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Comparison of steady-state and strongly chaotic thermal convection at high Rayleigh number

U. Hansen*
Institut fiir Geophysik und Meteorologie, Universitat zu Koln, D 50-00 Koln 41, Germany

D. A. Yuen and A. V. Malevsky
Minnesota Supercomputer Institute, Army High Performance Computing Research Center and Department of Geology and Geophysics,

Univerity ofMinnesota, Minneapolis, Minnesota 55415
(Received 16 October 1991;revised manuscript received 13 April 1992)

Steady-state and time-dependent two-dimensional thermal convection in a Boussinesq, infinite-

Prandtl-number fluid with stress-free boundaries has been investigated. Two independent numerical

methods have been employed to calculate the evolution of convective flows in a rectangular box with as-

pect ratio A. =1.8 in a Rayleigh-number (Ra) range of 10 & Ra(10 . With increasing Ra, greater than

10', the flow reveals the presence of disconnected thermals, rather than connected plumes, driven by a

persistent large-scale circulation. Such features have also been reported from laboratory convection ex-

periments in the regime of hard turbulence. Extensive calculations were performed (up to 140 overturns)

in order to reach the statistically stationary regime for strongly chaotic flows. A Gaussian distribution

with a mean value Nu, was derived from the time history of the Nusselt (Nu) numbers. The value of Nu,

can be directly obtained by solving the steady-state equations via an iteration procedure. Thus the sta-

tionary flow obtained from the steady-state method resembles the turbulent flow in a statistical sense.

Since the iteration procedure is about 10 times faster than calculating the full time-dependent evolution,

it allows for the systematic investigation of the heat-transfer Nu-Ra relationship and other types of scal-

ing laws. The steady-state and time-dependent experiments indicate that a power-law exponent of
P=0.315 holds for the Nu-Ra relation for stress-free boundaries in the entire range of Ra. No indica-

tion of a jump in the exponent was found in the transition to hard turbulence.

PACS number(s): 47.25.Qv, 47.20.Tg, 47.25.Ae

I. INTRODUCTION

The phenomenon of thermal convection at high Ray-
leigh numbers has received increasing attention during
the past several years, especially since a transition from a
state of "soft turbulence" to "hard turbulence" has been
reported [1,2]. Laboratory [3,4] and numerical studies
[5,6] have demonstrated that large-scale flows (hence-
forth, LSC) persist in turbulent convection. The interac-
tion of such a "wind" generated by the large-scale circu-
lation and the instabilities originating in the thermal
boundary layers is believed to play a key role in hard tur-
bulence [2]. While classical theory [7—9] predicts the
Nusselt number Nu to increase as Ra' or the
boundary-layer thickness 5 to decrease as 5-1/Ra'
Castaing et al. [2] obtained an exponent of /3=0. 289 in

the regime of hard turbulence, which is lower than the
classical value. The classical approach is based on the as-

sumption that the boundary-layer thickness is determined
by marginal stability [7]. The idea was proposed that
boundary layers can be stabilized [2] by the shearing
wind, thus increasing the thickness of 6 and decreasing
Nu. The shear-induced stabilization for 6 is the key to
understanding of the transition from soft to hard tur-
bulence [2]. Besides a decrease in the Nusselt number, a
change in the probability distribution functions (PDF s)

of temperature fluctuations from Gaussian to exponential
shape has been proposed to be characteristic of the tran-
sition to hard turbulence [2,10,11]. However, both the

transition of the power-law index P and the change from
Gaussian to exponential shape in the PDF across the
transition to hard turbulence have been called into ques-
tion [12]. Numerical experiments [13] indicated a kink in
the Nu-Ra relation but did not show any evidence for a
change in the PDF's. Laboratory experiments [12] have
reported the absence of a transition in the scaling ex-
ponent. They also found a dependence of the shape of
the PDF's on the aspect ratio of the flow, thus question-
ing the universality of the PDF's. Earlier, it was demon-
strated [14] that an induced shear stabilization was un-

likely to cause a decrease of the scaling exponent. From
the absence of a clear change in the PDF's at the transi-
tion from soft to hard turbulence, they concluded that an
analysis of the global structures of the temperature and
velocity fields, rather than only a local analysis of temper-
ature fluctuations, was needed for a deeper understanding
of the nature of this transition.

