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Theory of the electron distribution function in a Lorentz gas at high E /no
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The stationary electron Boltzmann equation is solved for high reduced electric-field strengths E/no.
We consider both the cases of a homogeneous system and of a Townsend ionization avalanche (exponen-
tially growing electron density). The usual calculation scheme based on the two-term spherical-
harmonic expansion fails due to the formation of runaway electrons at high energies. To account for
this effect, the velocity space is separated into different energy regions. For energies below the "runaway
threshold" (U (u& ) Boltzmann's equation is solved by a modification of the usual calculation scheme.
The expansion breaks down near the runaway threshold. For v & u& we construct an alternative expan-
sion that is suitable to describe the formation of a runaway beam. In the homogeneous case, the runa-

way flux excludes exactly stationary solutions. Under avalanche conditions, the runaway effect is "hid-
den" because the runaways follow a Maxwellian distribution. Nevertheless, it has a distinct influence on
the ionization coefncient a. This is demonstrated with numerical results for a weakly ionized He plasma,
where a decreases strongly with E for high E/no values.

PACS number(s): 51.10.+y, 51.50.+v, 52.20.Fs, 52.80.Dy

I. INTRODUCTION

The knowledge of the electron-velocity distribution
function (EVDF) is of principal importance for plasma
and discharge modeling because it controls the current
transport and the rates of nearly all elementary processes
in the plasma. There are essentially two competing ways
to calculate the EVDF. The most direct way, a Monte
Carlo particle simulation, is in principle suitable to ac-
count for various conditions and effects, but has the
disadvantage of a large expense in computation time.
Moreover, due to the limited number of test particles, it
gives only poor information on the most important high-
energy tail of the EVDF. The alternative way, the solu-
tion of Boltzmann s equation, is in general quite compli-
cated and depends in most case on reasonable approxima-
tions.

The most common approximation to calculate the
EVDF is the two-term "spherical-harmonic expansion"
(SHE) [1,2]. It accounts only for small deviations from
an isotropic EVDF and is based on the assumptions of
small gradients and of a small ratio v, /v, =O(e) of the
energy- and momentum-exchange collision frequencies
(Lorentz-gas model). In the case of a homogeneous plas-
ma dominated by elastic electron-atom collisions, these
assumptions are well established (E=m /M) and result in
the well-known Davydov distribution [3]. With increas-
ing importance of inelastic collisions (and/or growing in-
homogeneity}, however, the anisotropy of the EVDF
grows, and the two-term SHE becomes somewhat ques-
tionable. Nevertheless, it is the basis of nearly all usual
EVDF computer codes (see, e.g. , [4]). On the one hand,
this is justified by the lack of sufficiently effective alterna-
tive procedures. On the other hand, calculations using a
multiterm expansion indicate that the two-term SHE is
(for not-too-high E/no} actually better than it should be
[5,6].

There is one more principal limitation restricting the
validity of the two-term SHE: For su5ciently high elec-
tron velocities U, all electron-collision cross sections de-
crease so fast that the field acceleration can no longer be
balanced by collisional friction. This "runaway effect"
was first described by Dreicer [7] for the fully ionized
Coulomb system (with a collision cross section decreasing
like v lnv}. Ecker and Miiller [8,9] could show that the
runaway effect also exists in weakly ionized plasmas,
where the electrons are governed by the interaction with
neutral atoms. In contrast to the Coulomb system, how-
ever, it is restricted to very high electron velocities and is
important only for high reduced field strengths E /no.

Strictly speaking, the runaway effect not only destroys
the isotropy of the EVDF, but it also excludes stationary
and homogeneous solutions of the electron Boltzmann
equation (see Sec. III). Accounting for the spatial inho-
mogeneity of a Townsend ionization avalanche,
Lagushenko and Maya [10] found reasonable stationary
solutions of the electron Boltzmann equation, which
could be described by the two-term SHE up to the
highest E/no values. This is in contrast to intuitive ex-
pectations and to widely used one-dimensional models of
the EVDF in the cathode fall [11]. Lagushenko and
Maya conceded the a priori limitation of the two-term an-
satz and left the question open as to whether or not the
runaway phenomenon exists under avalanche conditions.

We shall show in this paper that the runaway
phenomenon does indeed exist, but is to some extent
"hidden*' under avalanche conditions. To investigate
this, it is advantageous to start from the analysis of
homogeneous systems and to generalize the results to
avalanches. To describe the runaway formation correct-
ly, the effect of forward scattering in inelastic collisions
must be accounted for. The bulk of the EVDF can be de-
scribed by the usual two-term SHE, but the runaway for-
mation requires modified boundary conditions. For the
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high-energy tail we construct an approximation which is
suitable to describe the beam formation. The growing
anisotropy of the EVDF results in a strong decrease of
the Townsend ionization coefficient with increasing
E/np. The general analysis is illustrated with numerical
results for a simple model adapted to a weakly ionized He
plasma.

II. BASIC EQUATIONS

We consider a stationary partially ionized Lorentz
plasma with uniform neutral-particle density in a con-
stant electric field E. The EVDF is homogeneous or de-
pends only on the space coordinate z in the field direc-
tion. We use the notation

v.E vz e
u = /v/, p= =—, and F=—/E/,

vE v' m

where v is the velocity and elm the charge-to-mass ratio
of the electrons. To calculate the electron distribution
function f (z, v, p), we start from Boltzmann's equation,

C"=C"[f")= v—„(u)f"(z, v) = —novq„(v) f "(z,v)

(n ~ 1) (8)

with

q„(u) =2lr f o(v, 8)[1 P„—( cos8)] sinOd9,

where o is the differential cross section for collisions with
deflection

angle 8. According to the model of the
Lorentz gas, electron scattering should be dominated by
elastic encounters with atoms (o =o,l). Actually, howev-

er, at high velocities, scattering by inelastic collisions
cannot be neglected and is usually included in 0.. In do-

ing so, it is important to account for the effect of dom-

inating forward scattering in elastic and inelastic col-
lisions (see Appendix A).

