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The modified Eddington approximation, introduced in 1969 by Pomraning [J. Quant. Spectrosc. Radi-
at. Transfer 9, 407 (1969)], is used for solving the radiative-transfer equation for plane-parallel media.
The specific intensity I (x,u) is expressed as the sum of an even and an odd function of the angular vari-
able p, ie., I(x,u)=E(x)e(x,n)+F(x)o(x,u); the integro-differential transport equation is thereby
transformed into two coupled first-order differential equations involving the energy density E (x), the ra-
diative flux F(x), and D (x)= f l_lyze(x,,u,)dy. In Pomraning’s treatment, one of these two exact equa-
tions is replaced by an approximate version derived by neglecting the spatial dependence of D(x);
despite this simplification, the coupled equations usually defy, if one is treating inhomogeneous media,
attempts at analytic solutions; the boundary conditions for the two differential equations are fabricated
by multiplying the condition satisfied by I (x,u) at each boundary by a prescribed weight function and
integrating with respect to u. We also outline an alternative strategy wherein the integral equations
satisfied by D (x), E(x), and F(x) are deduced and solved by means of the variational method. The ad-
vantages of the latter approach are twofold. First, since the pertinent boundary conditions are automati-
cally incorporated in the integral equations, the problem of inferring suitable weight functions is obviat-
ed; second, the spatial dependence of D(x) is taken into account explicitly. Numerical results are
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presented to illustrate the performance of the adapted Pomraning-Eddington approach.

PACS number(s): 05.60. +w

I. INTRODUCTION

Radiative transfer in a scattering and absorbing medi-
um is a problem of much academic and practical interest
[1-3]. Since the underlying transport equation is not
easy to solve, a variety of analytic approximations have
bee sought; of these the simplest and perhaps the most fa-
miliar is that known variously as the Eddington approxi-
mation, the P, approximation, or elementary diffusion
theory. It has been established [4-6] that this approxi-
mation, which amounts to replacing the integro-
differential transport equation by two coupled first-order
ordinary differential equations, works well only for weak-
ly absorbing homogeneous media, i.e., when the single-
scattering albedo c =0 /(o +a)=0/Z is close to unity,
where o, a, and 2 denote the scattering cross section, the
absorption cross section, and the total cross section, re-
spectively.

The Eddington approximation [7] was the forerunner
of what have come to be known as two-stream models [8];
a great variety of such methods, the most popular of
which appears to be that named after Kubelka and Munk
[9-11], have been in use for some time. Higher-order
approximations can be implemented by considering four,
six, or still larger number of streams, and setting up as
many coupled differential equations [12]; alternatively,
recourse may be made to the so-called spherical harmon-
ics or P, approximation (n=1,3,5,...), which entails
solving a system of (n + 1) differential equations [4-6].

Originally, the spherical harmonics method suffered
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from a serious blemish: the boundary conditions to be im-
posed on the solution of the resulting differential
equation(s) could not be inferred in a straightforward
manner. A significant advance was made when Pomran-
ing [13] and Federighi [14] demonstrated that this
shortcoming could be overcome by appealing to varia-
tional arguments. Subsequently, Pomraning [15] suc-
ceeded, by means of a simple but ingenious approach, in
extending the range of validity of the standard Eddington
approximation without sacrificing its basic simplicity. To
supply the boundary conditions for the two coupled ordi-
nary differential equations, Pomraning [15] invoked the
same variational argument as he had employed earlier in
connection with the P, approximation. He called this
approach the extended Eddington approximation [15],
but we would like to honor his contribution by alluding
to it as the Pomraning-Eddington (PE) approximation.
Notwithstanding its conceptual superiority to other two-
stream rivals, the PE approximation has not gained much
vogue, presumably because of the esoteric nature of the
variational arguments without which one cannot deduce
appropriate boundary conditions for problems other than
those considered by Pomraning.

Recently [16], variational calculus was used to develop
an alternative form of the P, approximation which
dispenses with the very problem of the boundary condi-
tions, and yields better results than those obtained by
Pomraning [13] and Federighi [14]. It seems natural to
carry the argument a step further and apply the same
reasoning to the PE approximation; the results obtained
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by applying this modified PE approach to an anisotropi-
cally scattering homogeneous medium and a homogene-
ous medium with isotropic scattering are presented in
this article.

II. GENERAL FORMULATIONS

We consider the transfer problem for finite media

yé%”—’ Hxw=ot0 [ P Ixed, 1)

with the boundary conditions

I0,u>0)=f (), )

Ia,u<0)=[f1(u) . (3)
The scattering kernel is taken as

P(u,u')=L5(p—y')+§ , 4)

in which L represents the importance of forward scatter-
ing and n=1—L. Inserting from Eq. (4) into (1), the
transfer equation becomes

9l (x,p) _ _no(x) !
pg 1= Lot) ) =25 fll(x,,u)dy.

