PHYSICAL REVIEW A

VOLUME 46, NUMBER 8

15 OCTOBER 1992

Localization of a quantum-mechanical particle in classical simple fluids

Xin-Zhong Yan and Shih-Tung Tsai
China Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing 100 080, China
and Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, China*
(Received 7 February 1992)

We present a self-consistent scheme to study the localization of a light particle obeying quantum
mechanics immersed in classical simple fluids. The interparticle correlations between the particles of the
host fluid are analyzed with the Percus-Yevick approximation using the Lennard-Jones potential. The
interaction between the light particle and the fluid particles is represented by a contact potential. The
Percus-Yevick approximation is also used to describe the density distribution of the fluid particles
around the light particle. The effective potential acting on the light particle and the wave function of the
light particle are self-consistently determined by the coupled Percus-Yevick and Schrodinger equations.
The formalism was used to investigate ortho-positronium localization and annihilation in liquids He and
Ne. The theory is found to be in fairly good agreement with existing experiments.

PACS number(s): 51.90.+r, 71.50.+t, 78.70.B;j

I. INTRODUCTION

The problem of a light particle trapped in fluids has
been extensively studied during the past three decades
[1,2]. The light particle here refers to an electron, posi-
tron, or positronium which behaves quantum mechani-
cally. When such a particle is injected into a fluid, it po-
larizes the host fluid to form a dilute cavity or a droplet
of dense material around it depending on whether the in-
teraction between them is repulsive or attractive. As a
result of the polarization, the light particle may be in a
localized state. Therefore the mobility of the light parti-
cle may be substantially reduced [3]. If a positron or a
positronium happens to be localized in the fluid, its an-
nihilation rate differs considerably from that when it is in
a free state [4,5].

For theoretically treating the localization, the crucial
quantity is the density distribution of the fluid particles
which impose a potential on the light particle. For the
case of a repulsive interaction, the most simple descrip-
tion for the fluid density distribution is the ‘‘bubble”
model [6], according to which there are no fluid particles
inside of the bubble while the density is uniformly distri-
buted outside of it. Various improvements to this model
have been developed. Most of the theoretical schemes
are based on the density-functional approach [2,7-11].
In these schemes, one usually composes the grand ther-
modynamic potential which depends on the wave func-
tion of the light particle and the local fluid density. The
equilibrium state is obtained by minimizing the grand
thermodynamic potential with respect to these two func-
tions. Moore, Cleveland, and Gersch provided a treat-
ment of the localization in an ideal gas [8]. Iakubov and
Khrapak took the correlation effects into account via van
der Waals fluids [2]. The additional effects of interparti-
cle correlations were considered by Stott and Zaremba [9]
and by Ebner and Punyanitya [10]. Stott and Zaremba
employed a trial wave function and an empirical equation
of state for treating positron annihilation in helium, while
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in Ebner and Punyanitya’s work [10], they analyzed the
interparticle correlations of the fluid through the Percus-
Yevick (PY) equation [12,13] with a Lennard-Jones 6-12
potential. The density distribution of the fluid particles
around the light particle was parametrized as a continu-
ous function. Recently, Miller and Reese investigated the
problem by adopting the local-density approximation in
which the density distribution is determined by the equa-
tion of state of the fluid and the potential asserted by the
light particle [14].

In this paper, we present a fully self-consistent treat-
ment of the localization. The particles of the fluid are
nonpolar and obey classical mechanics. For such a fluid,
the interaction between its particles may be fairly charac-
terized by the Lennard-Jones 6-12 potential, and the PY
equation is found to provide a good description of the in-
terparticle correlations [13]. We still use the convention-
al contact-potential approximation for the interaction be-
tween the light particle and the fluid particle because the
localization scale is much larger than the interaction
range [2]. Under this approximation, the effective poten-
tial acting on the fluid particles can be explicitly ex-
pressed in terms of the wave function of the light particle.
We also use the PY equation to describe the density dis-
tribution around the localization center. This density dis-
tribution acts as an effective potential on the light parti-
cle. Thus the wave function of the light particle and the
fluid density distribution can be self-consistently deter-
mined by the coupled Schrddinger and PY equations.