The isotropic collision term C describing energy ex-
change has to account for elastic (el) and inelastic (in) col-
lisions with neutral atoms and for electron-electron en-
counters (ee). We write

C =C,, +C,, + gC,„
in

pu +pF +(1—p )
— " =C[f] .8 a, F a.f

Bz Bv u Bp
(2) and use the following standard collision integrals:

(i) Elastic collisions I1,2]:
For the formulation of the collision operator C [f], it is
convenient to refer to the SHE

f(z, v, p, )= g f"(z,u)P„(p), C[f]= g C"P„(p}, (3)
n=0 n=0

where P„(p) designates the Legendre polynomial [12] of
order n. For later use, we note the explicit formula

with

p 1 e1S
e1 4

S„=4m. nov q„,(v) f +

f "(z, u) = f f(z, u, p, )P„(p)dp
2n +1

(4)

for the expansion coefficients f". Introducing the expan-
sion (3) into Boltzmann's' equation results in the hierar-

chy of kinetic equations [1,2]

where np is the neutral-particle density, M the mass, and

q, „ the elastic momentum-exchange (transport} cross
section defined by Eq. (8) (with o =o,l). The neutral

thermal energy k Tp may be neglected in our case

(To « T„where T, denotes the electron temperature).

(ii) Electron electron co-llisions/1, 13):

v af'+F 1 a(.2fl)=CO
3 Bz 3 v 8

a"2f2+fo +F (u3f2)+ ~f Cl
'az 5 3 Bv Bv

(5)

with

p 1 eeS
4~v Bv

0

S„=4lrv q„(v) Af +Bu

n+1 f +l n

Bz 2n +3 2n —1

n+1 1 8( „+2f +)
2n +3 v" +2 Bv

n „,a f"
u

2n —1 Bv

and

A(v)=4~t u f (z, u)dugan, ,
0

B(v)= f u f (z, u}du+v f uf (z, u)du
3 v 0 U

kT,
~ne

mu

e4
q„(u}= 1nA,

4~cpm u

Restricting ourselves to the Lorentz-gas approximation,
we neglect energy exchange in the nonisotropic scattering
terms and write [1]

where A-10 is the Coulomb logarithm. The limiting
values A ~n, (electron density) and B~n, k T, /m u
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(v ~DO ) may be useful for convenient estimates and for
simplifications. The Lorentz-gas model requires a low de-
gree of ionization with n, q„((noq &.

(iii) Inelastic collisions I14J:
2

C;„=n o' "q;„(u+,„)f (v+;„) uq—;„(u)f (v} '

v

+ n;„vq;„(u)f (u;„)
gin

0.1-

with

v2+,„=u +2e;„/m .

v2

q;„(u+;„)f (u)
v

(12)
10-

Here, the density of atoms in the ground state is
identified with the neutral-particle density no. n;„desig-
nates the density of atoms in the considered excited state,

go and g;„are the corresponding statistical weights, and

q;„ is the total cross section for the excitation of the level
in with excitation energy e;„. (For the sake of simplicity,
we have restricted ourselves to excitation from the
ground state; a generalization is trivial. ) We shall also
use Eq. (12) to account for ionization. This approxima-
tion implies that the secondary electron appears at low
energy and can be neglected. (For a detailed discussion,
see Ref. [15].)

The elastic and electron-electron collision terms exhibit
a priori the typical Fokker-Planck form v BS/Bv, indi-

cating that the small energy exchange in encounters can
be represented by the divergence of a flux in velocity
space. To solve Boltzmann's equation, it is convenient to
represent the inelastic contribution to the same form. We
therefore write

103
1

I

10
I

100 10' 10"

E{eV)

FIG. 1. Electron collision cross sections in He (see Appendix
A): c=mv /2, q,„;=total cross sections for excitation and ion-

ization; and q &{,&}
= (elastic) momentum-transfer cross section.

S(z, u) depends on f (z, u) only for velocities u ~ v [see
Eqs. (11) and (14)] and can be determined successively by
backward integration without iteration. In our numerical
illustrations referring to a weakly ionized He plasma, we
will make use of this simplification. For the sake of clear-
ness, we shall further consider one effective inelastic pro-
cess only. The electron-collision cross sections used are
shown in Fig. 1; for details see Appendix A. We would
like to point out, however, that the principal analysis and
the conclusions do not depend on these simplifications.

C'[f']=
4mv

with

S(z, u) =S,~+S„+QS;„,
in

and calculate from Eq. (12) the inelastic contributions

+in
Sin =4&if P Q gin Q

U

(13) III. THE RUNAWAY EFFECT

f (v) =f (0) exp — f v, (u)u du
F2M

(15)

We consider the hierarchy (5)—(7) for homogeneous
(8/Bz=O) systems. In the simplest case of only elastic
electron-atom colhsions (C =C,~, TO=0), the two-term
SHE (f =0) results in the well-known Davydov distribu-
tion [3] [cf. Eqs. (5), (6), and (10)]

X f (zEE) — f {zu;„)
;„no

(14)

where u;„ is defined in analogy to v;„. Cutting the ki-
netic hierarchy (5)—(7} at a suitable index m (i.e.,
f + ' =0; in the usual two-term SHE, one has m = 1) and
inserting the collision terms (8)—(14) results in a system of
integro-differential equations for f. In general, this sys-
tern can be solved by matrix methods or by an iteration
process involving standard differential equation tech-
niques.

