PHYSICAL REVIEW A

VOLUME 46, NUMBER 8

15 OCTOBER 1992

Generation of spatiotemporal colored noise
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We develop an algorithm to simulate a Gaussian stochastic process that is non-é-correlated in both
space and time coordinates. The colored noise obeys a linear reaction-diffusion Langevin equation
with Gaussian white noise. This equation is exactly simulated in a discrete Fourier space.
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I. INTRODUCTION

Fluctuations in nonequilibrium statistical mechanics
are usually modeled by adding a stochastic term to the
macroscopic and deterministic differential equation gov-
erning the dynamics of the system under consideration.
By doing this one obtains what is called a stochastic dif-
ferential equation or Langevin equation [1-6]

%’?ﬁ = F([(r,8)}, V29) + n(r, £). ()

Here 1(r, t) is the relevant variable of the system and the
first term on the right-hand side is a deterministic force.
n(r,t) is a random force called noise, which is usually
assumed to be Gaussian, and accounts for either internal
degrees of freedom, or fluctuations in the constraints im-
posed externally on the system. In the first case the noise
is called internal noise, and typically represents thermal
fluctuations. In the second case we have external noise,
whose properties could be controlled experimentally.

In general, internal noise has been assumed to be white
to a very good approximation. This means that the value
of the random field in a given point at a given time does
not depend on its value in other points or at other times:

(n(r, t)n(r',t')) = 2e6(r — x')6(t — ), (2)

where € is the intensity of the noise and () denotes an
average over the probability distribution of the random
field.

This approximation is reasonable because internal
noise moves much more rapidly than the typical time
scales f the system, and acts much more locally than
any characteristic length scale. This behavior cannot be
ensured in the case of external noises, where one must
therefore consider situations in which the correlation of
the random field between different points and different
times could be nonzero. In these cases, the spectrum of
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the noise in both k¥ and w variables is no longer constant,
so one speaks of colored noise.

Up to now, very little work has been done on field mod-
els with nonwhite noises. Nevertheless, one may think of
situations in which not only internal uncorrelated noises,
but also external colored ones would have an influence
on field systems. An example is the study of diffusion
processes under stochastic convective velocity fields [7].
Besides, in the last few years, theoretical studies have
indicated the possible existence of a phase transition in-
duced by noise [6, 8], and in fact, a phase transition con-
trolled by the correlation time of an Ornstein-Uhlenbeck
noise has been found recently [9] in a time-dependent
Ginzburg-Landau model (model A in Ref. [2]). Thus sim-
ilar effects can be expected in the case of a noise also cor-
related in space. Up to now, however, studies have been
directed towards either white noises in field models [2, 3],
or colored noises in spatial-independent models [6, 8]. In
this last case, some simple nonwhite noises were defined
[6,10]. The most famous example of this sort of noise
is the Ornstein- Uhlenbeck process, which is Gaussian and
has zero mean and a correlation given by

Le=¢|

(E@EE)) = e 5. 3)

Here 7 is the correlation time of the noise, i.e., a mea-
sure of its memory in time. The stochastic differential
equation which governs its evolution is [8, 9]

&) = —260) + (o), @

where 7(t) is a white noise following (2) without spatial
dependence.

We propose a generalization of this very simple idea to
take into account finite correlation in space as well. The
simplest stochastic differential equation modeling such a
noise is the following linear reaction-diffusion equation
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é(rt) = —2(1 - V£ + 2n(r,0), %)
where 7(r, t) is again a white noise following (2) and X is
the correlation length of £(r,t). The parameter 7 controls
the temporal memory of this process as in Eq. (4). Cor-
relation in space comes from the Laplacian term in (5),
which couples the values of the field £(r,t) at different
points.

Equation (4) is a (stochastic) linear ordinary differen-
tial equation, so it is easily integrated. Equation (5) is
also a linear but partial differential equation, so integra-
tion, though possible, is not so simple. One could try
to solve the equation by performing the integration nu-
merically using a standard finite-difference scheme, but
this is not the best method (see the next section). An
alternative procedure is to transform it to Fourier space,
simulate it there, and then transform the solution back
to real space. This is the procedure we will follow here.
At each time step of the integration the variable £(r, t) is
generated exactly in the discrete Fourier space and then,
if necessary, it will be transformed back into real space.