Up to now, any global analysis of the flow field has
been restricted to a qualitative level. Sano, Wu, and Lib-
chaber [4] and Solomon and Gollub [12,14] have ob-
served thermals which are connected from the bottom to
the top in the soft turbulent regime, but which break
down into pieces before they can traverse the entire layer
at higher values of Ra. The same phenomenon was found
in two-dimensional (2D) experiments [6] on convection at
high Ra in fluids with infinite Prandtl number Pr. By us-

ing computer animation and video techniques, they were
able to show a transition form predominantly connected
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plumes [6] to disconnected, dropletlike structures (Ref.
15)). There is much evidence to support this view that it
is this change in the behavior of the plumes which consti-
tutes the underlying mechanism for the transition from
soft to hard turbulence [4,6,12,14,16].

With numerical experiments one can easily conduct
global analysis of the flow field with graphics worksta-
tions (see Ref. [17]). However, many technical difficulties
are encountered even with the present generation of
supercomputers. A complete global analysis of a rapidly
fluctuating velocity and temperature field requires the
storage and the processing of enormous amounts of data
with 0 (10 to 10 Gbytes), thus pushing the computation-
al resources to their limits. This is the prime reason why
in most of the numerical studies on this transition, the
detailed evolution of the physical fields was not displayed,
with the exception of the two-dimensional works
[6,15,18]. Numerical computations are different in na-
ture from laboratory experiments and they are very cost-
ly in computational time to produce time series with
0 (10 ) overturns which are long enough to be statistical-
ly stationary [19]. Such times series are needed in order
to obtain meaningful scaling relations such as Nu versus
Ra. Balachandar and Sirovich [10] have pointed out the
importance of sufficiently long time series for the shape of
the PDF's. They presented results for three-dimensional
(3D) simulations which were run for about 40 overturns.
But this study was also limited to a single Ra, thus not al-
lowing the determination of the Nu-Ra dependence. The
basic physics of hard turbulent convection, such as the
appearance of disconnected plumes, can be found also in
two-dimensional simulations [6]. They have the advan-
tage of being easier to obtain computationally and the
ability to reach much higher Ra than 3D simulations.

In this study we will present several 2D simulations,
spanning a range of Rayleigh numbers between 10 and
10 . Several of them have been run for more than 120
overturn times; such an undertaking would not be easily
done for 3D simulations with the present generation of
vector supercomputers. We have focused our attention
on thermal convection in a Boussinesq fluid at infinite
Prandtl number. This type of flow is of important
relevance for thermal convection in planetary interiors.
In particular, an iteration scheme will be described,
which allows for obtaining steady-state solutions to the
advective-diffusive equations at high Ra. Next we will in-
vestigate the properties of this type of convection and
study the relationships between stationary and time-
dependent convective flows. Two-dimensional turbulent
flows for the Euler equations have recently been studied
by an equilibrium statistical-mechanical approach [20].

II. MODEL DESCRIPTION
AND MATHEMATICAL METHODS

As a model configuration, we used a two-dimensional
rectangular box, filled with a Boussinesq and infinite-
Prandtl-number fluid. The system is subject to stress-free
boundary conditions along all four sides. The tempera-
ture is fixed at the bottom and the top, and the sidewalls
are thermally insulated. After scaling to nondimensiona1

values, one obtains with the stream function 1(, which is
used to enforce the continuity equation. The momentum
equation is

V /=Ra aT
Bx

and the energy equation for a bottom-heated
configuration isar, a@ ar a@ ar

at
+

a a. a a

where

Ra =aghTd /~v

denotes the Rayleigh number for a base-heated system.
Here, a is the coefficient of thermal expansion, g is the
acceleration of gravity, hT is the temperature difference
across the layer, d is the depth of the layer, a is thermal
diffusivity, and v is the kinematic viscosity. T denotes
the nondimensional temperature, t the time, nondimen-
sionalized by the thermal-difFusion time across the layer
x, z the horizontal and vertical coordinates with the z
axis pointing upward, and u and w the horizontal and
vertical velocities. The momentum equation does not
contain time dependence because of the creeping-flow na-
ture of the mantle.

The system of equations (Eqs. (1) and (2)] is discretized
in space by a finite-element technique [21]. A predictor-
corrector method, second-order correct, is employed to
advance T in time. We note that the energy equation
contains the sole time dependence and nonlinearity in the
thermal advection time. The finite-element technique
offers two essential advantages. First, local grid
refinement can easily be handled in order to resolve tem-
perature gradients with the boundary layers properly.
Second, local upwind schemes, used to damp out numeri-
cally induced oscillations, can be chosen to be much more
effective on the local velocity field than for finite-
difference methods [22]. The method has been checked
carefully in an extensive benchmark study [23]. In this
study we have also employed an independent method de-
scribed below.