The numerical evaluation is decisively facilitated if
electron-electron collisions (n, ~0) and collisions of the
second kind (n;„~0) can be neglected: In this case,

As pointed out by Levinson [16] and Stenflo [17],it is ob-
vious that f does not tend to zero and cannot be normal-
ized if v, (v) decreases faster with u than 1/v. Corre-
sponding results are also obtained if other collision pro-
cesses are taken into account. Conclusions relating this
diSculty to the runaway effect are questionable due to
the breakdown of the two-term SHE. Avoiding this ex-
pansion, Cavalleri and Paveri-Fontana [18] have shown
that the stationary and homogeneous Boltzmann equa-
tion has no physical solution, (i.e., a solution which can
be normalized) if the integral

I(v)= f v, (u}du (16)
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exists, i.e., if the total collision frequency v, (v) decreases
faster than 1/U for U ~ 00. This breakdown of a station-
ary and homogeneous electron distribution function was
explained with the runaway effect.

Indeed, if I (v) exists, we find a finite probability

3
P

pz ( v) =exp[ —I ( v) /F] (17)

for an electron moving with velocity U in the field direc-
tion to be continuously accelerated without ever collid-
ing, i.e., to "run away. " On the other hand, we expect
that the runaway phenomenon depends not only on the
number, but also on the efBciency, of collisions. To make
this clear, we can use a simple picture given by Ecker and
Miiller [8] to compare the field acceleration F of an elec-
tron moving with velocity v in the field direction and its
mean deceleration vvi(v) by collisions. The ratio

i~vo

10 100

R

I

10 E{ag} 10

FIG. 2. Momentum balance of the electrons: p
=mvvl(u)/eE, c, =mu'/2.

vv, (u)
p(u)= F (18}

depends not on the total but on the momentum transfer-
collision frequency v, [cf. Eq. (8)]. Electrons with

p(u) & 1 experience an average net acceleration, and they
will "run away" if p(u ) & 1 holds for all u & v.

Actually, due to the intrinsic Coulomb nature of all
electron interactions, we must expect that all collision
cross sections decrease faster than 1/u so that we have

p(u) & 1 for sufficiently large u. Using the cross section q,
of Fig. 1, this is illustrated in Fig. 2 for the case of a
large reduced field strength E /n 0

=500 Td (1
Td= 10 ' V cm ) in He. The momentum balance
p(v) =1 is fulfilled at two different velocities, v =vD and

U =U~. UD represents the drift velocity, and U~ designates
the runaway velocity threshold beyond which electrons
can no longer be slowed down by collisions. Of course,
this simple picture has to be refined to account for the
correct distribution of velocities U and velocity directions
p=v, /U. Actually, the greater part of the electrons is

captured with p& 1 at the left-hand side (LHS) of the
"hump" shown in Fig. 2. Some electrons, however, at-
tain velocities u & vz and become runaways. (It is illus-

trative to compare the runaway formation in velocity
space with the quantum-mechanical tunnel effect in

configuration space. ) In principle, runaways can be gen-

erated at arbitrary field strengths. The energy threshold
presented in Table I shows, however, that the effect is

practically restricted to high reduced field strength E /no.

For extremely high fields exceeding a critical value

(E/nv)„=1309 Td, finally, alI electrons are runaways.

This intrinsically nonstationary case is beyond the scope
of our interest.

From the above discussion we expect that the runaway
condition uv, (v)~0 of Cavalleri and Paveri-Fontana [18]
should be replaced by the weaker condition that there is a
velocity threshold Uz with

vvl(u) nv
p(u)= = v q, (u) &1 for all v &vz .

F F
(19)

To prove this, we consider the second equation of the ki-

netic hierarchy (5)—(7) without neglecting f . Searching
for a stationary and homogeneous solution, we obtain
from Eqs. (6) and (8)

3 2 3d~(v3f )+u3 = p(u)v f' . — (20)
5 dU du

Integrating Eq. (20) and observing p&1, we have for
U )Ug

', u f v f —3—f u—f (u)d—tt

& —f u'i f '(u)idtt . (21)
U

The existence of the integrals follows if we assume that
the distribution function can be normalized. With Po =1
and P, =p, we find from Eq. (4)

E/no (Td) c& (keV)

TABLE I. Runaway energy limit c.z =mud /2; (E/no), r
= 1309 Td.

if'(u)i ', f i@if—(v, p)dp ,' f f(v—,p)dp

=3f (v) (22}

120
150
200
300
500
750

1000
1200

(1309)

22.9
16.0
9.98
5.04
2.00
0.875
0.427
0.226
(0.105)

and arrive at

f'(u) & —
—,'f'(u) . (23)

This inequality not only indicates the breakdown of the
two-term SHE, but it also is not consistent with Eq. (4}:
With

P2(p) =(3p' —1)/2 & —
—,',
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we have, in contradiction to Eq. (23), and note the condition p )& 1. Making use of the
Lorentz-gas assumption in the form

(24) C =O(vJ' )=O(F.v,f ), (28)

Remembering the assumptions of the proof, the contrad-
iction shows that the stationary and homogeneous
Boltzmann equation has no solution which can be nor-
malized if the runaway condition (19) is fulfilled.

