x,t) ), (2.22)

where we assume A ~ 0, and the second equality follows
since the average is independent of x by translational in-
variance. In general A (t) satisfies a complicated equa-
tion involving derivatives of g and higher powers, rather
than the local quantity A = ( P ) itself. The crudest ap-
proximation is an equation of the form (2.19), where the
coefficients ro and e are those of (2.7) because of the
infinite geometry, and we choose the nonlinear coefficient
to satisfy Eq. (2.9),

This result is similar to the one in Eqs. (3.19) and (3.20) of
Graham [7],except that the factor of 2 in (2.18b) above is
missing from Graham's expression. [Indeed, there is an
inconsistency in Graham's work [7] of a factor of 2 be-
tween Eqs. (3.19) and (3.20) which are incorrect, and Eq.
(6.13), in which the factor of 2 has been restored. See the
Erratum to Graham [7].]

r,B, A = [e(t)—g, A ']A(t)+ f(t),
(f(t)f(t')) =2Fro5(t —t'),

with

gi =go/2=3/3/2,

(2.23a)

(2.231)

(2.23c)

B. Reduction to a single-mode equation

P(x, t ) = A (t)go(x), (2.19a)

where go(x) is a normalized function satisfying the ap-

Suppose we wish to use (2.16) to describe situations
near threshold where the control parameter e depends on
time, in particular to calculate the global quantity JV, Eq.
(2.9), whose time dependence can be measured with pre-
cision by thermal means. Rather than solve the full mod-
el (2.16) and integrate the solution over space to find
JV(t), it would of course be much simpler to solve an ordi-
nary differential equation for JV(t) directly. The question
is, under what circumstances is this reduction a reason-
able approximation? The first limit, which was discussed
in ACHS, is that of a finite system sufficiently close to
threshold, when only one mode fits into the container

and the strength F to be determined. Although in our
quantitative analysis we shall use an approximation
which is somewhat more accurate than (2.23) for general
e(t), this equation is useful for estimating the order of
magnitude of F. Let us first assume a simple jump in e,

(2.24a}—op&0, t &0

)0, t)0. (2.24b)

Then for large times both (2.16) and (2.23) yield (to lowest
order in e, «1)

(y'& =( A '& =2., /3g, =,/g, , (2.25)

so the form of the nonlinear term in (2.23a) seems to be
reasonable. To determine the unknown parameter F we
look at early times, specifically at the onset time t,„,
where ( A (t) ) first becomes appreciable. We first calcu-
late the initial rise from the linearized equation (g3 =0),
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and then check the self-consistency of this assumption.
The calculation to be presented in Sec. IV yields in the
linear approximation for the step (2.24),

(g 1(t})—[F/4+2ntl. wo](eo '+ei ')exp(2@it/ro},

te, /~o»1 . (2.26)

Alternatively the one-mode equation (2.23) gives in the
linear case,

( AI (t) ) -F(eo '+e, ')exp(2e, t/~o), th)/7o&& 1

(2.27}

for (P(t)) which is an adaption of these ideas to our
problem. For our present purposes we may summarize
the result by saying that it corresponds to the one-mode
equation (2.23) with an effective noise given by the linear
estimate (2.28). A similar argument was recently shown
to hold for front propagation in the SH model by Elder
and Grant [24].

A necessary condition for the validity of the above
scheme is that the noise should be suSciently weak that
the linear approximation should still hold at a time when

(g (t}) has grown sufficiently so that the stochastic force
may be neglected. From the equation

whence comparison with (2.26) yields

F,s =F/[4+2m t /ro] . (2.28)
g 3 ( 1 ~ +Fkofo /4~ (2.30)

The reason for the absence of the factor S ', which
appeared in the small geometry, Eq. (2.20), was already
commented upon by van Beijeren and Cohen [9]. For a
large system there is a whole continuum of modes around
q=qo which experience growth above threshold, and
their contribution adds up to eliminate the factor S
present in Eq. (2.20), replacing it by a factor proportional
to t ' at long times.

