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Spectral autocorrelation function in the statistical theory of energy levels
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The spectral autocorrelation function is evaluated analytically for the Gaussian ensembles of Hamil-
tonian matrices. A direct comparison of the prediction of these ensembles with experimentally mea-
sured spectra is thereby possible. Also computed is the time autocorrelation function of an initially
prepared nonstationary state. The repulsion of eigenstates in the time domain is clearly manifested in
the analytic result.

PACS number(s): 05.45.+b, 33.10.Cs, 03.65.—w, 21.60.—n

There is a very extensive literature [1—11] on the sta-
tistical limit in quantal systems of discrete levels and its
possible relation to classical chaos. Even so, the experi-
mental signature of this limit is not yet clear. The prob-
lem is not one of definition. A variety of considerations,
including extensive numerical tests [4,9], have established
the Gaussian ensembles of Hamiltonian matrices
[1,12,13] as providing a suitable reference. (Even so,
there may well be harsher chaos, with more level repul-
sion [14], than represented by this limit. ) The problem is
in comparing the predictions of these ensembles with ex-
periment. The statistics of energy spacings [1]are limited

by the finite experimental energy resolution which may
fail to distinguish nearby levels. The statistics of spectral
transition strengths [7,11,15] or other matrix elements
are limited both by the finite resolution and by the
difficulties of establishing a secure base line and of satura-
tion. In this article we discuss and evaluate an observ-
able, the autocorrelation of the spectrum, which depends
on both the level spacings and the transition strengths,
yet it is less sensitive to experimental noise because it is
computed as an autocorrelation function of the raw spec-
trum. In this convolutionlike computation, different
transitions contribute to each frequency interval thereby
reducing the noise level. This article provides analytic
expressions for the Gaussian ensemble average of the
spectral autocorrelation function and its Fourier trans-
form [16],the survival probability.

The spectral autocorrelation function G(to) is defined
in terms of the spectrum S (co) by [16]

G(co)= J S(co')S(co'+co)dco' .

If the spectrum is normalized to unit strength, G (co)dco is
the joint probability of two transitions separated by the
frequency interval , +codtoWcoe refer to Ref. [16] for

the motivation to introduce G(co) and for its important
role in establishing the repulsion of eigenstates in the
time domain. In the Hamiltonian ensembles the spectral
lines are sharp so that (1) can be written as

G(co)= g gp„p 5(co —(co —co„)) . (2)

Here, the p„'s are the strengths of the different transitions
and the co„'s the transition frequencies. Equation (2)
shows explicitly that G (co) is not determined by the level
spacings (i.e., to —co„) alone. Rather, the spacing be-
tween every pair of levels is weighted by the spectral
strength of the two respective transitions.

The transition strengths p„are given by

p„=~(Q„~T~O)( . Here, f„ is the nth eigenstate of the
Hamiltonian with eigenvalue %co„. T is the transition
operator and ~0) is the initial state. Normalization of the
spectrum is equivalent to g„p„=1 and hence to the nor-

malization ( P ~ P ) = 1 where
~ P ) = T

~
0 ) . In the Gaussian

ensembles a convenient set of variables is the scalar prod-
ucts of f„ntosoome fixed basis [12,13]. We take that
basis to be the eigenstates of a zeroth-order separable
Hamiltonian Ho. Because Ho is separable its spectrum is
regular [17]. This basis is strongly mixed by the coupling
H —Ho. This interpretation is, however, not necessary
for the mathematical development. We similarly expand
~tb) in the zeroth-order basis and collect the expansion
coefficients as a column vector tb. Then, if a'"' is the row
vector ~hose components are the expansion coe%cients
of g„,p„=(a'"'P) .