The second method, based on the method of charac-
teristics [18], has also been employed in this study. In
this case both stream-function and temperature fields
were approximated by bicubic splines. The high order of
this numerical scheme ensures the stability of the
characteristics-based scheme, where the algorithm in-
corporates a spatial interpolation at each time step. A
second-order predictor-corrector scheme was used for the
time stepping. The method of characteristics enables us
to employ time steps larger than those defined by the
Courant criterion. The accuracy of this characteristics-
based scheme was verified [18] on the standard bench-
mark test for infinite-Prandtl-number thermal convec-
tion.

We can use a different procedure for calculating solu-
tions of the steady-state convection equations. By setting
the term d T/dt to zero in Eq. (2), any possibility for tiine
dependence has been removed from the system. The
time-stepping scheme is then replaced by an iteration
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by iterating the stationary equations until convergence of
e is obtained [see Eq. (4)]. The stationary flow is charac-
terized by an almost isothermal interior surrounded by
thermal boundary layers with steep temperature gra-
dients. Such types of steady-state Qows have been used
extensively in the geophysical literature in order to deter-
mine scaling laws for mantle heat transfer, mainly the
dependence of Nu on Ra [24,27,28,29]. The Nusselt
number is defined here to be the ratio of actual heat
transport to the amount of heat transport which is due
solely to conduction, i.e.,

AT —K 8T
Z

where w denotes the vertical velocity and overbars indi-
cate horizontal averages, or for the dimensionless values
used here,

1 ~ BTNu= — wT —dx .
0 Bz

For a wide range of Ra, 10 &Ra(10', most studies
have found a power-law dependence [24,30,29] of the
form

Na-Ra~,

with P less than 0.32. Classical boundary-layer stability
theory [7,31] predicts a diffusive boundary layer whose
thickness 5 is determined by marginal stability. Follow-
ing classical theory, marginal stability can be expressed
by a critical Rayleigh number associated with the bound-
ary layer itself:

dependent only at extremely high values of Ra [24,32],
Ra) 10, because the scaling exponent was found to be
slightly less than —'.

In subsequent investigations [21,33], however, it was
recognized that steady-state convection and chaotic
time-fluctuating flows can coexist at the same value of
Ra, depending just on initial conditions and the aspect ra-
tio of the box. While stationary convection shows a
significant stability against time-dependent disturbances
in square boxes, time-dependent convection prevails in
domains with larger aspect ratio [6]. The stability of sta-
tionary convection [29] up to very high Ra, Ra-10',
was only due to the restriction to a small aspect-ratio box
and not at all due to the infinite Prandtl number. Figure
2 illustrates this point well. Under the same conditions
as are given in Fig. 1, we have calculated the evolution of
the flow from the conductive state with the time-stepping
scheme, rather than using the iteration scheme. Two
snapshots, taken at di6'erent time instants, demonstrate
the typical behavior of the thermal field. The thermal
boundaries are modulated by instabilities, traveling as
waves [33,34] with the large-scale circulation. It has been
shown in numerous studies that in fact time-dependent
[21,33] convection is the typical type of convection at Ra
higher than 10. Although time-dependent convection
prevails, it is important to note that nontrivial solutions
of the steady-state equations, as shown in Fig. 1, can also
be obtained.

An increase of Ra to 10 does not change this picture.
The iteration process converges towards a steady-state

1.0

Rag=
ag AT&5

(8)
0.8

0.6

and with the assumption that the core of the convection
cell is isothermal and the temperature drop occurs only
across the boundary layers, one obtains the boundary-
layer Rayleigh number

0.4
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Rat'

Ra&= with hT& =
2d3 2

(9) t = 0.00656

Nu-Ra' (12)

An exponent less than —,
' means that above a certain Ra,

the thermal boundary layers will become too thick to
remain stable. It has been argued that convection in
infinite-Prandtl-number convection would become time

A boundary layer at marginal stability implies that Ra&
remains constant at a certain critical value and therefore
the boundary-layer thickness must vary as

(10)

In the classica1 view, Nu can be expressed as

=d
26

leading to
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FIG. 2. Time-dependent snapshots of T for Ra=10 . The bi-
cubic spline code was employed with 48X160 grid points,
unevenly spaced in z and evenly spaced along x. Time is nondi-
mensionalized with respect to the thermal-diffusion time across
the layer.
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FIG. 3. Same as in Fig. 1, but Ra = 10'.