It should be stressed, however, that the argument lead-
ing to (2.28) is entirely tied to the linear approximation,
which must fail at long times. In particular, when (g )
has grown suSciently large so that nonlinearity is dom-
inant, it has the effect of suppressing most of the excited
modes leading to (2.28). For the ideal situation in which
a perfect roll pattern is created, the phase space must
shrink to a point (q=q, =qox, say) at long times. The
noise in the original equation (2.16) acting on that partic-
ular mode has magnitude

(2.29)

as in (2.20). It is thus legitimate to ask whether the time
scale for the growth of this mode will be set by the noise
(2.28) acting on all the linearly unstable modes, or by the
noise (2.29) acting on the mode qi which eventually wins
out. Since the qAq, modes act to suppress the growth of
the q& mode during the late stages, it is not obvious that
they contribute to the effective noise which stimulates the

q& mode during the initial stages. This, however, seems
to be the case, if the noise is sufficiently weak, as we shall
see.

Although we have not solved the difficult theoretical
problem of actually calculating ( P (t) ) from (2.13) for an
e(t) given by (2.24), we may appeal to the work of
Kawasaki, Yalabik, and Gunton [23], who considered a
quench for the slightly simpler case where (V~+qo2)2 in

Eq. (2.7) is replaced by V . Building on work of Suzuki
[18], these authors argued that for sufficiently weak noise
the growth of the ordered pattern (in their case a simple
ferromagnetic domain) can be divided into two stages: an
initial stochastic one where the dynamical equation can
be linearized, and a later nonlinear stage which is deter-
ministic, i.e., in which the stochastic force f can be
neglected. In Sec. IV we shall derive a general formula

which follows from (2.16), we take this condition to be

E(t}(f(t) ) »max[Fgoqo/4m. ,g3(g )], (2.31)

for some range of time t Repla. cing (g ) and (P ) by
their linear (Gaussian} approximations ( QL ) and

3(QL ), respectively, and estimating these by use of Eq.
(4.1}given in Sec. IV, we find the condition

ei ))3g3Fgogo /47',

for a jump (2.24), and

PTo» 3g 3F(op o /477

(2.32)

(2.33)

for a ramp e=Pt. Thus for sufficiently weak noise the
stochastic effects occur entirely in the linear domain and
the replacement of the multimode field equation (2.16) by
the single-mode equation (2.23} is a reasonable first ap-
proximation.

The one-mode stochastic equation can be solved nu-
merically for arbitrary time-dependent e(t}. An approxi-
mate analytic solution scheme for the weak-noise case
F«1 was proposed by ACHS, and recently modified
[16] and shown to reproduce numerical results on the
same model rather well, though not perfectly. Before at-
tempting to extend the analytic work to the stochastic
field equation (2.16), we wish to summarize our present
knowledge concerning the "thermodynamics" of the sto-
chastic SH model, i.e., the behavior of steady-state aver-
ages such as ( P ) for time independent e in the thermo-
dynamic limit of infinite volume (S~~ ) [5].

III. THERMODYNAMICS
OF THE STOCHASTIC SH MODEL

A. Phase transition

This section summarizes the results of our paper [5]
based on Brazovskii's work [11]. Since we have not suc-
ceeded in carrying out a systematic renormalization-
group analysis in any dimension we use diagrammatic
perturbative theory based on weak coupling, and find a
fluctuation-induced first-order transition. As explained
earlier [5], the result may be shown to be self-consistent
for weak noise, but it is by no means a full solution of the
problem.
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For constant Rayleigh number the stationary probabil-
ity distribution for the model (2.16) is of the form

P(g) =Z 'exp[ —V(g)/P~],

or in the scaled units of Appendix A,

P(g)=Z 'exp[ —9'(f)],

(3.1)

(3.2)

where Z and Z are normalization constants. The re-
scaled form of the free-energy function is given in Eq.
(A27),

Equations (3.7)—(3.12c} allow us to evaluate the Nusselt
number as a function of e, in terms of the quantity shown
in Fig. 1,

3.63g3 F [A(e) —1]=Jr[el(3g3F/4) ]=A—(&') .

(3.12c)

The scale of the fluctuation contribution is set by F
which measures both the size of the critical region and
the magnitude of the jump in Nusselt number.

B. Correlation function

P= f dx —
—,(e1(t + —,'[(V +q())g] +

A, =6g3F, q(, =(qogo/2)(~2,

(3.3)

(3.4)

The correlation function of the linearized stochastic
equation [(2.16) and (2.7b) with g3 =0] may be calculated

exactly for arbitrary e(t). Let us for concreteness assume

g(x ) = ( q(X)q(0) ), (3.5)

in the ordered and disordered phases in order to compare
the corresponding values of the free energy

4= —ln(e ~) . (3.6)

which is essentially Eq. (Bl) of SH except that the deriva-
tive (V2+q())z was rePlaced by ( iV —qo)2—=(q qo—} .
We will retain the more accurate form (3.3). We wish to
calculate the propagator

e(t)=-e, &0, t &t,

e(t) arbitrary, t & to .