(5)
We commence by following Pomraning [15] and setting
I(x,u)=E(x)e(x,u)+F(x)o(x,u), (6)

where €(x,u) and o(x,u) are even and odd functions in
U, respectively, with the following normalizations:

f_‘le(x,u)du=1 : (7)
f_ll,uo(x,y)d,u=1 . (8)

Integration of Eq. (5) over all  gives

dF(x) +

[1—w(x)]E(x)=0 . 9)
dx

We now define a new function D(x),

D)= [ pex,uidp (10)

and observe that multiplication of Eq. (5) by u and in-
tegration over u yields an equation involving F(x) and
D(x):

(;Lx[D(x)E(x)]+[1—Lw(x)]F(x)=0 . (11

The pair of coupled equations (9) and (11) involving the
quantities of utmost interest in radiative transfer, viz., the
energy density E(x) and the radiative flux F(x), are ex-
act; however, their solution requires knowledge of the
spatial dependence of D(x) and appropriate boundary
conditions. To make further progress, one may employ a
maneuver designed by Pomraning [15], or follow an alter-
native devised by the present authors; these options are
spelled out in the next two sections.

III. POMRANING’S METHOD

Pomraning [15] substitutes Eq. (6) into Eq. (5), neglects
the spatial dependence of the angular functions e(x,u)
and o(x,u), and separates the even and odd parts of the
resulting equation to arrive at the two equations given
below:

pe(x,pu) d_ _ =
D0x) dx[D(x)E(x)]+[1 Lo(x)]F(x)o(x,u)=0,

(12)

po(x,u) +[1—Lo(x)]E(x)e(x,u)

dF(x)
d
=ino(x)E(x) . (13)

Manipulation of these equations now leads to the fol-
lowing expressions for €(x,u) and o(x,u):

_ . €lx,u)
olx,u)=pu Dix) (14)

1
elx,u)=———5—, 15
o=y 1

where
—2[1-Lo(x)]

y(x) nolx) , (16)
V(x)= el (17

D(x)[1—Lw(x)]

Multiplication of Eq. (15) by u? and integration over all
yields

l—ox)]y(x) _ ! pldp (18)
[1—Lo(x)]v¥(x) -1 (1—v%?)

The requisite boundary conditions are to be procured
by utilizing the following corrollaries of the exact bound-
ary conditions stated in Egs. (2) and (3):

foldp W) 1(0,0)—f,(1)]=0 , (19)
J° dn W il a,m—fyw]1=0. (20)

The appropriate weight functions remain to be specified;
Pomraning appeals to arguments from the variational
calculus to obtain these functions [13,15,17,18].

IV. THE NEW APPROACH

Our scheme, which we shall designate as the adapted
Pomraning-Eddington (APE) approach, consists in solv-
ing Eq. (5) for I(x,u>0) and I(x,u <0) and deriving in-
tegral equations for E(x) and F(x). That is to say, we be-
gin by writing

I(x,u>0)=f()e Y3

+L fxE(x')a)(x’)e—[y(X)*y(x')]/ydx, )
2u Yo

21
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I(x,u<0)=f,(p)e ~@=yx/n
+ faE(X')w(x')e_[y"")_y(x>]/udx' ,
2‘1_1, x

(22)
where we have set
y(x)———fo [1—Lo(x')]dx’ . (23)

The last two equations and Eq. (6) imply that E(x)
satisfies the following integral equation:

E(x)=G(x)+7 [ "o ExE(ly(x)—p(x"])dx",

(24)

where E,(x) is the exponential integral function of order
unity (see below) and

Glx)= fol fl(ﬂ)e ‘“}’(X)/“d“
+ [ fatpre @ gy 29

Equation (24) can be given a more symmetric and com-
pact rendering, namely,

6(x)=9(x)+ ["K(x,x)6(x")dx" , (26)
if one introduces the following symbols:

6(x)=Vw(x)E(x) , 27)

9x)=Vw(x)G(x) , (28)

K(x,x')=§x/w(x)w<x')E,(|y<x)—y<x'>|). (29)

Combining the definition of D (x) given in Eq. (10) with
Eqgs. (21) and (22), one gets

D(x)E(x)=H1(x)+§ foaw(x’)E(x’)

XE;(ly(x)—y(x")|)dx",

(30
where
H,(x)= folﬂlfl(#)e_ym/“
+ [ e @ 31)
From Eq. (9) it follows that
F(x)=F(0)= [[1—0(x)E(x"dx’ , (32)

where F(0) is obtained from Eqgs. (6), (21), (22), and the
boundary conditions:

FO)=Hy(x)= 2 [“Vox6(xEyy(x')dx",  (33)

Hy(x)= folufl(u)dﬁ folﬂfz(u)e gy (34)

Finally, we provide the definition of the exponential in-
tegral function of order r:
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w e Xdy
— .