solution, as displayed in Fig. 3. Compared to the solution
for Ra=10, the thermal boundary layers are much
thinner, whereas the streamlines show only minor
changes with a tendency of the flow in the interior to
form eddies [35]. The value of Ra=10 is beyond the
threshold for the transition to hard turbulence [2]. One
of the dominant characteristics of the hard turbulent re-
gime is the occurrence of broken plumes, rather than
thermal structures which are connected from the bottom
to the top [4,6,12,14,15]. From the two snapshots taken
from a time-dependent calculation for the same parame-
ters, the appearance of disconnected plumes can be clear-
ly observed (Fig. 4). Thermals erupt from the boundary
layers but break down into droplets before they can reach
the opposite boundary [Fig. 4(b)]. Besides the small-scale
instabilities, there is also a LSC on the scale of the width
of the box. Thermals from the bottom and top boundary
layers are given in opposite direction by LSC, similar to
the behavior described in Ref. [3]. Another characteris-
tic feature of this type of convection is the collision of
boundary-layer instabilities prior to their collective erup-
tion. This merging phenomenon, which has also been ob-
served in laboratory experiments [14] and three-
dimensional numerical experiments [36], is discussed in
Vincent et al. [15]. Further details on this plume col-
lision phenomenon, which is similar to vortex merging
[37] in atmospheric dynamics, can be found in Refs. [6]
and [16].

In order to determine how the stationary flows are re-
lated to the time-dependent flows, it is reasonable to com-
pare the Nusselt numbers. Both cases, for Ra=10 and
Ra = 10, show a striking agreement of the Nusselt num-
ber as calculated from the steady-state Nu, and the time-
averaged Nusselt number Nu, . From the steady states
we find a value of Nu, =17.3 and Nu, =72.0 for Ra=10
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FIG. 4. Same as in Fig. 2, but Ra=10' and a mesh of
140X400 bicubic spline grid points.

and 10, respectively, while for the time-dependent calcu-
lations, we have determined Nu, =17.2 and 71. This
coincidence of the two Nu numbers suggests that the sta-
tionary state, as obtained by iterating the time-
independent equations, indeed resembles the statistically
stationary value Nu, from a time-dependent evolution.

Before comparing the results for a wider range of Ray-
leigh numbers, we will discuss the possible sources for er-
rors. The numerical accuracy, especially the effects of
spatial resolution, has been investigated thoroughly for
the steady-state procedure. For the cases reported thus
far, grids of 180X60 unevenly spaced elements have been
employed. This configuration has also been the standard
mesh for the stationary calculations. For various Ra's we
have checked the influences of different resolutions. This
includes different numbers of elements and also different
methods of grid refinement. In general, the size of the
elements increases as a polynomial function in both the
horizontal and vertical directions. They increase from
the boundaries towards the center of the box and de-

crease symmetrically again toward the opposite edge. A
short description of the refinement procedure is provided
in Table I. For a more detailed description of the grid
refinement algorithm, the reader is referred to Hansen
and Ebel [22]. Here we give only a few examples of these
tests. A summary of the mesh refinement can be found in

Table I. For Ra=10 we obtained values of Nu=72. 011
on 180X60 elements and 72.009 on a 350X90 element

grid. For both grid configurations the size of the smallest

element in the x and z directions has been 0.001. Anoth-
er mesh with the same vertical structure as given above
for the 60 vertical elements but with 450 evenly spaced
elements in the horizontal direction (i.e., x =0.004) yields

a value of Nu=71. 57. An additional increase of the
number of horizontal elements to 675 produced a Nusselt
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Mesh properties

N„=180,N, =60
a„=1.0413, a, =1.157
~x =0' 0010& Ax =0 0366

z =0.0010~ ~z =0.0687

Nusselt number

71.011

TABLE I. Nusselt numbers for Ra=10', as obtained for
different finite-element grids. The symbols have the following
meaning: N„,N, : number of elements in the x (z) direction;
a„,a, : amplification factor in the x (z) direction; h„,h, : size of
the smallest element in the x (z) direction; hx, hz. size of the
largest element in the x (z) direction. The size of the (n +1)th
element is calculated from the nth element as h~ „+&

=a„"b
„„

in
the x direction and as 6, „+&=a,"6,

„

in the z direction. The
amplification factors a and a, are calculated from

8 y2 /2g„'Oa,h, =0.5 and g„"oa„"b„=A,/2. A, represents the as-

pect ratio of the box.
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71.83 FIG. 5. Kinetic-energy spectra as a function of the wave
number k„for two different grids. The bicubic spline method
was used. For Ra=10' (top panel) meshes of 200X90 and
400X140 were compared, while for Ra=3X10 (bottom panel),
280X 78 and 400X 100 grid points were used.