Section II is devoted to the Fourier-transformed equa-
tion and the theoretical results that can be deduced from
it. In Sec. III the algorithm is derived. In Sec. IV we
present our numerical results and compare them with
those derived theoretically. Finally, in Sec. V we present
some conclusions and comments.

II. CORRELATED NOISE IN FOURIER SPACE

The stochastic process we want to generate is &(r,t)
obeying Egs. (5) and (2). The discrete versions of these
two equations in a periodic square lattice of L x L cells
are

iig—;l = _%(6ik6ﬂ - szfjkl)gkl + %77” (t), (6)
(ni5 (B)mr(t)) = @7 A )2 Sikbib(t —t), 1)

where Ax is the spacing of the lattice and all the indexes
run from 1 to L. The operator VlJ k1 is a finite-difference
approximation to the Laplacian operator. Here we will
take [11]

1
Viikér = W(&H,j +ijr1+8i-1,5+Ei j—1—4Eij)-

8)
The relationship between the continuum variable r and
the indexes 4, 7 running over the discrete lattice is

r = (z,y) = Az(i, j). 9)

First, let us examine the difficulties generated by a
standard simulation. A first-order Euler algorithm ap-
plied to Eqgs. (6) and (7) leads to [7]

&ij(t + At) = &;(t) — ﬂ(¢5z'l=<5jz

+ 2R o0, (10)

—= NV 3ik)Ek
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where a;;(t) are Gaussian-independent random numbers
of zero mean and variance equal to one. Since this is a
first-order algorithm, a very small value of At should be
taken. Nevertheless, there is a second condition in order

to stabilize the contribution of the Laplacian operator V2
[12]):
42 At
T (Az)?
So once the lattice spacing Az is chosen, the step of in-
tegration At depends on the parameters A and 7. This
is a strong condition which will lead to an excessive use
of computer time in some circumstances. Hence an algo-
rithm whose step of integration does not depend on the
parameters Az, A, 7, or € would be desirable. In the fol-
lowing we present a method to accomplish this objective.
In our discrete space we no longer have a partial differ-
ential equation, but a system of L x L coupled ordinary
differential equations. To decouple such a system we will
work on Fourier space. Let us thus define the Fourier
transform of the discrete field &;; as

<1 (11)

§I-W = (Al‘)z Z e_ik"fij. (12)
2%
The sum includes all the lattice sites of Eq. (9) and the
wave vector k is given by

k= (kmky) = (13)

27
L A T (l"’ ) V)
(greek indexes also run from 1 to L and will be used to
denote discrete k variables in Fourier space).
From (12) it can be seen that Egs. (6) and (7) trans-
form into

de 1 1
d;u = _;Cuvwgpo + ;nuu(t)f (14)

(Muv () (¢)) = 2€(LA$)26u,—u’5v,—V’6(t —t'), (19

where c,,p0 is the Fourier transform of the linear op-
erator (6;8;1 — A2 quz) appearing in Eq. (6), which is
explicitly

Cuvpo = cuvéup6va, (16)
2)2 27 27y
CP'V =1- W [COS (-L—) <+ cos (-—L—) - 2] .
(17)

We can see that the expected decoupling of the equations
(14) now takes place:

d€ 1 1
d:V = _‘,,Zcﬁwéuv + ;nuu(t)- (18)

Notice that as Az tends to 0 and L tends to oo keeping
LAz fixed (continuum limit) we have

cuw — w(k) =1+ \2%2. 19
7

Equation (18) is nothing but a set of independent ordi-
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nary differential equations for each pair of components of
the wave vector in Fourier space. It is linear, so it can be
easily integrated to obtain the evolution of each Fourier
mode.

Formal integration of (18) leads to

_ Stpv 1 ¢ _Cuv iy o
uv(t) = &uu(0)e Ety ;/0 e (et )nuy(tl)dt/.
(20)

From this expression and using (15) and the fact that c,,
is an even function of the wave vector, one can calculate
the correlation of the field at equal times:

(€ (s (1)) = (€ (0)8 s (0))e =758
+e(LA:1:)2 (1 B

_2c vt
e T )5
TCuy

[PREL R
(21)

where its stationary value is given by

e(LAzT)?