IV. HOMOGENEOUS ELECTRON DISTRIBUTION

In this section we follow in some aspects a correspond-
ing analysis for fully ionized systems given by Gurevich
[19] and by Lebedev [20]. Looking for a stationary and
homogeneous solution of Boltzmann's equation, we have
to give up the normalization. The comparison of the ru™
naway efFect with the tunnel efFect in quantum mechanics
helps to understand this: In place of a distribution func-
tion describing a given particle density, we consider a dis-
tribution function describing a given particle Aux Sz to
infinity in velocity space or, equivalently, a given diver-
gence of the current density in configuration space. For-
mally, this is achieved by integrating Eqs. (5) and (13) in
the form

3
Fv f'(u)=$(u)+Sz (25)

with an integration constant S„AO. The LHS of this
equation describes the number of electrons Bowing per
unit volume and unit time through the surface of a sphere
with radius u in velocity space. For U —+00 we have
S(u) —+0, and

S&= F lim u f'(u)4m

3 @~co

is the rate at which electrons are "lost" to infinitely high
velocities, i.e., the runaway rate. Of course, the "sink" at
U=~ must, strictly speaking, produce a weak time
dependence if it is not balanced by suitable sources. We
shall assume such (artificial) sources at velocities too low
to be of interest for us. This mill result in a weak singu-
larity for U —+0 representing the particle influx.

where e is a smallness parameter characterizing the ratio
of the energy- and momentum-exchange collision fre-
quencies, we read from Eq. (25),

3S~f '(u) =
z +O(epf o) .4''v (29)

In the "thermal" bulk of the distribution function
(u=u, h), which is governed by the balance of Ohmic
heating and energy loss in collisions ("energy-loss re-
gion"), the runaway fiux Sz may be neglected, and we
have from Eqs. (27) and (29),

p(u, h)=O(e 'i
) »1 . (30)

This self-consistently established parameter value (and
not a "small" electric field) provides the basis for the
two-term SHE for the Lorentz gas. The expansion
breaks down the "runaway region" v & vz, with p(v) (1.
Between the energy-loss and the runaway regions, there is
an intermediate parameter range p&&1, ep &&1. In this
region, which is dominated by angular scattering, the
two-term SHE is still valid [see Eq. (27)]. On the other
hand, energy loss in collisions can already be neglected,
and f' is determined by the runaway fiux S~ [see Eq.
(29)]. The different regions in velocity space and their
characteristic features are summarized in Table II.

Putting aside at the moment the analysis of the runa-
way region, we can therefore apply the two-term SHE
and calculate f and f ' from

f (u)= f f'(u)du (31)

10'- 10 -150

[cf. Eq. (20), f =0] and from Eq. (25). Figure 3 shows
results for the EVDF in a weakly ionized He plasma at
high Elno. (Details of the numerical procedure are
given in Appendix B.) We recognize distinctly the forma-

A. Two-term spherical-harmonic expansion

Starting from this reinterpretation of the distribution
function and the corresponding boundary condition (26)
we ask for the validity of the two-term SHE. With

C"= v„f"=O(pFf "/v)—
(cf. Eqs. (8) and (18)], we estimate from the hierarchy (6)
and (7) the order of magnitude

10'-

10-

10-

0.01
I

0.1 VIVR 1

170
10-

0.01
I

0.1
VIV~

(27)
FIG. 3. Homogeneous electron distribution functions f (u)

and f'(u) in He.



4722 K.-U. RIEMANN 46

TABLE II. Regions in velocity space: p =mU v&(U)/eE, a= 0(v, /v& ).

Region

Parameter
range

Energy
Loss

Angular
scattering

p»1,
Ep «1

Runaway

p(1

Electron

distribution

Usual

calculations

Nearly isotropicf'«f'
3mS&

4meEv

Anisotropic

p(v) = (uz /v ) (32)

tion of the energy-loss region controlled by collisional
cooling and of the angular scattering region dominated
by the runaway loss. The normalization used in Fig. 3
expresses a similarity law for the EVDF in this latter
zone: Assuming a power law

o(v, 8) or, equivalently, of all coe+cients v„(u) [see Eq.
(8)]. To come to a tractable mathematical formulation,
we make use of the fact that forward scattering with
small deflection angle 8 is predominant at high energies.
This enables us to approximate the Boltzmann collision
term C[f] in the differential Fokker-Planck form [21].
Neglecting energy loss in the runaway region (cf. Table
II), we find in Appendix C,

in the scattering region, we obtain from Eqs. (29) and
(31}, C[f]=—,'v, (u) (1—p2)

8 2 8

ap ap
(34)

f (v)= 1

a+2 f '(u) (33)

Introducing this collision term into Eq. (2} and using Eq.
(18), we obtain the kinetic equation

with
pv +(1—p ) =

—,'p(v) (1—p )
Bv Bp ' Bp Bp

(35)

3SRf'(u)=
47TFUR

2

With the cross sections for He given in Appendix A, we
have a = 1. Consequently, we find f ' =3f at the runa-

way threshold UR. Naturally, at this point the validity of
the two-term SHE is already exceeded. For low velocities
u «v„, we expect from Eq. (33), f ' «f . Actually, the
numerical results presented in Fig. 3 show that this is

only poorly fulfilled. The reason for this is not the runa-

way effect but the limited validity of the Lorentz-gas as-
sumptions for energies above the excitation energy [cf.
the discussions in Sec. I and after Eq. (8)].

B. Beam formation

The relation of the runaway fiux and off ' given by Eq.
(26) is exact and does not depend on the two-term SHE.
The corresponding asymptotic form of f ', however, is al-

ready established in the angular scattering region, where
the two-term SHE is still valid. Consequently, to deter-
mine the runaway Aux and the distribution function of
nonrunaways, there is not need to drop the two-term
SHE and to study the runaway region. On the other
hand, the beam formation of runaway electrons is per se
interesting, and therefore we do not care about the prac-
tical importance.