(3.13)

(3.14)

(gt (x, t)(((tL (x', t') )

d q iq (x x'.)+—Q (t)+Q (t)'
(2m. )'

Then for t & t' the linear correlation function takes the
form

In the disordered phase [25] we have the Hartree expres-
sion [Eq. (B2) of SH]

&Oq

1 2 t' —2Q (s)
ds e

t()
(3.15)

r =g '(q =qo) = e+ ,'Ar—— (3.7)
where

where the factor —,', coming from the integral in the Har-
tree diagram [5] replaces the constant a [26]. In the or-
dered phase e) 0, where

(g(x)) =2a cos(q, x}, q, =qo,

we have [Eq. (B8) of SH]

= —~+ -'~~ '"+~a'

(3.8)

(3.9)

and the order parameter a is given by the zero-field con-
dition of Brazovskii [Eq. (11)of Ref. [11]],

~MF /
/

/
/

h =a(r+ ——'Aa ) =0 .
2

(3.10)

PPI PP

1y+ r

The free-energy difference between the ordered and disor-
dered phases can be shown to be

2 2

2A, 8 2k 8
(3.11)

JV—1=(g ) =F(g ) =(F/4)r '~, e&0 (3.12a)

JV—1=(F/4)[r+'~ +16r+ /A. ], e&0 . (3.12b)

replacing the corresponding equation of Brazovskii [Eq.
(14)], which has incorrect factors. Equations (3.7) and
(3.9) with (3.10) may be solved to find r+(e), from which
b,@(e) can be calculated. This quantity changes sign at
e=e, =1.69(g3F} ~, where the system makes a (first-

order) transition to the ordered state with a %0. To make
contact with measurable quantities we evaluate the aver-
age of the Nusselt number which according to Eqs. (2.9)
and (A20) is

//
/

p I/

p

FIG. 1. The reduced Nusselt number
—2/3A'=3. 63g3 F '(JV—1) as a function of the reduced Rayleigh

number Z=e/(3g3F/4) ', as obtained from the self-consistent

Brazovskii approximation given in Eqs. (3.7)—(3.12). The

effective free energies of the disordered (JV' ) and ordered (JV+ )

branches cross at X=XI=2.03, where the Nusselt number has a

jump AJV=1. Unstable and metastable portions of the JVy

branches are represented by dashed lines. The scale of Nusselt

number and Rayleigh number is set by the small parameter

F . In these units the mean-field dependence

~MF —1=2~/3g3 is given by ~MF=2e (long dashed line).
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eo, =co+Co(q' —qo)'

Q (t)=ro ' f ds e (s),
fo

e (t)=e(t) —g(q —qp)2.

(3.16a)

(3.16b)

(3.16c)

exp[ ep~ (—t t ') /—rp]

&oq

(3.17)

where Jo(a} is a Bessel function, and we have introduced
upper and lower cutoffs AI and A„ for the q integral. It
turns out that the quantities we calculate are insensitive
to the precise values of the cutoffs. If for convenience we
pick A„=&2qo and AI=O we may easily transform
(3.17) to

(gt (x, t)gt (x', t') }
eo(&—t') /~0Fe
~2~c,

' 1/2
t —t' 2&o

I, c. . . , qplx —x'I
270

(3.18)

with

—a2Q2

L(ct,P, y)= —f du Jo(y&1+u), (3.19a)
2 —1 p+ 2

1
Jo(ri)= f dv cos[ricos(2nv)],

0

c, =v'2(goqo) =gpqo/v 2=0.85 (rigid) .

(3.19b)

(3.19c)

The temperature correlation function (88} may be ob-
tained from (3.18) by use of (2.10).