TCuy

t&‘&(fw(ﬂﬁu’# (®)) OOy, —vr- (22)

If the structure function is defined by

S;.w(t) — <§#U((2§:);U(t)> , (23)

then from Eq. (21) we find that

S, (t) = (S,w(o)— ce )C_E"Lu‘-i- < (24)

TCuv TCuv

and its stationary value is

gt — 25
= e (29)

Transforming this last quantity back to real space gives
the stationary correlation function:

1 .
st _ ___— —ik-r gst
s = Taap 2 (26)

We can also calculate the stationary correlation in
Fourier space at different times:

2
e(LAz) e~ -t g
TCuy

<§uu (t)éu’w (tl»st =

= b, v
(27)
We can see that this correlation decays with an effective

relaxation time 'c':_.,’ which is equal to 7 only for the £ = 0

Fourier mode.
At the continuum limit expressions (24) and (25) be-
come
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S(k, t) = (S(k, 0) - T(k)) e w" + m‘)‘y (28)

St (k) = — ¢

o) (29)

III. THE ALGORITHM

Here we will develop an iterative algorithm to simulate
&uw at a time ¢ + At from its known value at a time t.
Integration of (18) between t and t + At leads to [see
Eq. (20)]

Eu(t + AL) = £, (t)e~ 50
1 e thAL
+;e_ * At/ e= =y L (#)dt'.
t
(30)

The integral term on the right-hand side of this last ex-
pression can be considered as a new random variable
Buv(t). This random quantity is also Gaussian and has
zero mean. Its variance can be calculated by means of
(15)

e(LAz)? 2oy
B O (0 = L2 (1 =220t) 5, s,
Ny
(31)
Then it can be expressed as [13, 14]:
e(LAx)? 2cuy
" \/ Lok (1- e 4o, (52)

where o, are Gaussian random numbers of correlation
() = 6y, —prby,—u- (33)

In the Appendix we will give the technical details to sim-
ulate Gaussian random numbers with this kind of “anti-
correlation.” The algorithm is then

Eun(t + AL) = £, (t)e™ FA
+\/_<_L_A__>_ (1-e a0, (30

TCuy

From (22), the most convenient initial condition is

<§uu(0)§u’u’ (O)) = Méu,—u’éu,—u" (35)

TCuv

so that the initial value of the field is chosen as follows:

Euu(o) = 6(_-_L_A_l'_)2&uu (36)
V TCuy

with a,, defined above with correlation (33). This initial
condition guarantees the stationarity of the noise from
the beginning of the process.
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IV. RESULTS

Simulations were performed on an IBM 3090-XA com-
puter with a vector facility. Our square lattice has 64x64
cells. We chose two time steps At = 0.05 and At = 1.0
in order to check the quality of the method and a spac-
ing Az = 1.0. Results were analyzed from the beginning
of the simulations since, as we have already mentioned,
initial condition (36) ensures the immediate attainment
of the stationary state. The results we present were av-
eraged over 2500 runs.

In Fig. 1 the inverse of the stationary structure func-
tion versus k? is shown. Perfect agreement is observed
with the result (25) coming from the discrete theory. The
continuum result (29) only matches our results when &
is small, as expected. The same results are obtained for
At = 1.0, which is an indication of the exactness of our
method.

In Fig. 2 the correlation function (27) (with At = 0.05)
is shown against time difference for different values of
| k|. As | k | increases, the effective relaxation time
decreases according to Teg = 7/cpy.

Once the stationary structure function has been ob-
tained from the simulation results, the discrete Fourier
antitransform can be performed to find the stationary
correlation function (26). In Fig. 3 correlation func-
tions for three values of the correlation length are plot-
ted against r. They are all normalized to 1 in r = 0
in order to show that a greater correlation length cor-
responds to a slower decay of the spatial correlation, as
expected. Thus, Fig. 3 shows the spatial memory of the
noise generated, such as in Fig. 2 the temporal memory
is observed.
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FIG. 1. Inverse of the structure function against k2 for
e = 5,7 =1, and A\ = 3. The solid line is the continuum
theoretical prediction (29) and the dashed line is the result
from the discrete theory (25). Crosses and circles are our
simulation results for At = 0.05 and At = 1.0, respectively.
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FIG. 2. The time correlation (27) against time difference
for different values of k: open circles correspond to the (0,0)
wave vector, solid squares to (0,2), open squares to (0,4), and
solid triangles to (0,6). The solid and dashed lines correspond
to the theoretical results of Eq. (27). The values of the pa-
rameters of the noise are the same as those in Fig. 1. Here
At = 0.05 has been used.