To calculate the EVDF in the runaway region, we can-
not cut the hierarchy and need, in principle, a detailed
knowledge of the differential collision cross section

A further simplification is achieved if we restrict our-
selves to the vicinity of the field axis p = 1, where we ex-
pect to observe the beam formation (cf. also [19,20]).
Linearizing in 1 —p and introducing the dimensionless
variables

U v 1 —p2

f vp(v)du and y =
VR UR

(36)

f' (x,y) =x ' 'e «L,(y), (38)

where L designates the vth-order Laguerre polynomial

[22]. [According to the completeness of the system (38),
we have restricted ourselves here to non-negative integer
v; separation solutions for arbitrary v can be expressed in

terms of hypergeometric functions. ] From Eqs. (26) and

(4), we calculate the contribution

SR '=2~FUR lim x 1—
x =x[U) 0

2
UR

xy f '"'(x,y )dy
U2

=2mFUR6~ 0 (39)

we arrive at the parameter-free universal kinetic equation

a= a a'
x =(1+y) +y (37)

Bx By Qy

For all usual collision cross sections decreasing faster
than u and slower than u with v, we have x~00 and

y ~ oo (p, & 1) for u ~ oo. Equation (37) can obviously be
solved by separation and we find the special solutions
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with
(40)

L, (y ) = 1 —y, L 2 (y ) = 1 —2y +y /2, . . . .

To get a consistent uniform representation, Eq. (40) has
to be matched on the axis (y =0, p= 1) with the SHE re-
sult [cf. Eqs. (29) and (31)]

2

f(u, p)=
2

3V2't f p, du+3p +0SR 2
uu p(tl) vR

4mFvR U u v

2
VR

PV

of f' ' to the runaway flux S2(. (5„p designates the
Kronecker symbol; using the differential equation for
f'"', it can be verified that Sx(")=0 holds for arbitrary
vAO. ) Consequently, the EVDF near the axis in the ru-
naway region can be represented in the form

SR 2 Q( a2f (xy)= e ~ —+ L(y)+ L2(y)+
4mFv x x x

E /n p ((E /no )„.Figure 4(a) demonstrates the matching
of Eq. (40) with f (u)+f '(v) on the axis (y =0) and Fig.
4(b) shows the angular distribution near the axis. In prin-
ciple, we recognize distinctly the expected beam forma-
tion with increasing v. On the other hand, comparison
with Table I shows that a sharp peak will actually not be
formed: Velocities v) 10v„(as displayed in the figure)
can hardly be generated by the total voltage applied to a
gas discharge (and if so, they require a relativistic
analysis).

V. ELECTRONS IN A TOWNSEND AVALANCHE

Under runaway conditions, our proof in Sec. III ex-
cludes solutions of Boltzmann's equation which are sta-
tionary and homogeneous. Now we give up the homo-
geneity and consider the space dependence f cc exp(az)
of an ionization avalanche, i.e., we look for regular solu-
tions of the equation [see Eq. (2)]

(41) p avf+F +(1—p )
— =C[f] .df 2F Bf

t)V V (}P
(43)

where we have used Eq. (27) to estimate the contribution
of f (u), which is neglected in the two-term expansion.
In general, this matching will be difficult: The represen-
tations (40) and (41) refer to opposite parameter ranges
u & vR and v & vR, both breaking down for v —VR. In the
case of He with p(v) =

v)t /u [see Eqs. (32) and (33)],how-
ever, we have &, &= ' fp'fd"=' f f'd (44)

Townsend s ionization coefficient a is not a free parame-
ter but has to be determined self-consistently: Integrat-
ing Eq. (43) over all velocities (with d u =2@V dv dp) re-
sults in a( v, ) =0, where [cf. Eqs. (1) and (4)]

3
u v 2 ~ p(u) 1x=, y= (1—p), v2t dQ =

VR VR U Q 3 V

(42) is the mean electron-flow velocity and

and can compare Eqs. (40) and (41) term by term with the
result (2 t

=3 and a2 = 1. [It should be noted that the lead-
ing term of Eq. (40) corresponds to the f correction in
Eq. (41}. For other special cases, solutions with nonin-
teger v may be advantageous. ]

The corresponding EVDF is presented in Fig. 4. Ac-
cording to the normalization used, the presentation does
not depend on E/np. It should be observed, however,
that the model assumptions used in the derivation assume

10

fC[f]d'u =4m f u'q, fdv.
)le )le

(45)

is the ionization rate. Consequently, when solving Eq.
(43), we have to observe the condition

vq;u zu v

(46)
u f '(z, u)dv

0

[To avoid confusion with similar expressions derived
from special assumptions, we point out that Eq. (46)
holds exactly and is neither restricted to small a nor
based on the two-term SHE.]

10-

10'-

100-

0.8-

0.4-

A. Reduction to a homogeneous system

Equation (43) suggests utilizing energy conservation
Fz —u /2=const in characteristic orbits to eliminate the
additional term avf originating from the inhomogeneity.
Starting from the ansatz

af(z, u, p)= exp az — u g(v, p) (47}

I

10

vlvR

10'
1

20' y 30'

results in

g +(1 2} g (ai2F)u C[
—(al2F)u

]"av "vip='
FIG. 4. Electron distribution function in the runaway region

for E/np &(E/np)„: (a) Velocity distribution on the axis,
matching with f +f ' and (b) angular distribution, 8=arccosp.