E(k„)=—f [u (k„,kq)+w (k„,kq)]d8,
2 0

(13)

where u and w are the Fourier transforms of the horizon-
tal and vertical velocities taken on the two-dimensional
Cartesian wave-number space.

The kinetic-energy spectra E(k„)for Ra=3X10s and
an aspect ratio of 1.8 were computed for the solution over
280X78 and 400X100 grid points. They are shown in
Fig. 5 for t =0.123X10 . The kinetic-energy spectra
for the thermal convection in the hard turbulent regime
exhibit a power-law decay [18] with a slope close to —2.

number of Nu=71. 83. Thus we can consider the agree-
ment of these Nu values for different grids as excellent.

Time-dependent calculations in the high-Ra regime are
much more difBcult to test as far as convergence is con-
cerned. The results reported here have been checked by
two independent methods, the finite-element method and
the spline method as described already in Ref. [15]. With
the bicubic spline technique we have compared the solu-
tions obtained on the difFerent grids. The time-dependent
solution for Ra = 10 in an aspect-ratio-1. 8 box was calcu-
lated on 200X90 and 400X 140 grid points. The kinetic-
energy spectra for the both grids at the same time instant
(t =0.667 X 10 ) are shown in Fig. 5. We first calculat-
ed the two-dimensional Cartesian, kinetic-energy spectra
and then converted them into a one-dimensional spec-
trum in polar form:

With these high-resolution grids, spectra spanning more
than two decades in wave number can be calculated.
These spectra show that the kinetic energy decays by
more than three orders of magnitude in these high-Ra
simulations.

It is also important to compare the spatial resolution
for the two configurations. The vorticity field is a good
measure of the spatial accuracy, as it involves spatial
derivatives. We compare the vorticity fields for Ra=10
at t =0.667X10 (Fig. 6). Inspection shows that the
details of the many vortices associated with plume insta-
bilities are captured by both grids. Additionally, we took
a stage from the evolution obtained by the finite-element
model as an initial condition for a high-resolution run
with the spline method. From monitoring the time histo-
ry of Nu, the subsequent evolution of both runs shows ex-
cellent agreement. These comparison tests demonstrate
that both methods work satisfactorily and that the nu-
merical resolution is quite adequate.

A more detailed investigation of the statistical proper-
ties of the chaotic flow for Ra=3X10 is exhibited in
Figs. 7(a) and 7(b). In Fig. 7(a) the time-history plot of
Nu, is displayed. The formation and eruption of plumes
from the boundary layers produce a rather jagged time
series. The same time series, plotted as a histogram,
shows more clearly the statistical properties of the flow
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where d and v, , is the rms velocity, we have calculated
about 100 overturns for Ra=3X10 and about 140 over-
turns for Ra=6X10. We note that Fig. 8 shows only
the last portion of a much longer simulation.

It is illustrative to look at the shape of the histograms
as a function of the length of the time series. Figure 9

{~) oooo

010

0.05

60

l,!, , t'-,':j,
!

65 70 75

argue that even a few tens of overturns might not be
sufhcient to determine statistical properties in the tem-
poral domain. Adopting the definition of an overturn
time [10]as

(14)

shows the distribution of Nu for the case of Ra=6X10
when only a fraction of the time series is taken. Figure 9
displays the distribution of the Nu values for 4, 20, 40,
and 80 overturns. Already after 4 overturns the mean
value Nu, =63.09 is close to the final value, reflecting
that many overturns have been calculated before in order
to damp out transients. Clearly, the shape of the histo-
grams changes with the length of the time series, as can
be seen from Figs. 8(a) to 8(c). From 80 [Fig. 9(d)] to 140
[Fig. 8(b)] overturns, there is hardly any change in the
shape of the distribution, indicating that a statistically
stationary solution has been achieved.