To compute the ensemble average of G(co), we first re-
move from (2) its diagonal or "self' part, 5(to) g„p„.
For the N level Gaussian ensembles [12,18],
(g„p„)=N(p„). It remains to average the N(N —1)
off-diagonal terms in (2) where each spacing co —to„ is
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weighted by p p„. For this purpose we use a very essen-
tial property of the Gaussian ensembles [12,13]. The
probability density P(H) of any Hamiltonian depends
only on the energy levels A~„'s. The measure factorizes
into a measure depending only on the energy levels and a
measure depending only on the eigenvectors. It follows
that in the limit of the Gaussian ensembles

(G( ))=y(p„')5( )

+ g g'&p„p &&5(co—(co —co„))) . (3)

The average over the spacing distribution is computed us-
ing Dyson's [12] two-level correlation function

(5(co—co~ +co„)) = J5(co co~+co2)P(co~, . . . , co~)waco~ ' ' ' leo~

(N —2)!
5(co —co)+co2)R2(co„co2)dco,dco2

Pf l

(N —2)! p 5
co b,co

N!D " D D

r

Aco
2 d ( hco/D )d (co ) +coz ) /2D

r

(N —2)! N
D,

CO
1 —F2 D

(4)

Here D is the mean spacing in frequency and Y2(x) is
Dyson's two-level cluster function [1,13], given, for prac-
tical purposes, by [1]

Y2(x)=(P/2) sine (Pmx/2),

where sine (x)=sin(x) Ix. Exact expressions for Y2(x)
are also available [13]. The parameter P in Y2 designates
the particular Gaussian ensemble, P= 1, 2, and 4, respec-
tively, for the orthogonal, unitary, and symplectic cases.
One expects [4,9,12] the Gaussian-orthogonal-ensemble
(GOE) limit, P= 1, for most systems of physical interest.

The intermediate result is

G — =N p„

X 5 —+ 1 —Y2
&p'&

(6)

As expected in general [16], there are three contributions
to the joint spectral density: The "self" spike at the ori-
gin, the asymptotic density, and the deviance, Y2(co/D),
of the probability density of two different transitions from
its uniform value. Note also, cf. (5), the low value of
1 —Y2(co/D) for co(D showing the rarity of nearby
strong transitions.

We evaluate (p„p ) first in the often used Gaussian
approximation [12], which yields results correct to order
I/N, and then exactly. We shall find that by introducing

an effective number of states 1V,&, the two results can be
brought to the same form. The explicit results quoted
below are for the case of just one state ~(t ) such that
p„=[(g„~P)~

. In the language of reaction theory this
corresponds to the single-channel case.

In the Gaussian approximation the joint probability
of p„=~x„~ and p = ~x ~

is a Gaussian of width
(Np) ', P(x„,x ) cc exp[ pN()x„)~+—[x [2)/2].
Here, /=1, 2, 4 for the orthogonal, unitary, and symplec-
tic ensembles, respectively. Then

1/N, n Am
&p„p [(P+2)IP]IN, n =m .

If, for the Gaussian approximation, we define N,~ by
N, cc (N(p„) )

'= [P——l(P+2)]N, we have

co P I co
5 —+ 1 —Y2

(8)

The exact results, to be derived below, also lead to (8) but
with N, z=(N+2)I3 for the GOE or =(PN+2)/(P+2)
in general. One needs the exact results since in the
Gaussian approximation

y y &p„p. & =1+(2/PN)
n m

so that the integral of G (co) is not quite unity.
The exact joint distribution of the amplitudes x„,x is

computed, for the GOE, as

N
P(x,x }=CJ g Pa'„"'Po'„~'5(x„—a'"'$)5(x —a' '.P)5(a'"'a'"' —1)5(a' ' a' ' —1)5(a'"'a' ')

v=1
(9)

Here the vector a' ' is as defined above (i.e., x„=a'"'P) and the integration in (9) imposes the normalization and or-
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thogonalization of the vectors a. C is a normalization coefficient. The final result is

P (x, ,x2 ) =Ir I (N/2) (1 x2 2 )(N —4)/2
I ((N —2)/2)

leading to

p„p ) =(1+25„)/N(N+2) .