Ex= [~ —

The integrals on the right-hand sides of Egs. (26), (30),
and (33) are to be determined with the aid of variational
calculus, a concise and perspicuous account of which has
been given by Rowlands [19]. A more recent review of
variational methods has been given by Duderstadt and
Martin [20], who have also listed in tabular form the
common variational principles used in transport theory,
and discussed all the functionals that are used in this
work; nonetheless, for the sake of clarity and complete-
ness, we will sketch out, in the following section, the cru-
cial steps involved in variational calculations of quantities
tabulated in this articles.

V. NUMERICAL EXAMPLES

In this section we shall compare the PE and APE ap-
proaches by considering three examples: the classic
Milne problem in a semi-infinite capturing medium
[15,20], and the calculation of transmission and reflection
coefficients of a slab composed of an absorbing material
with a single-scattering albedo w(x) given by the expres-
sion

o(x)=wge P, 05wy<1, 028. (35)

Milne problem. Here one simply sets w=const=c,
L =0, (i.e.,, n=1), f;(u)=0, and lets a— «. As shown
by Pomraning [15], the PE approximation now gives

E(x)=Ae”™+Be ¥, (36)

where A4 and B are constants and v is the root of the tran-
scendental equation

1+v
1—v

2v _
C

(37)

To obtain the linear extrapolation distance A, defined by
the relation

E(0)
A=,
[dE /dx ], - 38
Pomraning [15] chooses the weight function
Wo(u)=p[E(0)e(0,u)—F(0)o(0,u)] , (39)
and arrives at the following expression:
r=L v+ (1=v)In(1—)] 72 . (40)
4

In the APE approximation, one starts by transforming
the transport equation into the integral equation shown
below [cf. Eq. (24)]:

E(x)=%fowE(x’)E1(|x—x'|)dx’ , (41)

and seeks to solve it by using the variational principle
and a suitable trial function. In analogy with the practice
adopted in Ref. [16] (where the spherical harmonics
method served to provide a trial function), we can now
use the solution supplied by the PE approximation,
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namely, that displayed in Eq. (36), as the trial function.

To this end, we rewrite Eq. (36) as
E(x)=A[e"*+Ce ], (42)

and take over LeCaine’s work [21]. She has manipulated
the homogeneous integral equation for E(x) and shown
that the function g,(x) defined by the relation

E(x)=A[e"™+q,(x)] (43)

satisfies the inhomogeneous integral equation

02x)=2 [ “ q(x E;(Ix —x'Ddx’
G,(v,x )+ Gy(v,x)

2 >

(44)

in which G,(v,x) and G;(v,x) are given functions. One
can now use ¢ =Ce ™ as a trail function for g,(x) and
use the variational principle to calculate the extrapolated
end point x, which is related to A as follows:

A= %tanh(vxo) . (45)

As it happens, x has already been computed by LeCaine
[21], who availed herself of Marshak’s functional [22]; the
corresponding values of A are compared with
Pomraning’s results [15] in Table I.

A slab of finite thickness. Since precise values of the
reflection coefficient R and transmission coefficient T of a
slab are available [23-25] for the case f,(u)=1,
f,(n)=0, we now apply both the PE and the APE
method to this problem; for this comparison, we will fol-
low Pomraning and set (with b =a or 0)

Wyw)=ul*(b,u)=pl(b,—p) . (46)

For the problem at hand, the boundary conditions im-
ply that R=2 [ ul(0,—p)dp and T=2 [ ul(a,u)dp.
On using the expression for the specific intensity, one sees
that the reflection and transmission coefficients can now
be expressed in a single formula (with S, =R and
S_=T1),

TABLE 1. Dependence of A, the linear extrapolation length,
on c, the single-scattering albedo. Pomraning’s values [15] (PE)
are compared with those obtained in this work by means of the
amended Pomraning-Eddington (APE) approximation and the
exact results (reproduced from Pomraning’s paper).