IV. RESPONSE
TO TIME-DEPENDENT CONTROL PARAMETER

Let us first calculate the "equilibrium" correlation
function below threshold, i.e., for the case e(t) = —

ep &0.
We find, for t ) t',

+Po
(gt(x, t)ft(x', t'}}= f q dq Jp(q~x —x'~)

in Sec. III. For this case the integrals in (3.15}—(3.16c)
may be rewritten in the form

t yt, (t) }=R i(t)[1g(t)+R ((t)]=R i(t)y (t),
t —to 2'F

EC c1
c,n.v'2Pp(t) =

c2+0

(4.1)

(4.2)

Rf(t)=
Fc, f dsRi (s)H c,

'rp lr 2 0

1/2t to

70

(4.3)

with

E(ct,P):f d—u e " (P+u )
0

H(a)= f du e
0

t
R, (t)=exp ro 'f e(s)ds

fo

(4.4a)

(4.4b)

(4.4c)

The expression in (4.4a) depends rather sensitively on the
assumption made above that e(t) = ep &—0 for t & to.
More generally, we may approximate the function E in
(4.4a) as K(a,P) =E(O,P)H(a) and replace (4.2) by

Pi()(t)=P(~H(ci(t tp)' rp —' ), (4.5)

where fpp is a fitting parameter, to be determined by a
matching condition as in I. Comparing Eqs. (4.1)—(4.5)
to Eqs. (A4) —(A10) of I we see that the multiplicity of
modes is thus summarized entirely in the function H(a).
This leads to an effective noise which is nonlocal in time,
as can be seen by comparing Eq. (4.3) above with Eq.
(A10) of I. At long times we have H(a)-&n/2a, a»1,
and Eqs. (4.1)—(4.5) lead to an eff'ective one-mode noise
given by Eq. (2.28) above.

Our proposed solution of the nonlinear stochastic SH
equation (2.16) is now the same as in the one-mode case
[27] discussed in I, except that the exact linear result of
the multimode equation given in (4.1) is used in place of
( At (t)), Eq. (A6) of I. In Appendix B we give a self-
contained summary of the approximation scheme of I as
it applies to the stochastic SH model.

Let us now seek an approximate formula for the
Nusselt number in cases where the control parameter de-
pends on time e(t) This was d.one in Ref. [16] for the
one-mode equation [2.23]. The idea was to solve the
linear stochastic problem exactly for the given e(t), to
solve the nonlinear deterministic problem exactly, and to
match in between. For the multiinode model (2.16) the
second step is not possible. As mentioned above,
Kawasaki, Yalabik, and Gunton [23] have given an ap-
proximate treatment for the case of relaxation to a steady
state in a model where qo=0, based on an extension of
the Suzuki approximation [18]. We propose a similar
scheme which essentially uses the one-mode deterministic
solution of the nonlinear problem and the exact linear
stochastic solution (3.15), with the same matching as in
Ref. [16] (referred to as I in what follows).

We begin by evaluating the local average (g ( Lt)x}

from the linear expression (3.15) using the same cutoffs as

V. COMPARISON WITH EXPERIMENT
AND WITH NUMERICAL SIMULATIONS

A. Experiments

The most convenient experimental tests of the stochas-
tic Swift-Hohenberg model for our purposes are those of
Meyer, Ahlers, and Cannell [4] on Rayleigh-Benard con-
vection with time-dependent Rayleigh number. The re-
sults of the analysis for temporal ramps (e=Pt) going
through threshold were already discussed by Meyer,
Ahlers, and Cannell [4], who compared the measured
time-dependent convective current with a calculation of
( g (t) }based on the approximation discussed in Sec. IV,
treating F as an adjustable parameter. The first result
found by these authors was that the shape of (P (t) }
fitted the experiment well (better than a simple deter-
ministic model} for dimensionless ramp rates in the range
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0.01 &P&0.3. The fitted value of F was independent of
ramp rate in the interval 0.05 & P & 0.3 and was given by

(j"""&=(co/2ir) I ds(l(i (s) &, (5.3)

expt ' th (5.1)

i.e., four orders of magnitude larger than the predicted
thermal noise. The origin of the stochastic force acting
on the system and causing the onset of convection
remains unknown. For P&0.05 there was some indica-
tion that the fitted F becomes larger, but the authors not-
ed that the experiments are more difficult in this range.
Finally we should mention that the one-mode stochastic
equation (2.23) also gives a good fit to (g (t) &, but the
value of F obtained in the fit has a systematic dependence
on ramp rate, which is consistent with an estimate based
on Eq. (2.28) above. Thus the onset time experiinents
give some support for the model, though so far no
theoretical analysis of the emerging patterns has been
carried out, and there is no understanding of the physical
origin of the stochastic force.