(48)

Obviously this equation is identical with the kinetic equa-
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tion for stationary and homogeneous systems, except for
the fact that the collision operator C is replaced by C.
Engaging again the SHE and the Lorentz-gas approxima-
tion [see Eq. (8)], we obtain

0[ 0] e(al2F)v CO[
—(a/2F)v 0]

1000 E/n (Td)

C™=C"[g"]=—v„(v)g "(v) (n ~ 1) .
(49)

This conservation of the structure of the collision term—
which was the reason we used the isotropic invariant
Fz —

U /2 and not the invariant Fz —
U, /2 —implies that

we can utilize nearly the entire analysis of Sec. IV. In
particular, the angular scattering region and the runaway
region remain completely unchanged. We have merely to
replace C by 0 in the numerical evaluation of the
energy-loss region. Physically, this means that particle
exchange by diffusion is formally described in terms of a
source in velocity space (without local particle conserva-
tion). Trivially, the ansatz (47) guarantees that f can be
normalized (in contrast to g). Correspondingly,

I
[

~

100
E/po(V/cm Torr)

1000

FIG. 5. Townsend ionization coefficient in He (solid line). L
indicates the results of Lagushenko and Maya [10], a the ap-
proximation neglecting energy loss in collisions, and b the ap-
proximation neglecting all scattering. a/E is in V and E/po
is in V/(cm Torr).

3SR
lim v g'(v)=

t) -~ oc 4' (50)

[cf. Eq. (26)] can now be considered as an arbitrary nor-
malization constant and does not directly describe the lo-
cal runaway production rate.

We refer again to our simplified model of a weakly ion-
ized He plasma and show some results in Table III and in

Fig. 5. (For numerical details, see again Appendix B.)
The influence of the inhomogeneity ( a ) on the distribu-
tion function may be characterized by ekT, /eE. As
Table III shows, this inAuence is negligible for E/no & 30
Td (F. /J)0 & 10 V/cm Torr). For larger values of E/no, f
and a must be determined consistently by iteration.

B. Approximations for high E/no

For sufficiently high E/no, the energy loss in collisions

may be completely neglected, and we have in analogy to
Eqs. (31) and (29), g = —fg'p/v dv and g'a-1/v .

With Eqs. (19) and (47), we can write

f0 v2f 1(v)G(v) and f1 cc e a/2Fv-no 2

F 2

with

(51)

G(v) =f q) (u )

Introducing this into Eq. (46) results in the relation
'2

F —(a/2F) U
2=3 v q;(v)G(v)e ' / ' dv,

no 0
(52)

expressing E/no as a function of a/E. The result for He
is shown in curve a of Fig. 5. At E/no=1000 Td, it
merges smoothly with the numerical curve discussed
above.

For the case of an isotropic collision cross section vary-

ing inversely proportional to v (constant collision fre-

quency), the above approximation becomes identical with

TABLE III. Electron temperature T„mean velocity ( v, ), and ionization coefficient a in He: E/no
{in Td) =2.829E/po (in V/cm Torr).

E/po
(V/cm Torr)

1

2
5

10
20
40
70

100
150
200
250
300

kTe
{eV)

1.22
2.89
4.78
5.60
6.73
8.66

11.9
15.5
23.2
32.9
45.2
56.9

IO '&v, &

(ms ')

0.91
1.46
3.59
7.13

14.1

28.0
48.4
71.9

112
162
224
297

10 a/E
(V

—I)

3.8X10
5.8X 10

8.10
43.8
95.0

134
144
129
104
79.5
59.9
45.0
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a classical model of the ionization growth investigated by
Gerjuoy and Stuart [23]. From this model it was predict-
ed for the first time that a decreases with increasing
E/no for high E/np. In the analysis of Gerjuoy and Stu-
art, there is no upper limit in E/np because there is no
runaway effect for constant collision frequency. In our
case, however, increasing E/np further and exceeding
the critical field (E/no)„=1300 Td (see Table I), both
the numerical result and Eq. (52) must fail, because they
are based on the two-term SHE. This can be seen from
the ratio f ' /f ~~ for F /n 0~ 00, contradicting the
necessary restriction f' 3f [see Eq. (22)].

As discussed with Eq. (33), the limiting ratio f '/f = 3
is met near the runaway threshold vz, and the suggestion
might be made to utilize the analysis of Sec. IV B to cal-
culate g and f for v )vs. This analysis, however, is again
restricted to reduced field strengths E/no & (E/no)„be-
cause the expansion coefficients were determined by
matching with the two-term SHE. Moreover, the repre-
sentation of the EVDF in Sec. IV B is valid only in the vi-
cinity of the field axis p = 1 and is not suitable to deter-
mine the ratio f '/f . We can, however, account for the
runaway formation if we redefine G(v) in Eqs. (51) and
(52) by

du FG(v)=max f qi(u)
U 371pv

(53)

to enforce f )f'/3. This approximation was used to
continue the solid curve of Fig. 5 beyond the critical field

(E/no)„. The remaining uncertainty of f near the
runaway threshold vz may be recognized from a small
dent in the a(E) curve near the critical field.

The extreme runaway limit f:f '/3 (i.e., —G
=F/3nov ) resulting in

P a) 2

v~ (v)e
—(al2F)v dv

np O

(54)

is shown in curve b of Fig. 5. Interestingly, the same re-
sult is obtained from a one-dimensional description of the
electrons starting from the kinetic equation

av, f(z, v, )+F =o5(v, )
a

(55)

and neglecting scattering completely.

VI. SUMMARY AND DISCUSSION

Due to the strong decrease of the momentum-transfer
collision cross section at high energies (see Fig. 1 for e-He
collisions), the field acceleration F=eE/m of sufficiently
fast (v )vz) electrons cannot be balanced by the mean
collisional deceleration vv, (v) (see Fig. 2 and Table I).
These electrons become "runaways. " As we have seen in
Sec. III, the runaway formation not only results in a
breakdown of the two-term SHE at v =vz, but also im-
plies that the stationary and homogeneous electron
Boltzmann equation has no solution which can be nor-
malized. With modified boundary conditions in velocity
space, however, it is possible to construct a stationary
and homogeneous EVDF which is normalized with the

runaway flux (production rate) Sz rather than with the
electron density n, (Sec. IV). Calculating this EVDF,
three different regions in velocity space may be dis-
tinguished (cf. Table II), as follows.