Now, V ( )=1 sot
& Xn, m pn pm hat G(nt) is strictly normalized. Note, however, that for num the

that the orthogonality cond't' '"' ' '=0
(p„p ) —(p„)(p ) = 2/N—(N+2). With N

con i ion a a =0 imposed in (9) leads to ao a shght antj. correlation in that
it N, tt=(N +2)/3, the exact GOE results also lead to (8).

where (t(t)=exp( iHt—/h)P(0) d (0) i th d it of
is the Fourier transform of the so-called survival probability [3,5,8,19] I C(t'

,

=
~ (

an p is t e ensity of the initial nonstationary state (t(0),p(0)= ~tt(0) ) (I))(0)~. Tak-
7

( c(t)l') =
Neo

~ 1+ 5
P+2 2trp

—b 2
27Tp

2rrp5( t) + b2-+2
P

'
2Irp

(12)

Here b2(t), the Fourier transform of Y2(co), is the so-
called [13] two-level form factor and P= 1/D is the aver-
age density of states. The result (12) is similar but not
identical to the inspired estimate of Leviandier et al. [5].
The key difference is in the role of the fluctuations in the
transition strengths p„. Equation (12) has been derived
taking a full and exact accord of these fluctuations in the
imit of Gaussian ensembles. See also the derivation of

Guhr and Weidenmiiller [20]. The Fourier transform of
Eq. 5, with t = t /2trp,

(p+2)/p b2(t/—2trp), that characterizes the time evolu-
tion. Due to the b2 term, (~C(t)~ ) drops below its
asymptotic value and it is the recovery from this "corre-
lation hole" [2,5] that reflects the level statistics.

0~4
1

I I I I
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I I I I

i

I I II I
(

I I I I

i
I

1
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(IC(t)I & -I

0.3 q

b2(t)= '
1 —2I t

I /P, I
t

I

~ P/2

0, ltl&P/2 (13)

shows that past the peak at the origin, ( C(t)
~ ), drops

to a minimal value of =2/pN at t =(2'/D)(p/tr N)'
which is below its asymptotic value of 1/N, tt (see Fig. 1).
This asymptotic value of ( ~C(t)~ ) is reached for times
longer than the recurrence time t„„=2trp/D. Notice
that the three ensembles differ in both the minimal value
of ( ~C(t)~ ) and the rate of recovery of ( ~C(t)~ ) to-
wards its first recurrence. The known [1 13] exact f
o 2(t) does not change the qualitative conclusion based
on (13) except that for p= 1, b2(t) is finite beyond the first
recurrence.

Equation (12), cf. Fig. 1, distinguishes two contribu-
tions to the time autocorrelation function. The first is the
initial fast (5-function-like) decay which has an eff'ective
width of 2/DN, where N here and before is the number of
levels. The fast component describes the rapid dephasing
of the initial state P(0). For N ))1 this dephasing time is
very short compared to the recurrence time 2trp/D. The
initial dephasing is expected to be rather similar for both
regular and chaotic systems [2,3,21], and will be well de-
scribed by classical mechanics. For longer times, of the
order of up to 2~/D, it is the second part in Eq. (12),

0.2 H

1

1

0.1

0.0
0 0.5 1 1.5

FIG. l. The average survival probability (IC(t)l )» time

I/2trp for the three Gaussian ensembles: GOE (p= 1, solid

fine), Gaussian unitary ensemble (GUE) (p=2, dashed line), and

Gaussian symplectic ensemble (GSE) (@=4, dashed-dot«d linc)

The exact two-level form factor b~(t) is used in Eq. (12) and the

number of levels is N =10. The 5 function in (12) is represented

by (e/Ir)/[(t/2Irp) +e j, where a= 1/trN is chosen so that

( ~C(0)~ ) = l. Notice that as P increases, the minimal value of
( ~C(t)~ ) at short times is lower and the rate of recovery to the

asymptotic limit is slower. The exact (~C(tl~ ) for /=4 has a

spike at t/2~p= 1 which disappears in the linear approximation
(13) to b~(t) (see dotted line).
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The parameter P can be regarded as a tneasure of the
above level repulsion. The limit P~O does not quite cor-
respond to the regular regime although it does give a use-
ful indication. As P~O it follows from (13) that
bz(t) =0, so that ( ~C(t)~ ) does not drop below its limit
1/N, z- in the regular regime. Level repulsion is thus
clearly manifested in the time domain.
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