c PE APE Exact
0.0 1.0000 1.0000 1.0000
0.1 1.0000 1.0000 1.0000
0.2 0.9993 0.9993 0.9993
0.3 0.9888 0.9889 0.9889
0.4 0.9601 0.9604 0.9605
0.5 0.9190 0.9199 0.9200
0.6 0.8733 0.8747 0.8749
0.7 0.8277 0.8295 0.8299
0.8 0.7843 0.7864 0.7871
0.9 0.7440 0.7461 0.7472
1.0 0.7071 0.7083 0.7104
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—E(b)

— _—E®) |
=T i) P TV )]
2F(b) SR U PRS0
P (OD(bWAB) | 2vb) | T—w(b)

(47)

in which b equals 0 or a according to whether S, or S_
is under consideration. The quantities D (b), E (b), and
F (b) are obtainable from Egs. (26), (30), and (33); this will
be illustrated by outlining the calculation of F(0) and
D(0)E (0), which now satisfy the following equations:

FO)=1=2 [“6(x ) olx")]'E;(y(x")dx" , (48)

0)=1+1 fé’

D(0)E(0 )V2E,(y(x"))dx" .

(49)

The integral equation governing E (x) will first be abbre-
viated as [cf. Egs. (24)-(29)]

T6(x)=f(x), (50)
where f(x) is to be identified with V'w(x)E,(y(x)), and
T6(x)= [ [8(x—x)—K(x,x)]6(x")dx" . (5D

To find F(0) by the variational principle, one evaluates
the integral (&,f) appearing on the right-hand side of
Eq. (48) by choosing a trial function & and optimizing the
functional

Q[&1=2(6,/)—(6,T6) , (52)
which equals (&, f) if & happens to be identical with 6.
Since D(0)E(0) involves the integral

(6,V w(x)E(y(x))), we set up the so-called adjoint equa-
tion (with 7' =T)

+

(x), [glx)=Velx)E;(y(x)], (53)

Tl (x)=¢
and call into play the bivariational method, which is
based on finding an extreme of the functional

0[6%,81=(g",&)+(f,6)—(E,TE) (54)
with respect to arbitrary variations in the two trial func-
tions &1 and &. It will be observed that Q[&T,E]1=(f, &)
if 6=6 and §T=6".

We take our cue from Attia and coauthors [23], and
choose the trial solutions to be

Z= 2 y'(x)
E=[ Ao+ Ay (x)+ 4y (0] T2 (55)
x)
2
&E1[B, +B,y(x)+B,y (x)]‘/M 5 (56)

where prime denotes differentiation with respect to x.
One gets, by differentiating the functional with respect to
all the coefficients and setting the partial derivatives
equal to zero, a system of linear algebraic equations
whose solutions yield the coefficients and thereby the re-
quired variational estimates for D (b), E(b), and F(b).
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TABLE II. The dependence of the reflection coefficient (for a homogeneous slab of thickness a) on
L, n, and wy. The results under the columns APE and PE pertain to the present work; those under the
columns AEE and DSY, to Refs. [23] and [24].

(L,n) @ a APE PE AEE DSY
($:3) 0.900 1 0.2833 0.2851 0.2737 0.2737
3 0.3969 0.3875 0.3876 0.3880
5 0.3966 0.4049 0.4042 0.4060
0.950 1 0.3191 0.3200 0.3113 0.3113
3 0.4858 0.4776 0.4776 0.4779
5 0.5160 0.5177 0.5174 0.5183
0.999 1 0.3597 0.3596 0.3541 0.3541
3 0.6117 0.6065 0.6066 0.6067
5 0.7163 0.7135 0.7138 0.7138
E) 0.900 1 0.1478 0.2028 0.1649 0.1650
3 0.2830 0.2663 0.2624 0.2626
5 0.2983 0.2855 0.2857 0.2864
0.950 1 0.1877 0.2206 0.1913 0.1913
3 0.3501 0.3396 0.3358 0.3359
5 0.3976 0.3862 0.3859 0.3863
0.999 1 0.2237 0.2394 0.2224 0.2224
3 0.4506 0.4457 0.4438 0.4438
5 0.5684 0.5625 0.5624 0.5625

Tables II and III show the numerical values for K and
T, respectively, for anisotropically scattering homogene-
ous slabs of different thickness, while Tables IV and V
display the same quantities for an isotropically scattering
inhomogeneous slab of unit thickness (a =1); for the sake

TABLE III. The dependence of the transmission coefficient (for homogeneous slab of thickness @) on
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of comparison, we have included what appear to be the
most reliable results available in the literature [23-25].
The discrepancy between the calculations of Attia and
co-workers [23] (AEE) and those of Garcia and Siewert
[25] appears to have been due to some programming er-

L, n, and w,. The headings have the same meanings as in Table II.