V. CONCLUSIONS

‘We have presented an algorithm to generate spatiotem-
poral Gaussian colored noises defined by an intensity ¢, a
spatial correlation A, and a temporal correlation 7. This
algorithm works in discrete Fourier space, and its main

G(r)

-0.2

FIG. 3. Normalized correlation function (26) against r for
different values of A. The solid line corresponds to A = 7, and
the dashed lines to A = 5,3, 1 in decreasing order. The values
of the other parameters are (¢ = 5, 7 = 1, and At = 0.05).
The solid diamonds are the simulation results for A = 3 using
At =1.
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advantage is that it is exact. Nevertheless, there is an ap-
proximation concerning the spacing Ax when a discrete
expression for the Laplacian operator V2 is chosen. If
one needs the noise in real space, &;;, then a second ap-
proximation is necessary, which is involved in the inverse
fast Fourier transform of £,,,. Hence the approximations
concern only the transition from continuum to discrete
space.
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APPENDIX: DISCRETE FOURIER
TRANSFORM OF A REAL FIELD

Here we present a method to generate the L x L Fourier
modes corresponding to an anticorrelated Gaussian pro-
cess with the appropriate symmetries.

Let us consider a real field &; in a periodic discrete
square lattice of L x L sites. The indexes %,j run, for
computational convenience, from 0 to L — 1. We define
the discrete Fourier transform of such a field by (12), with
r and k given by (9) and (13), respectively. Now due to
the periodic boundary conditions one can easily see that
a periodicity relation also holds in Fourier space:

(A1)

where p and ¢ are integer numbers. Moreover, if §;; is
real, Eq. (12) leads to the symmetry relation:

§uv = €20

This means that the zero mode in Fourier space is a sym-
metry center for the real part of the field and an antisym-
metry center for the imaginary part. By combining (A1)
and (A2) we obtain another symmetry relation:

’Euv = §u+pL,u+qL’

(A2)

(A3)

§uv = &pL—p,gL-1

so that not only k£ = 0, but also all points in Fourier space
of the form 3 (pL:2%,qL{%) are symmetry points in
the sense mentioned above. This is shown in Fig. 4(a),
where periodicity is also noticeable. Black sites are the
symmetry points already mentioned. The bottom row
and right column are identical with the top row and left
column. In fact, they do not belong to the unitary lattice
drawn but to the neighboring ones, which are identical to
it. Because of Eq. (Al), sites A1, B, and C are exactly
the same, and because of Eq. (A3), A1 and A2 have the
same real part, while their imaginary parts are just of
opposite sign. Notice that all these symmetry (black)
points have no imaginary part.

In the text £,, and 7, are the Fourier transforms
(complex fields, in general) of the real fields &;;, 75, so
they verify relation (A2). One can easily see that G,.,
and therefore o, , also have these symmetries.

Let us remember that we want to generate a complex
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(o

(b)

FIG. 4. Symmetry properties of the Fourier variables.

Gaussian random field «,, with zero mean and corre-
lation given by (33). This is done by constructing o,
as

(A4)

Oy = uy + by,

In order to have correlation (33) and because of symme-
try relation (A2), these two new (real) Gaussian random
fields can be taken to be uncorrelated in space and have
zero mean and variance given by

(af) = (bh) = 35 (A5)
except in the black sites of Fig. 4(a), where
(afw> =1,
(A6)
2\
(b)) =0.

These random numbers are Gaussian and can be ob-
tained in a standard way by means of, for instance, a
Box-Mueller algorithm. One can easily see that making
use of Eq. (A4) with (A5) and (A6) and considering sym-
metry relation (A2), correlation (33) is achieved. More-
over, we only need to generate the field £, and the ran-
dom numbers a, corresponding to the shadowed cells
of Fig. 4(b) [the value of the field in the rest of sites is
then completely determined by Eq. (A2)]. Notice that
the number of independent random quantities which are
needed is just L x L, which is the number of variables
that we originally wanted to generate in real space.
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