As an application, we will consider ortho-positronium
(0-Ps) localization and annihilation in classical rare-gas
fluids. For the fluid at low density, there is no localized
state for the light particle. Experiments show that the
pick-off annihilation rate increases linearly with density
[1]. This linear dependence results from a sequence of in-
dependent collisions between o-Ps and the fluid particles.
As the density increases further, the annihilation rate
starts to drop from the linear dependence. By observing
such behavior in ethane gas, Sharma, Eftekhari, and
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McNutt [15] have suggested a semiempirical model
which explains the reduction of the annihilation rate in
terms of fluid density fluctuations. This model fails in
higher density region, where the localization effects are
expected to be predominant. The present theory is suit-
able for treating the problem of strong localization. It
can give a better evaluation of the annihilation rate in
strong localization cases.

In Sec. II, we outline the self-consistent formalism.
Section III gives the numerical technique for solving the
coupled simultaneous equations. The PY equation can be
solved by a simple iteration algorithm with very fast con-
vergence and good precision. We apply the formalism
derived in Sec. II to calculate the pick-off annihilation
rate of 0-Ps in fluid He and Ne. The numerical results
and their comparison with experimental data are shown
in Sec. IV. Conclusion and remarks are given in Sec. V.

II. FORMALISM

We consider a light particle immersed in a classical
simple fluid with average number density »n at tempera-
ture T. The fluid is assumed to be in the thermodynamic
equilibrium state. By omitting the kinetic energy of the
fluid particles, the Hamiltonian of the whole system is
given as

H=p*/2m+ [ dRo(r—R)n(R)
+1 [dR [dRu(R—R)n(R)n(R") , (1)

where the first term on the right-hand side is the kinetic
energy of the light particle with mass m, the second term
is the interaction energy between the light particle (at po-
sition r) and the fluid particles, and the third term comes
from the interaction between the fluid particles whose
density operator is denoted as n(R). The potential v(r)
is usually approximated as [2]

v(r)=2m#L /m)8(r) . ()

where L is the scattering length. For the interaction be-
tween the fluid particles, we use the Lennard-Jones 6-12
potential [12]

u(r)=4e[(o/r)?—(o/r°]. (3)

For the pick-off annihilation, the available electron num-
ber from a fluid particle is denoted as Z ;. The parame-
ters € and o as well as the quantities L and Z .4 for the
fluids under consideration are given in Table I.

Before we treat the problem, we need to study the
correlations between the particles. To determine the

TABLE 1. Parameters € and o used in the interparticle po-
tentials of the fluids [12]. The scattering length L and the
effective charge number Z 4 are the characteristic parameters
for collisions between ortho-positronium and the fluid particles
[2]. All the lengths are in the unit of Bohr’s radius ap.

Element e/kp (K) o (units of ag) L (units of az) Z4
He 10.2 4.832 1.5 0.125
Ne 35.6 5.197 1.65 0.235
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correlation functions of the fluid, we use the PY equation
and the Ornstern-Zernike (OZ) relation [13]

c(r)={exp[—Bu(r)]—1}[N(rn+1], (4a)
N(k)=nc*(k)/[1—nc(k)], (4b)

where 8=1/kyT, and c(r) and N (r) are the direct corre-
lation function and the nodal function, respectively.
Here the function in real space and its Fourier com-
ponents are distinguished by their arguments » and k.
For the correlation function, we have

h(r)=c(r)+N(r). (5)

We notice Eq. (4a) is different from its conventional form.
The advantage of writing it in such a form will be men-
tioned in Sec. III.

We now return to the Hamiltonian (1) and look for an
effective interaction between the light particle and the
fluid. In actual calculation, one frequently uses the
mean-field approximation in many theoretical schemes.
In taking the average, the contribution from the excited
states of the light particle is neglected for the smallness of
occupation probability. We here also confine ourselves to
this approximation to see the ground-state localization.
Using the mean-field approximation, we decompose the
second term on the right-hand side of Eq. (1) as

[ dRo(r—R)n(R)
zdev(r—R)no(R)
+ [dR [drly(n)|(r—R)n(R)
— [dR [drlgp(r)o(r—R)ny(R) ©)

where n,(R) is the averaged density distribution of the
fluid particles in the field of light particle, and ¥(r) is the
wave function of the light particle [16]. The last term in
Eq. (6) is a constant and will be dropped hereafter. The
first term is just the effective potential acting on the light
particle, while the second term is the averaged potential
acting on the fluid. With the help of Eq. (2), the effective
potentials acting on each particle can be written as

Veg(r)=2m#L /m)[ny(r)—n], @)
vo(r)=2m#L /m)|Y(r)|?, (8)

where we have subtracted a constant in v.4(r) and as-
sumed that the origin is at the localization center.