The close agreement of the Nu, and Nu, values has en-
couraged us to carry out a systematic investigation,
which spans the Ra in the range of 10 and 10 . The re-
sults obtained from the iteration procedure are summa-
rized in Fig. 10(a). The Nu-Ra relation can be expressed
in the form of the power law Nu, =0.219Ra ' . Figure
9(b) shows the same relationship but also the values of
Nu„as indicated by the symbols (squares for results from
the finite-element models and solid circles for the spline
method). The deviations of Nu, values from the Nu,
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FIG. 9. Effects of length of time-interval on the normalized
frequency of Nu occurrences. One-hundred bins were con-
sidered (a) after 4 overturns, (b) after 40 overturns, (c) after 40
overturns, and (d) after 80 overturns. Numbers adjacent to the
panels denote the counting of time steps.

FIG. 10. Nu vs Ra: (a) steady-state and (b) steady-state and
time-dependent results. Time-dependent finite-element results
are in rectangles and time-dependent bicubic splines are in solid
circles. All steady-state calculations were performed on a
180X60 finite-element grid. For time-dependent calculations
and for Ra less than 6X10, a 90X30 grid was used, while for
greater Ra, a 180X60 grid was employed. For the bicubic
spline method we have used 70X37 for Ra=10, 160X48 for
Ra= 10, 200X 90 for Ra= 10, and 400X 140 for Ra= 10 .
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curve is solely due to the limited length of some of the
time series. Some of the experiments, especially the cir-
cles for Ra ) 10, were run only for a few overturns, due
to limited computer time. The kink in the Nu versus Ra
curve found by Malevsky and Yuen [18] is probably
caused by insufBcient length of integration time. The
longest run there [18]was for 12 to 15 overturns, whereas
it is shown that at least 40 overturns are required to at-
tain a statistical stationary state.

In Fig. 11 the distribution of the Nu values for the
highest Ra of this study (Ra= 10 ) is displayed. About 80
overturns were computed for this Ra. The histogram has
not yet converged to a Gaussian distribution but the
mean value Nu, =143.4 already agrees very well with the
Nu, of 150 from the corresponding solution of the
steady-state equations.

Within the range of Ra under investigation, a transi-
tion from soft to hard turbulence should occur [2,4]. Evi-
dence for this transition is seen from the physical fields
showing the transition from connected to disconnected
plume structures [6,16]. However, our Nu-Ra relation-
ship (Fig. 10) does not show any indication for such a
transition. This result agrees with those of Solomon and
Gollub [12], i.e., no kink in the Nu-Ra relationship. The
exponent, as taken from our 20 numerical experiments,
is significantly higher than those obtained in most labora-
tory experiments [2,12] but still below the theoretical

value of —,'. In fact, many laboratory studies revealed ex-

ponents [38] of less than 0.3, while in numerical studies
on convection, usually exponents higher than 0.31 for
stress-free boundaries have been obtained. We believe
that the reason for the difference in the scaling exponents
is mainly due to the different boundary conditions, since
in laboratory experiments rigid boundary conditions are
commonly employed. Preliminary numerical experi-
ments conducted for rigid boundary conditions support
this view that different mechanical boundary conditions
can influence the heat-transfer characteristics at high Ra.

Besides the Ra, Nu is also influenced by the aspect ra-
tio of the flow [22,39,40]. In Fig. 12 we demonstrate the
dependence of the Nusselt number Nu, on the aspect ra-
tio at Ra = 10 . The curve, agreeing almost perfectly with
the asymptotic approach of Olson and Corcos [40] for Ra
tending to infinity, exhibits a weak dependence of Nu, on
the aspect ratio A, at values of A, around unity but a strong
dependence for larger aspect ratios. It is remarkable that
the mean values Nu, from the time-dependent calculation
agree only with the stationary flow of the aspect ratio 1.8.
For example, a steady state consisting of two rolls each
with an aspect ratio of 0.9 in an aspect-ratio-1. 8 box pro-
duces a Nusselt number of Nu, =97 (Fig. 12) diff'ering

considerably from the value Nu, of 71. We therefore
conclude that the relevant scale governing the heat trans-
port is the width of the box and that all the small-size in-
stabilities do not contribute much at all to the global heat
transport. In Fig. 13 we show the variation of the root-
mean-squared velocity v, , with Ra, as calculated from
the stationary cases. As in the case for the Nu-Ra rela-
tion, we find here also a clear power-law dependence of
the form u„,=CRa~, with C =0.107 and P=0.639.
This value of p is thus significantly lower than the
theoretical prediction [8] of —', predicted for stress-free

boundaries. However, the value of p, is consistent in the
sense that the relationship p&=2p, as predicted from
boundary-layer theory, is nearly kept with 2p=O. 630.