Turning to periodic modulation experiments, with

which is independent of t. In Fig. 2 we show
(j"""

&
= ( JV& —1 as a function of eo at fixed oi= 1 and as

a function of frequency at &O=O. It is seen that the tran-
sition is rounded in the presence of modulation by an
amount which increases as the frequency decreases. As
explained by Ahlers, Hohenberg, and Liicke [28], this
rounding is entirely due to the forcing, since for f=0 the
bifurcation is unshifted by modulation for an equation
that is first order in time. (The argument of Ahlers,
Hohenberg, and Lucke was given for the one-mode equa-
tion, but it holds for the field equation as well. ) The
agreement between experiment and theory shown in Fig.
2 can be considered quite satisfactory since it involves no
adjustable parameters, the noise strength F being taken
from an independent ramp experiment in the same cell.
We have found no difference in the quality of the fit be-
tween the field equation (2.16) and the one-mode approxi-
mation (2.23) if the appropriate field strength is used.

E(r) =so+5 cosoir (5.2) B. Numerical simulations

0.3 —0.1—

I
/

/
/

/
/

/

0.05—

0.2—
0Z 0
O

these may be analyzed with either the multimode (2.16)
or the one-mode (2.23) stochastic equations, using the ap-
proximations of Ref. [16] and Sec. IV. Detailed compar-
isons with experiment [29] have only been made for the
average convective current in the periodic state reached
at long times (t ~ ac ),

In Ref. [16]we have compared the analytic approxima-
tion scheme of Sec. IV to numerical simulations of the
one-mode stochastic equation and found good, though
not perfect, agreement. In this section we briefly com-
pare the theory to recent simulations [17] of the stochas-
tic field equation (2.16), for the case of a ramp e=Pt,
starting with l(—=0 at t =to &0, i.e., in the disordered
state, and crossing the threshold at t =0. The parameters
used were close to those of Meyer, Ahlers, and Cannell
[4], namely go =0.249, ro=0. 0552, qo =3.117,
F=3.2X10, and g3=0.5, and two values of ramp rate,
P=0.27 (with to= —2) and P=S (with to= —0.5). In the
theoretical expression given in Appendix B the nonlinear
effects are treated in an approximation based on the one-
mode model, Eq. (B10), according to which (P (t) &

reaches the one-mode adiabatic answer,

0.1— (g (t) &,d=e(t)lg, =2@(t)/3g, , (5.4)

0

—0.2 0.2

FIG. 2. Convective contribution to the heat current averaged
over a period for convection with external modulation of the
Rayleigh number in the form e(t)=6'p+6coscot, plotted as a
function of ep, for fixed dimensionless frequency co=1. The
solid and dashed lines represent the experimental results of
Meyer, Ahlers, and Cannell [29] in the present and absence of
modulation, respectively. The solid points are the calculated
values using the stochastic SH model (2.16) and the solution
method of Appendix B, with F=3.2X10, as obtained by
Meyer, Ahlers, and Cannell [4] from a separate experiment in

the same cell. The modulation strength 5=0.3, which varied
slightly with 6p was also taken from experiment. The inset
shows the experimental (solid line) and theoretical (points)
(j""") at fixed co=0, for different frequencies.

at long times. Thus, in addition to neglecting the deter-
ministic rearrangements of the many modes present in
the actual solution, the approximation in Appendix B
neglects the higher powers of e in the static dependence
of the convective current on e, (P &„(e). For the SH
model (2.7) this dependence may be calculated analytical-
ly in perturbation theory in e, or numerically using a
time-independent e. The adiabatic dependence is then in
general given by

(5.5)

whose lowest-order expansion in e is exhibited in Eq.
(5.4). As an approximation to the exact (P &„we will

write

and note that the perturbative result for Eq. (2.7) is
c=0.015. In order to improve on the approximation
(5.4) in a simple way we then use (5.6) with c adjusted to
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1.0—
(a)

A

V
0.5—

0
0

Time, t

fit the exact (P)„at a convenient value of e. This al-
lows us to correct the analytic theory perturbatively to
take into account the "mean-field" effects of mode in-
teractions at larger e. Any remaining discrepancies be-
tween the analytic theory and the numerical results can
then be ascribed to intrinsic dynamical effects arising
from the presence of many modes.