With the averaged potential, the wave function and the
energy of the light particle are determined by
Schrodinger equation

[p2/2m +v g(r) JY(r)=Ey(r) . 9)

The averaged density distribution n,(7) is involved in the
averaged potential v 4(r). The deviation of ny(r) from n
stems from the presence of the localized particle which
polarizes the fluid. So such a localization is also called
“self-trapping.”

As for the correlations between the fluid particles, the
PY equation may provide a good description for the den-
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sity distribution, ny(r) in the effective potential vy(r),
which is a short-range one. If we use subscript 0 to
denote the various correlation functions between the lo-
calization center and the fluid particles, the correspond-
ing PY equation can be written as

colr)={exp[ —Bvy(r)]—1}[Ny(r)+1],
No(k)=nco(k)h (k) ,

(10a)
(10b)

where £ (k) is the solution of Egs. (4) for the host fluid.
The averaged density distribution is given as

no(r)=n[1+hy(r)], (11)

where hy(r)=cy(r)+Ny(r). Therefore the differential
equation (9) and integral equations (10) compose the cou-
pled simultaneous equations which self-consistently
determine the state of the light particle.

III. NUMERICAL TECHNIQUE FOR COMPUTATION

In order to solve the coupled simultaneous equations,
we have to look for a simple but efficient method. Many
efforts have been devoted to solving the PY equation in
its original form:

c(r)={1—exp[Bulr)]ig(r), (12)

where g (#)=1-+h(r) is the radial distribution function.
Near the triple point, one needs to order 1000 iterations
to solve this equation [13]. The very slow convergence
stems from the short-range part of the interaction u (7),
where the absolute value of the factor in Eq. (12) is larger
than unity, |1—exp[Bu(r)]| >>1. After a rearrangement
of Eq. (12), one can get the form as given by Eq. (4a) in
which the absolute value of the factor is less than unity in
most of the » domain.

In order to see why such a form may lead to fast con-
vergence, let us consider a very simple example:
x =ax +b where a7 1. If we solve this equation by the
iteration, x, =ax, _,+b, the error in nth step is given as
Ax,=alAx, ,=a"A, Therefore the iteration procedure
may converge or diverge depending on la| <1 or la|> 1,
respectively. Although the PY equation differs from this
simple example, the philosophy of numerical technique is
the same. In the present work, we have used a fast-
converging iteration method developed by Ng for solving
the hypernetted-chain equation [17], by which the solu-
tion of Egs. (4) were obtained with typically 30 iterations.
However, for attractive interactions, e.g., between a posi-
tron and rare-gas atoms, Eq. (12) is a suitable form.

The Schrddinger equation (9) can be solved with the
Numerov algorithm, which is fast and precise [18]. It
needs a proper initial input for the potential v 4(r). We
have solved the coupled simultaneous equations for a
number of combinations of fluid parameters n and T.
The solution of v 4(r) at a point (n,T) was used as input
for next calculation at another point near (n,7). After
several iterations, we obtained an accuracy of

. /2
[fdr[hg"“(r)—hg’“”(r)]2 1077 (13)

Initially, there is no such proper input available. We may
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start the calculation in a different way by writing hy(r) as
ho(r)=exp[ —Bvy(r)]—1+f(r), (14)
with
f(r)=Ny(rlexp[ —Bvy(r)] . (15)

Omitting f(r) at the first step of iteration, a nonlinear
Schrodinger equation is obtained, since vy(r) is given in
terms of the wave function ¥(r) which satisfies the neces-
sary boundary and normalization conditions. This non-
linear Schrodinger equation can be solved with the
Runge-Kutta method or the Adams-Bashfourth-Moulton
schemes [19]. Having the potential v,y(r) obtained from
the wave function, we can solve the PY equation and get
the function f(r). This finishes the first step of iteration.
With the function f(r) as input, we can proceed to the
consecutive steps of iteration. The procedure is contin-
ued until the self-consistent solution within the accuracy
set by Eq. (13) is obtained.