(i) The energy-loss region I (v « vii), which is governed
by the balance of Ohmic heating and collisional cooling.
In this region the runaway Aux may be neglected.

(ii) The angular-scattering region II (v & vR ), which is
governed by the balance of field acceleration and mornen-
tum loss in collisions. In this region the Ohmic heat is
consumed in runaway formation.

(iii) The runaway region III (v ) vs ), where the elec-
trons are continuously accelerated and which is charac-
terized by strong anisotropy and beam formation.

Accounting for the modified boundary condition (26)
related to the runaway Aux, in regions I and II the usual
two-term SHE can be applied (Sec. IV A). The results for
a weakly ionized He plasma presented in Fig. 3 reveal a
similarity law for the EVDF in region II (and III). To
calculate the EVDF in region III, we utilize the dominant
forward scattering at high energies and start from an ex-
pansion of the electron Boltzmann equation in the vicini-
ty of the field direction (Sec. IVB). The expansion
coefficients are determined by adapting the runaway Aux
and matching the EVDF on the field axis [Fig. 4(a)]. The
angular distribution of the electron velocities [Fig. 4(b)]
shows the increasing anisotropy and gradual beam forma-
tion.

The homogeneous theory can be generalized for the
case of inhomogeneous systems under Townsend
avalanche conditions (Sec. V). In contrast to homogene-
ous systems, there exists a stationary EVDF which can be
normalized in the usual sense. This is caused by a
Maxwellian factor exp( —a v /2F ) supplementing the
Boltzmann-like space dependence exp(az) (Sec. VA).
The existence of a regular steady-state solution under ru-
naway conditions might be explained by the idea that the
electron density gradient drives the electrons in the direc-
tion opposite to the electric force [10). Actually, howev-
er, the density gradient generates no real physical force
acting on a single electron and impeding the runaway for-
mation. From a mathematical point of view, the concep-
tion of field drift and diffusion is restricted to sufficiently
isotropic EVDF's, and this means that the electric force
must be essentially balanced by momentum loss in col-
lisions.

Our analysis shows that the anisotropy of the EVDF in
regions II and III—and, with that, the runaway
formation —is not influenced by the space gradient. We
can therefore state that the runaway phenomenon exists
under Townsend avalanche conditions, but that the runa-
ways are (nearly) Maxwell distributed. This Maxwellian
distribution has nothing to do with thermal equilibrium
or with a balance of diffusion and field drift. It reflects
simply the energy conservation of the electrons in regions
II and III [cf. Table II and Eq. (47)]: The number of
high-energy electrons is exponentially small because they
come from a region where the density is exponentially
small.

To account for the runaway phenorneneon, the effect of
forward scattering of high-energy electrons in elastic as
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well as in inelastic collisions must be observed. (Assum-
ing isotropic scattering results in a momentum-transfer
cross section qi violating the runaway condition (19); see
Fig. 1 and Appendix A. ) The infiuence of the runaway
formation on the Townsend ionization coefficient a can
distinctly be seen from Fig. 5: For small and moderate
reduced fields E/no &300 Td (E/po & 100 V/cm Torr),
our results for a jE agree with those of Lagushenko and
Maya [10] (curve L), which were obtained from the same
set of cross sections, but do not account for the runaway
effect F.or high E/no, however, our results deviate from
curve L and show a strong decrease of the ionization
coefFicient. The decrease may be interpreted by the grow-
ing anisotropy. If the EVDF is nearly isotropic, electrons
drifting in the field have a long mean free path and cause
many ionization processes. This random walk is missing
in an anisotropic distribution where the particles can fol-
low the field direction [cf. the denominator in Eq. (46)].
The relation to the runaway effect may be confirmed from
the approximations of Sec. V B (curves a and b in Fig. 5),
which are explicitly based on the runaway conception.

The ionization probability in a Townsend discharge
with finite electrode distance d may be nonuniform
[9,24,25] and may be different from that in an infinitely
extended avalanche. Nevertheless, the temptation to
point out the effect of the decreasing ionization coefficient
on Paschen's law is too strong. Disregarding ionization
by ions and fast atoms [26] and neglecting the field
dependence of the secondary emission coefficient y, we
have the Townsend ignition condition

ad= ln[(1+y)/y]=I

for large E, this curve is bent back to the right on the
LHS of the Paschen minimum and predicts an absolute
minimum distance for ignition. This interesting result,
which is in qualitative agreement with experimental evi-
dence for He [24,26], should stimulate further investiga-
tions accounting for the full inhomogeneity of the EVDF
in front of the electrodes.
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APPENDIX A: ELECTRON CROSS SECTIONS IN He

6. 16

1+(e/15) /

q,„= ' in[1+ [0.013+0.008(s —e,„)]e]
2. 82

(Al)

with c.,„=20 (A2)

For numerical illustrations we refer to a weakly ionized
He plasma. To facilitate the comparison with corre-
sponding results of Lagushenko and Maya [10], we start
from the same simplified set of collision cross sections

q„, (elastic momentum transfer), q,„(excitation of one
electronic state), and q; (ionization). The cross sections

2'
are given in units of A, and c.=mU /2 is the electron en-

ergy in eV:

With E = U/d and the numerical result E/po=h(u/E)
of Fig. 5 (Table III), we obtain Paschen's law:

19 8 0.046(e —e;)e
q; = '

ln 1+
E 70

with c,;=24 .

pod U/I
I h ( I'/U) (56)

1000-

500-

«fr

shown in Fig. 6. As a consequence of the decrease of a

The cross sections are plotted in Fig. 1. Evidently, q,„
and q; become larger than q„& at high electron energies.
Adding q,„and q; to qi, i, the runaway condition (19) is

not fulfilled. With increasing electron energy, however,
the energy loss in inelastic collisions becomes unimpor-
tant and we must account for the fact that scattering in
inelastic collisions is not isotropic. In view of the
simplified representation used here, we can refrain from
the tedious task of finding reliable differential cross sec-
tions for e-He encounters and content ourselves with an
estimate of the inelastic momentum-transfer cross section
from the well-known Thompson model [27].