Figure 3 shows the average convective order parameter
(1( ) (corresponding to the experimentally measured
convective heat current (j"""))as a function of time.
The solid line is the theoretical calculation using the ap-
proximation of Appendix B with a nonlinear correction
given in Eq. (5.6), the points are the numerical simulation
by Xi, Vilials, and Gunton [17],and the dashed line is the

exact adiabatic result calculated numerically [17]. In
contrast to the fit to experiment made in Ref. [4], the
noise strength is not an adjustable parameter here, so the
test is more stringent. For the case @=0.27 shown in
Fig. 3(a} there is a small discrepancy between theory and
simulation in the stochastic region at early times
(t 5 1.5), which amounts to an effective noise strength F
which is roughly 20% larger in the simulation than in the
theory. Although part of the discrepancy might be ex-
plainable by finite size or finite grid effects in the simula-
tion, a comparison of theory and simulation for a&0
(where the linear theory is valid) suggests that this only
explains about —,

' of the difference. We are at present un-

able to explain the remaining 15%. The data for @=5 in
Fig. 3(b), on the other hand, show better agreement at
early times.

In the deterministic region at later times the theoreti-
cal curve depends on the constant c of Eq. (5.6). For
p=0. 27 it was determined by fitting (1( )„at @=0.6
( t =2.22 }, and was thus changed from its per turbative
value c =0.015 to —0.06, still a very small correction. It
is seen that the one-mode theory is a reasonable approxi-
mation to the data, but it fails to account quantitatively
for the slow relaxation to the adiabatic value at long
times. This effect is magnified for the steeper ramp P= 5
shown in Fig. 3(b). Here (P )„was fitted at e=2. 5
(t=0.5), leading to c=0.02, surprisingly close to the
perturbative value. The figure clearly illustrates the
agreement at early times and the failure of the theory to
account precisely for the long-time behavior. It is clear
that in this purely deterministic region [23] a more so-
phisticated theoretical treatment is necessary [24], and
our work suggests that a careful experimental study of
the long-time relaxation (perhaps with steps in e rather
than a ramp) might be of considerable interest. Since the
disagreement at long times between the analytic theory
and the simulation evident in Fig. 3(a) did not show up in
the experimental fits in Ref. [4], it may well be that the
SH model does not describe the slow relaxation to steady
state satisfactorily away from threshold.

A

2—

0.2
Time, t

04

FIG. 3. Average convective order parameter (g ) as a func-
tion of time for the stochastic SH model (2.16), with e(t)=Pt
and (a) P=0.27 and (b) P=S. The parameters are given in the
text and correspond to those in the experiments of Meyer,
Ahlers, aud Cannell [4]. The solid line is the approximate ana-
lytic calculation of Appendix B, the points are numerical simu-
lation results of Xi, Vittals, and Ounton [17], and the dashed
line is the adiabatic result (P),d calculated by Xi, Viflals, and
Gunton.
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APPENDIX A: THK STOCHASTIC SH MODEL

In this appendix we derive the noise strength for the
stochastic Swift-Hohenberg model starting from the hy-
drodynamic equations, which we write in the dirnension-
less variables of Sec. II as
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(8, +u V)u= V—P+o V u+o 8z+V s, (Ala)

{8,+u.V)8=V 8+Ru, —V qT, (A lb}

V-u=O, (Alc)

where V=(V, B, ), R is given in (2.6), o is the Prandtl
number, and the dimensionless noise correlations are

(s, (xz, t)st (x', z', t'))

k~T
2o 5(x—x')5(z —z')

pdv

X5(t t'—)(5;t5~ +.5, 5 t), (A2)

(qT;(x, z, t)qT (x', z', t')) = 5(x —x')2( Td ag /tr v )

(c,d /ks)
X5(z z')—5(t t')—5, . (A3)

We eliminate the pressure by taking the curl of the curl
of (Ala) and use (Alc) to obtain

B,V u, =o'V u, +crV 8+f, , (A4}

B,8=V 8+Ru, +fT, (A5)

with

f, = —IVX[VX(V s)]], , (A6}

fT= VqT- (A7)

The expression for the Nusselt number in terms of the di-
I

mensionless variables is

W—1=R -'&8u, —a, 8)„,
where ( )t, means an average over a horizontal plane.
We define two-dimensional Fourier transforms by the re-
lations

(A8)

d2
tp(x, t ) =f 2

e'q "p(q, t ),
(2m. )

1

u, (q, t)=2f dz fdxe 'q'*sin(nz) u, ( x, z, t),
0

(A9}

(A10)

with a similar equation for 8(q, t). In Eq. (A9) g is the
linear combination of u, and 8 corresponding to the slow
eigenmode of the linear instability with normalization
(2.9) (it corresponds to the variable tp of SH).