(L,n) @y a APE PE AEE DSY
(+%) 0.900 1 0.5202 0.6443 0.5536 0.5536
3 0.2348 0.2448 0.2179 0.2176
5 0.1599 0.1018 0.0921 0.0905
0.950 1 0.5443 0.6692 0.5961 0.5961
3 0.2768 0.3085 0.2845 0.2843
5 0.1711 0.1600 0.1489 0.1481
0.999 1 0.5774 0.6995 0.6439 0.6439
3 0.3558 0.4079 0.3874 0.3874
5 0.2594 0.2887 0.2764 0.2763
) 0.900 1 0.6981 0.8903 0.6630 0.6630
3 0.3531 0.4017 0.3324 0.3322
5 0.2408 0.2097 0.1744 0.1739
0.950 1 0.6830 0.8858 0.7163 0.7163
3 0.3998 0.4789 0.4222 0.4221
5 0.2679 0.2947 0.2629 0.2626
0.999 1 0.7017 0.8816 0.7756 0.7756
3 0.4952 0.5893 0.5502 0.5502
5 0.3903 0.4521 0.4276 0.4276
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TABLE IV. Dependence of the reflection coefficient (R) for
an isotropically scattering (L =0,n=1) inhomogeneous slab of
unit thickness (a=1) on B. The results under columns AEE
and GS originate from Refs. [23] and [25].
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TABLE V. Dependence of the transmission coefficient (T)
for an isotropically scattering (L =0,n =1) inhomogeneous slab
of unit thickness (a=1) on 8. The column headings have been
explained in Table IV.

o B APE AEE GE g B APE AEE GS
0.7 0.100 0.2228 0.2115 0.2116 0.70 0.100 0.3748 0.3584 0.3583
0.010 0.2414 0.2208 0.2210 0.010 0.3798 0.3699 0.3698
0.001 0.2434 0.2218 0.2220 0.001 0.3804 0.3712 0.3711
0.9 0.100 0.3396 0.3301 0.3302 0.90 0.100 0.4450 0.4475 0.4474
0.010 0.3620 0.3502 0.3503 0.010 0.4626 0.4718 0.4718
0.001 0.3644 0.3524 0.3525 0.001 0.4646 0.4745 0.4744
1.0 0.100 0.4175 0.4124 0.4125 0.95 0.100 0.4701 0.4777
0.010 0.4484 0.4428 0.4429 0.010 0.4929 0.5074
0.001 0.4518 0.4462 0.4462 0.001 0.4955 0.5110

ror in the former work, for it has not been confirmed by
our calculations; it should be noted in this context that
though we have labeled the second last columns in Tables
II-V as AEE, all results reported under this heading
have been computed afresh by following the recipe pub-
lished in Ref. [23].

The results assembled in Tables I-III indicate that, so
far as homogeneous media are concerned, there is little to
choose between the PE and the APE approximation; the
latter does slightly better in delaying with the Milne
problem (Table I) and in predicting transmission
coefficients (Table III), but the former meets with greater
success in forecasting reflection coefficients (Table II);
both compare favorably with other, exact or near-exact
calculations. For an inhomogeneous medium, we have
found it easier to implement our integral-equation ap-
proach; the data given in Table IV and V show that the
utility of the APE is not confined to homogeneous media.
For the Milne problem, the PE expression for the energy
density E (x), namely Eq. (36), has been used as the trial
function in the APE treatment; but for finite homogene-
ous slabs (Tables II and III), the trial function has a
different form. Further work [26] has shown that if Eq.
(36) is used throughout, the APE approach yields values
for R and T which are superior to those ensuing from the
PE approximation and, in many cases, practically indis-
tinguishable from their exact counterparts; the results of
these calculations will be presented elsewhere.

VI. CONCLUDING REMARKS

An impediment to the widespread use of the
Pomraning-Eddington approximation has been the prob-
lem of inferring suitable boundary conditions. The remo-
val, thanks to the integral-equation formulations adopted
here, of this long-standing difficulty has paved the way
for developing a straightforward alternative to the pre-
valent two-stream approximations. In this work we have
obtained very encouraging results for homogeneous
media that are isotropically scattering and for inhomo-
geneous media that scatter isotropically; application of
the adapted Pomraning-Eddington method to problems
involving sources and/or an inhomogeneous medium that
scatters anisotropically is planned to be the subject of a
later publication.

An approximate description of radiative transfer,
couched in terms of a family of flux-limited diffusion
theories, has recently been published by Sanchez and
Pomraning [27]. It would be interesting to apply their
promising approach to the problems considered here; this
exercise is consigned to future or other workers.
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