To this end, we add Eqs. (A2) and (A3) to the lumped
inelastic cross section

q ln q eX ql

100- with the energy threshold c,;„=c,„. Within the Thompson
model, the inelastic process is described by the interac-
tion of the free electron with a shell electron at rest, and
q;„can be approximated in the form

10 100
p d/I (cm Torr)

FIG. 6. Paschen curve ad =In[(1+y)/y]= I in He (U in V
and pod in cm Torr).

q;„=2' cr(EO),sin, O d O,
~~ ~ 'in

where

const . 4 0
cr, (E, O) = sin

F
(A6)
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is the Coulomb scattering cross section and

8
hc, =c, sin—2

2
(A7)

f (v„)=b„f'(u„)+e„f'(u„+,)

+d„f'(v„+2)+f' (u„+~) . (B5)

q&;„=2m (1—cos8)o, (e, 8) sin8 d 8 .
~~~ ~in

Evaluating Eqs. (A5) —(AS), we obtain the ratio

(AS)

is the energy transfer to the shell electron. In analogy
to Eq. (A 5}, we can calculate the corresponding
momentum-transfer cross section

Taking starting values for n ~ N —1 from Eq. (33),f '(v„)
and f (v„) (n =N —2, . . . , 1) can be calculated succes-
sively from Eqs. (B4) and (B5). The grid point n =0 is
omitted because of the singularity at v =0 discussed with
Eq. (26).

To calculate the EVDF of a Townsend ionization
avalanche, we replace Eqs. (Bl) and (B2) by

(A9)

The Thompson model is justified only for c &&c;„. Near
the energy threshold (s=s;„), we obtain, from Eq. (A9),
q1;„=2q;„ in contrast to the experimental evidence of iso-
tropic scattering (q, ;„=q;„). To account for this, we
modify Eq. (A9) for e=O(s;„) and use g (u}= f uq&(u}g'(u)du .F U

(B7)

3 S
g'(u)= +S

Fv' 4~

with 0=f u2C' [g (u}]du, (B6)

in(s/e;„)
(A10} According to Eqs. (10},(13), (14), and (49), S is explicitly

given by

to calculate the inelastic momentum-transfer cross sec-
tion from q;„. The entire momentum-transfer cross sec-
tion q1 used in the numerical evaluations and shown in
Fig. 1 is given by

S=nv v q„,(u)g (v)+Q(u)+R(v)

q1 ql e1+q1 in (Al 1) —(acin/eE)R
(

APPENDIX B: NUMERICAL SCHEME

The calculation of homogeneous EVDF's starts from
Eqs. (25) and (31). Applying Eqs. (10), (13},(14), and (19},
we obtain the system

vR

with Q(v)= f u q&,((u)g (u)du

and R(v)= f u q;„(u)g (u)du . (BS)

f (v)= + nvu q„,(v)f (u)
3 SR ltd 4 p

Fv' 4~

+in
+nv f '"u q;„(u)f (u}du ', (Bl)

f (v)= f uq((u)f'(u)du, (B2)

v„=nvR /N (B3)

equidistant in v ceo'/ and not, as usual, in c. (This has
the disadvantage that we have to interpolate evaluating
the inelastic collision term. ) Applying the trapezoidal
law to Eq. (Bl) and Simpson's law to Eq. (B2) results in a
system of the form

f'(v„)=a„f (u„)+ g a„ 1' (v„),
v)n

(B4)

where q;„ is the cross section for one lumped inelastic
process [see Eq. (A4)]. To reduce the number of grid
points at high energy (v~vz) and to keep a sufficient
resolution at low energy (energy-loss region), we use a nu-
merical grid

(Formally, Q shows a weak singularity for u —+ cc. Actu-
ally, however, this term can always be neglected in corn-
parison to the first elastic term or to R.) The numerical
evaluation follows the scheme of the homogeneous case.
Again, we omit the grid point n =0 because of a singular-
ity for u —+0. [In contrast to the homogeneous case, this
(unimportant) singularity has no justification by the
model assumptions and could, in principle, be avoided by
a different choice of the integration constants in Eqs. (B6)
and (B7). Such a choice, however, would result in an iso-
tropic distribution g ~const for v ~00. Actually, the
problem of appropriate integration constants cannot be
solved consistently within the two-term SHE.]

Simultaneously with the EVDF, we have to determine
a by iteration. Increasing the reduced field step by step,
suitable start values are obtained by a=0 for low E/np
and from the preceding step for higher values of E /no.

APPENDIX C: SMALL-ANGLE SCATTERING

Neglecting energy exchange, Boltzmann*s collision
term for angular scattering in electron-atom encounters
becomes
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C[f) =n&& f [f(v, p'}—f(v, p)) vcr(v, 8) sin8d8dg

1 8 f(v, ls)
nov kt}P

X f (p' —p)"o(v, 8)sin8d8dg,

where 8 is the deflection angle and P the azimuthal angle
in the relative system of a binary collision. Inserting the
precollision direction cosine

p'=pcos8+(I —p )'~ sin8cosg (C2}
and neglecting contributions o-0 and higher order in 0,
we obtain Eq. (34) by straightforward integration.
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