Specifically,

P(q, t) =a(q)[u, (q, t)+b(q)8(q, t)],
where for free-slip horizontal boundaries,

Ia(q) I'= [2(1+a)'(q'+~')]
b(q)=o(q +m )/R, .

(Al 1)

(A12)

(A13)

We now take a linear combination of Eqs. (Ala) and
(Alb) to obtain an equation for P of the form [(2.16a),
(2.16b)] with a force correlation defined by Eq. (2.16c).
This yields

2FroP&5( t t ')(2—m. ) 5(q+ q ')
1

=42pf dz f dz'f dxf dx'e "q"+ '"'sin(mz)sin(az')a(q)a(q')
0 0

—f,(x', z', t')
X

'
2

+b(q')fT(x', z', t')
(q' +m. )

f, (x,z, t)—
2 +b(q)fT(x, z, t)

(q +m. )
(A14)

We may now evaluate Eq. (A14), making use of the ex-
pressions for qp, go, ro, and R, in Table I, to find for
free-slip boundary conditions,

Fgp
=FAcHs

2=

where the integral on the right-hand side is only over

q =
I q I

and S is the cell cross section (q is dimensionless).
According to Eqs. (9)—(12) of BC we have, for a con-
stant e= —ep (A~qpgp),

ks T a 1 gap Td1+
pdv2 o+1 (3R )'~2 c„(Tt—T„)

& la, I') =F /l~(q} I,

A(q) = (rotD ) —'[co+go(q —
qp ) ],

(A17)

(A18)

(A15)

The second term in the square bracket of (A15) is es-
timated to be O(10 ) and may be neglected Eq.uation
(A15) is thus smaller than the result in Eq. (D18) of
ACHS by a factor of 3. Use of the identities in Table I
then shows that (A15) is identical to Eq. (2.17) of the text,
or equivalently Eq. (A22) below.

For rigid boundaries we take the result of van Beijeren
and Cohen (BC), which we must translate to our nota-
tion. From their Eq. (16), we have

d
KVR c +0

p pSFBcd

2~2vR go}/ eo
(A19)

On the other hand, from Eqs. {A25) and (A27) below we
have in linear approximation (A, =O),

JV—1=F/4+co, (A20)

which upon insertion of the result in Eq. (10b) of BC,

where tD =d /a. We may carry out the integral in (A16)
to find

q (la I'),
~vR, ro (2~}

FBc ka TK/pd 'TpV,

(A16)
where V=Sd, yields the result

(A21)
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kaT 2~qo

pd v gorpR
(A22)

On the other hand, Eqs. (4.3) and (4.5) yield

(QL (t) ) -Fe '/2(2pt )'/', (A23b)

(g', (t) )—
P /0

pdv' gorpR, (2pt)'"
(A23a)

quoted in Eq. (2.17). The same result may be found from
Eq. (19}of BC, valid for a ramp e(t) =13t, rewritten in our
notation as (tltD~t, a, ~qp)

from which Eq. (A22) also follows.
The constant of proportionality 2 between f(x) and the

dimensionless temperature 8(x), quoted in Eq. (2.11) can
be extracted from Eqs. (Al 1)-(A15) of ACHS for stress-
free boundaries and from the appendix of Cross [30] for
the rigid case. If we define 8p so that its square integrates
to unity we have

v 2sinnz (free slip)

(1.99X 10 3)(650.68 cosh(i3 978.4z )+ [(39.277+ i0.433)cosh[(5. 195—i2. 126)F]+c c ]). .(rigid),

z =z+-' .
2

(A24a)

(A24b)

(A24c}

The constant V'then turns out to be

v=[Ro(I8pl } /(wp 8p) ]'",
3qp+R, = 170,89 (free slip)

385.3 (rigid),

(A24d)

(A24e)

(A24f}

/=/IF'/, t =tlap, x =x /go, f=f /F'

and transform Eqs. (2.16) to

(A25)

[where ( ) denotes a vertical average.
Let us now compare our result with Eqs. (19)-(22) of

SH. We define

APPENDIX B: ALGORITHM
FOR APPROXIMATE SOLUTION

We consider the stochastic SH model (2.16) with an ar-
bitrary e(t) The .approximate calculation of (P (t)) is
the same as the calculation of ( A (t)) described in the
appendix of Ref. [16], except that the evaluation of the
linear function AL in Eqs. (A4) —(A6) of I is replaced by
Eqs. (4.1}—(4.5} in Sec. IV. The calculation involves the
following steps.