From the numerical experiments we can also measure
the variation of the boundary-layer thickness 5 as a func-
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FIG. 11. Nu time history and histogram of Nu for Ra= 10 .
Finite-element method was employed with a grid of 180X60
points.

FIG. 12. Nu, for steady-state solutions vs aspect ratio for

Ra=10 . Aspect ratio is defined to be width divided by depth.
A grid of 60X 180 points was used.



COMPARISON OF STEADY-STATE AND STRONGLY CHAOTIC. . . 4751

4.6

4.4

4.2

L. 4.0-8

o 3.8

3.6

3.4

3.2

3.0-

6.0 6.5 7.0 7.5 8.0 8.5 9.0

tion of Ra in a direct manner. In order to be consistent
with theory and previous numerical experiments [28], we
define the boundary layer to be the depth over which the
temperature drops by hT/2. For determining this depth,
we use the horizontally averaged temperature. The result
for 10 &Ra(10 is displayed in Fig. 14. The boundary-
layer thickness 5 is related to Ra by the power law
5=gRa~, with g =3.90 and y= —0.306. This result is
different from the boundary-layer with —1/3 for the ex-
ponent (see Eq. 10).

In the theoretical approach two assumptions are made
about the structure of the thermal boundary layer. First,
a temperature drop of hT/2 is assumed to take place
across the boundary layer and, second, the vertical heat
transport is assumed to be purely diffusive within the
boundary layer. The relation between Nu and 5 [Eq.
(11)] is based on these assumptions. Earlier numerical
work [41] has demonstrated that a temperature drop of

loglo Ra

FIG. 13. Root-mean-squared velocity vs Ra for steady-state
solutions. Otherwise, same as in Fig. 10.

hT/2 is not produced by pure diffusion. Figures 15(a)
and 15(b) illustrate this point for a box of aspect ratio 1.8.
Vertical profiles of the horizontally averaged tempera-
tures are displayed for Ra=10 (Fig. 15(a)] and 10" [Fig.
15(b)]. The boundary layers, as defined by the hT/2 cri-
terion, are denoted by the hatched areas. Within the
boundary layer the temperature profile deviates
significantly from the conductive profile. Only a small
part of the heat transfer is indeed governed by pure verti-
cal diffusion; a much steeper temperature gradient is
found in the other part of the boundary layer. The
phenomenon of the overshoot in the temperature profile
is well documented in the literature [35,40,41]. This is a
consequence of cold material spreading out at the bot-
tom, resulting in a mushroomlike shape, and is a dynami-
cal feature produced by the large-scale circulation.

These numerical simulations demonstrate that the clas-
sical assumptions concerning thermal boundary layers do
not hold for convection between stress-free boundaries.
The thickness of the boundary layer may be defined
difFerently as the layer over which vertical heat transport
is purely conductive. However, this means that the tem-
perature drop across the boundary layer would then be-
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FIG. 14. Boundary-layer thickness 5 vs Ra for steady-state
solutions. Otherwise, same as in Fig. 10.

FIG. 15. Horizontally averaged temperature ( T) vs depth
for two steady-state solutions. Hatched area indicates boundary
layer.
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dT
q =MT

dz
(15)

come a free parameter, being certainly less than hT/2.
Comparing the properties of stationary convection and

turbulent flows, we have so far only looked at global pa-
rameters, namely, the Nusselt number. In order to get a
better understanding of the relation between global and
local properties, we have analyzed the temperature fields
and the vertical heat transport q as given by
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We have compared in Figs. 16 and 17 the horizontal
spectra of the temperature fluctuations T and the heat
transport q for both steady-state and time-dependent
solutions and Ra=10 and 10. Two different depths
(z =0.0024 and 0.3314) were considered. Time-
dependent spectra (labeled t) were averaged in time in or-
der to compare them with the steady-state (labeled s)
spectra. Time averaging was performed for one overturn
after the initial transients have been damped out. The
spectra for heat transport (Fig. 16) show much closer
agreement between the steady-state and time-dependent
averaged cases than the thermal anomalies (Fig. 17).
This is not surprising in view of our finding that the sta-
tistically stationary heat transport from time-dependent
solutions approaches that of the steady state. We note
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FIG. 17. Horizontal Fourier spectra of the temperature field
at two different depths. Otherwise, same as in Fig. 16.
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z = 0.0024 that the agreement is closer for the low-wave-number
portion of the q spectra. In the case of the T spectra,
there are noticeable differences in the plume for Ra = 10
because of the presence of many small-scale structures in
the interior of the hard turbulent flow (compare Figs. 3
and 4), while the agreement is better within the thermal
boundary layer.
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FIG. 16. Horizontal Fourier spectra of the heat transport q
for steady-state and time-dependent solutions and Ra= 10 and
10. The letters "s" and "t" denote, respectively, steady-state
and time-dependent solutions. Spectra for time-dependent solu-
tions were taken after averaging over one overturn after several
overturns have already been completed.