IV. POSITRONIUM LOCALIZATION
AND ANNIHILATION IN LIQUIDS He AND Ne

In this section, we apply the formalism derived in Sec.
II to study the problems of o0-Ps localization and annihila-
tion in the classical liquid Ne and He. For the sake of
description, we introduce some parameters characteriz-
ing the state of the liquids. The reduced temperature and
density are defined as

T*=kyT/e (16)

and

n*=ng’, 17

respectively. For the length scale, we use the Wigner-
Seitz radius

a=(3/4mn)"3 . (18)

The coupled simultaneous equations have been solved
for a number of combinations of T* and n*. In Fig. 1,
we show the results for positronium in liquid Ne at

05 F R(r) E
0
Eo ho(r)
-05F 77
-1.0 T* =15 n'=05
0 2 4 6 8
r/a

FIG. 1. Wave function R (r), reduced potential /4(r), and en-
ergy E, of the localized positronium in fluid Ne at 7*=1.5 and
n*=0.5.
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T*=1.5 and n*=0.5. The radial part of the Ps wave
function, R (r), satisfies the normalization condition,

[ arrR¥n=1. (19
The energy is scaled by constant g,

E =g\E,, (20)
with

go=2mHLn/m , (21)

thus the correlation function hy(r) expresses the scaled
potential in which the positronium moves. The form of
the potential is different from a square well. The classical
turning radius is about 3a within which a large part of
the wave function is localized.

With the knowledge of the density distribution of the
fluid particles and the Ps wave function, we can calculate
the Ps annihilation rate A. For the pick-off annihilation
of 0-Ps in liquids, A is given as [2]

A=A, +amrdcZgn |1+ [drlp(r)Pho(r) |,  (2)

where A, =0.704X 107 s~ ! is the annihilation rate in vac-
uum, r, is the electron classical radius, and c is the light
velocity. The last term in Eq. (22) is due to collisions
with the fluid particles. This term is also called the
quenching rate. In Fig. 2, we exhibit this quenching rate
through the normalized quantity

R=n* |1+ [drlg(r)|hy(r) (23)

as a function of n* for 0-Ps in liquid Ne at two tempera-
tures. At these parameters, the quenching rate decreases
above a certain density and after reaching a minimum it
increases linearly with density. At the outset, with in-
J
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FIG. 2. Reduced quenching rate R as a function of n* for
ortho-positronium annihilation in fluid Ne at the reduced tem-
peratures T*=1.5and 2.

creasing density, the potential well is deepened and so the
localization is stronger. But for still higher density, the
width of potential well is squeezed, which decrease the
extent of localization. This explains the behavior of the
quenching rate. At a given temperature outside of the
above density regime, the potential well is too shallow (at
low density), or its width is too narrow (at high density),
to sustain a localized state. The dashed line in Fig. 2
denotes the low-density behavior of R when the 0-Ps is in
the extended state. For the case of liquid He, the behav-
ior of R is the same as in Fig. 2.

There have been many experimental results for posi-
tronium annihilation in liquids. We pick here three avail-
able sets of data [5] for A,,, which can be directly com-
pared with our theory:

exp

Aexp=5.2X107 s, Appeor=4.37X10" s™! for Ne at T=45 K ,n =0.88 g/cm?,

Aexp=4.5X107 s71, Ao, =4.11X10" s for Ne at T=46 K, n=0.79 g/cm’ ,

Aexp=1.66X107 57!, Ay, =1.36X10" s™! for He at T=13 K, n=0.03 g/cm® .

It can be seen that the theoretical values are in fairly
good agreement with the experimental ones.

V. CONCLUSION AND REMARKS

We have developed a fully self-consistent formalism for
studying localization of a light particle in classical simple
fluids; the wave function of the light particle and the po-
tential are determined through the coupled Schrodinger
and PY equations. The theory is applicable for investi-
gating strong localization.

However, the property of translational invariance is
still broken in the present theory as well as in others.
The contributions of excited states including other bound

states besides the ground one and the free states should
be taken into account in a more sophisticated theory.
Such a theory is still lacking. On the other hand, by
Feynman’s path-integral approach, this quantum prob-
lem can be transformed to a classical counterpart [20]
and computer-simulation algorithms taking account of
these effects are available.
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