(i) For a general function e(t), t & to we denote by t,
+

and t, the ith zero crossing of c(t) with deldt &0 at t;+
and dEldt &0 at t;

(ii) The distribution function is obtained from

ay=—
C

+f, (A26) P(g, t)= ,'[P(tt/)+P( —-li)],
where

(Bl)

V=(FP()) 'V

=fdx ef'+ —[—(V'+qp—)g]'+ —
1i (A27)

2 2 4I

P(Q) =P+ (P)

(2 y 2)—1/2 ae,(e)

(f(x, t)f(x', t ')) =25(x—x')5(t —t '),
A, =6g3F, qp =qpPo=qogp/2 .

(A28)

(A29)
for e(t) & 0, and

X exp I
—[4.(4)—0 ]'/24'] (B2)

Comparison with Eqs. (19)—(22) of SH shows that a fac-
tor of 2 is missing from (19) of SH, Eq. (21) of SH should
be replaced by (A27}, and Eq. (22b) of SH by [p, =m,
P~cr, i~d, and gp~g3]

r

g3C7

1+o.

k~T

pv d

6qp

qp( 2+ 2)3/2

gapTd
c„(T, T„)— (A30)

The free energy (A18) is equivalent to that used in Eq.
(Bl}of SH, with r~ E, except th—at the quartic deriva-
tive (V +qp) was replaced by (q —qp) rather than
4qp(q —

qp },i.e., the "nonessential constant" 4qp =2qogp
was dropped. We retain the form (A18) in our analysis.

P(f)=P (f)
=(2n.g~L )

' expt —[f fD(g&)] 12tg J—, (B3)

g (y) —g(R 2 R P2)
—1/2

P'(t) =gp(t)+R $(t),

QI. (t)=g(t)R, (t ),
P (g, )=R,Q,(1+R f )

PI=TPppH[c, (t t; )' r ' ]—
R, (t)=exp[rp ' f ds e(s)],

I

(B4)

(B5)

(B6)

(B7)

(B8)

(B9)

for e(t) &0. In the above formulas the quantities are
defined as
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R,(t)=2g, ro ' f ds R', (s)=3g, ro ' f ds R', (s),
t

(B10)

R f(t) =(Fc, lsr&2ro)

X R] s H c& t s vp
l

1H(a)= f du exp( —a u ),
p

cl =+2(toro) =(coro)~~ 2=0 85

(B11)

(B12)

(B13)

P(g, t; )=(2srttto) ' exp[ (P P, )—/2'—o], (B14)

and is fitted to the distribution in the preceding interval,

where the values for the rigid case (see Table I) have been
used. The quantity t, in (B8)—(Bl 1) denotes the preced-

ing crossing point (i.e., t; for t; ~ t ~ t, +„e(0,and t;+
for t,

+ ~ t ~ t;, e & 0). An examination of the above for-
mulas shows that they determine P(f) in each interval in

terms of only two constants, goo [Eq. (B8)] and lb, [Eq.
(B7)], which characterize the initial distribution for that
interval.

(iii) To determine the parameters goo(t; ) and g, (t, )at.
the ith crossing point the distribution function is
represented in the form

In this way P(ttt) can be evaluated in succeeding intervals
once it is assumed to be known at the earliest time t = to.
A set of simplified matching conditions that are often
sufficient is [16]

=lit (t+), $, =0 at t=t+, (B17)

ym
——R )(t )[3/6R ~ (t )q (t )]

Q, =R, (t )R, '"(t ) at t=t (B18)

(P'") =(2n') ' 'f dge
00 I+rg

where

(B19)

R21b', e&0

0, E&0 (B20)

and

(iv) The expressions for the distribution functions in
Eqs. (Bl)-(B13)imply the following formula for the mo-
ments:

P (g, t+)= lim P (P, t, —ri),
g~p

P (g, t, )= lim P+(g, t, —rl) .
Ti —+P

(B15)

(B16)
Rip, /QL, e&0

SD ~PL,
(B21)
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