IV. CONCLUSIONS AND DISCUSSIONS

The main result of the paper is that stationary convec-
tion obtained from solving the steady-state equations for
infinite-Prandtl-number fluids resembles the turbulent
flow in a statistical sense. The values of the Nusselt num-
bers of the two-dimensional turbulent convection be-
tween stress-free boundaries follow a Gaussian distribu-
tion with a mean value Nu, . A good coincidence is found
between the Nu, and the Nu, values obtained from the
corresponding stationary solution. The results have been
confirmed by using different resolutions and particularly
by using two independent numerical methods. A global
analysis of the physical fields shows that plumes often
break down into smaller pieces at Ra around a few times
greater than 10, as described in previous three-
dimensional and two-dimensional studies on the
phenomenon of hard turbulence. It also reveals the ex-
istence of a persistent large-scale circulation with the
relevant length scale being the width of the box. Since
the heat transport is resembled in an averaged sense only
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by a stationary flow of the same aspect ratio, we conclude
therefore that it is this large-scale circulation that
governs the eSciency of heat transport in time-dependent
convection.

The stationary solutions and thus the corresponding
Nusselt numbers Nu, can be calculated from the steady-
state equations with an effort being about 10 times less
than computing the mean value Nu, for an actual time-
dependent evolution. This equivalence of Nu, and Nu,
allows for a detailed investigation of the scaling relations
for turbulent convection for a wide range of Ra. In the
range of Ra between 10 and 10, our study reveals the
power-law indexes of Nu, u, „and 5 are, respectively,
p=0. 315, p, =0.639, and y= —0.306. Compared to
classical theory, the scaling exponent p is low but
significantly higher than those values reported by DeLuc-
ca et al. [13],Castaing et al. [2], and Solomon and Gol-
lub [14]. We did not find any evidence for a kink in the
Nu-Ra relationship within this range of Ra [12], which
would be a good indicator for the transition from soft to
hard turbulence. We are led to conclude that the
predominant occurrence of disconnected plumes, as ob-
served in our numerical experiments and believed to be
characteristic of the regime of hard turbulence [6,38],
does not produce any changes in the Nu-Ra relationship.

The differences between our results for Nu and scaling
exponents and those found in the aforementioned studies
are due to the differences between stress-free and rigid
boundary conditions. Busse [42] and references cited
therein) has shown that for rigid boundaries, values of p
lie between 0.28 and 0.29, while calculations for stress-
free boundaries [24,28,43] generally have values greater
than 0.31.

The scaling exponent for the rms velocity is likewise
lower than the theoretical value but is consistent with
boundary-layer theory, as it follows nearly the theoreti-
cally predicted relationship of P& =2P.

The boundary-layer thickness can be defined rather ar-
bitrarily. Commonly, it is defined as the layer in which
the vertical heat transport is conductive and over which a
temperature drop of hT/2 occurs. Our study shows that
these assumptions are not consistent. A boundary layer,
as defined by the hT/2 drop, depends inversely on Ra as
predicted (exponent of —0.306 in instead of —

—,'), but for
this boundary layer the relation Nu=d/25 does not
hold. A boundary layer, characterized by a temperature
purely hT/2, is not governed entirely by a conductive
vertical heat transport. Conversely, the conductive layer
would be thinner than 5 and would show a temperature
drop less than b, T/2. This finding may depend on the
Prandtl number and on the aspect ratio. This certainly
challenges the view of thermal boundary layers being at a
marginally stable state. Instead, the thickness of the
boundary layers may be determined by the balance of the
conductive heat flux and the advective outward trans-
port, as suggested by two recent theoretical works
[44,45]. In this case the thermal boundary layer can be
largely controlled by a sharing "wind, " generated by the
large-scale circulation.

The results reported here are all based on two-
dimensional simulations and must therefore be verified
for three-dimensional situations, in the near future, when
much greater computing power becomes readily available
with the arrival of second-generation massively parallel
machines, such as the CM5.
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