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Monte Carlo simulations in the isoenthalpic-isotension-isobaric ensemble
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We discuss simulations using a recently derived Monte Carlo method which generates the
isoenthalpic-isotension-isobaric ensemble or HtN ensemble of classical statistical physics. This method
is the Monte Carlo counterpart of the Andersen-Parrinello-Rahman HtN form of molecular dynamics.
As an example of the use of HtN Monte Carlo calculations we discuss the calculation of the adiabatic
elastic constants and other related thermodynamic properties of a crystalline solid from fluctuation for-
mulas specific to the HtN ensemble and compare with the HtN molecular-dynamics calculation of these
same quantities. The agreement of the results with earlier calculations of these quantities using other en-

sembles supports the inference that our probability density generates the HtN ensemble. For the elastic
constants, the HtN Monte Carlo calculations have better convergence properties than the HtN
molecular-dynamics calculations but are slower, by at least an order of magnitude, than the ThN and

EhN molecular-dynamics and Monte Carlo methods.

PACS number(s}: 05.20.—y, 05.70.—a, 02.50.+s

I. INTRODUCTION

The variable-cell molecular-dynamics methods present-
ed by Andersen [l] and Parrinello and Rahman [2,3] gen-
erate the isoenthalpic (enthalpy H), isotension (tension t),
isobaric or HtN ensemble of classical statistical mechan-
ics for N particles. Further details of the relationship be-
tween the HtN form of molecular dynamics and the ther-
modynamics of elastic media were presented by Ray and
Rahman [4]. If the computational cell is spanned by the
vectors a, b, and c then one introduces the scaling matrix
h;, , h =(a,b, c), and a metric tensor G =h h, where the T
superscript denotes matrix transpose. The Parrinello-
Rahman equation of motion for h has the form

IVh =(P P,„,)A —hI—

where P is the microscopic stress tensor, P,„, is the ap-
plied external pressure, 2 = Vh ' is the area tensor,
and I is related to the applied thermodynamic tension.
In Parrinello-Rahman molecular dynamics the particles
evolve via a modified Newton's law which contains cou-
pling among h and the particle variables s„.,

several hundred or more particles and we shall do this in
this paper.

II. HtN MONTE CARLO PROCEDURE

The main purpose of this paper is to introduce the HtN
Monte Carlo procedure and we shall do this by discussing
calculations for a simple system and comparing with re-
sults for these same quantities obtained by other
methods. The Parrinello-Rahman form of molecular dy-
namics has become a standard tool in studying structural
phase transformations of solids. For example, Rains,
Ray, and Vashishta [5] have recently completed a de-
tailed study of the phase diagram of AgI using this
method, and we refer the reader to this paper for further
references to nonequilibrium uses of the theory. Here we
shall focus on equilibrium properties.

In molecular-dynamics or Monte Carlo simulations the
equilibrium thermodynamic properties can be determined
by calculating various average values. For the HtN en-
semble Parrinello and Rahman [6] presented a formula
showing the fluctuation of the strain tensor could be used
to calculate the elastic constants of a system

(2) ~etj&km ) (&i )(J& m)kSI1kmkBTt Vo ~ (4)

where F, is the jth component of the force on particle a,
and s„- are the fractional coordinates of the particles
within the computational cell. The enthalpy of the sys-
tern is constant during the HtN evolution

H =K+ U+P,„,V + V, tr(te), (3)

where E is the kinetic energy, U is the potential energy,
and e is the strain tensor. Note that the kinetic energy in
Eq. (3) contains the kinetic energy of the cell variables h,
however, since there are only six degrees of freedom in h
and 3N in the particles we may safely ignore (error of or-
der 2/N) the kinetic energy of the cell for systems of

where e= —,'(ho 'Gho ' —I), ho is the average value of h

when the strain is zero, e.g. , the reference value of h, Vo
is the reference volume, T is the temperature, and S, .

k

the adiabatic compliance tensor from which we can
determine the adiabatic elastic constants by inversion.
Further fluctuation formulas for the HtN ensemble allow
the calculation of other response functions [7]. For ex-
ample, the isobaric specific heat is related to kinetic ener-

gy fluctuations, while the volume expansivity is related to
the cross fluctuation between the kinetic energy and the
volume. Fluctuation formulas involving higher-order
elastic constants of the system are related to higher-order
strain fluctuations and some of these have been presented
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by Ray [8].
It is now generally recognized that Eq. (4) furnishes a

marginally satisfactory way of calculating elastic con-
stants in HtN molecular dynamics because of its slow
convergence properties. Even though Eq. (4) was given

in Ref. [6] no results were presented there using this
equation since satisfactory convergence could not be ob-
tained in molecular-dynamics runs of the length em-

ployed. A later study by Sprik, Impey, and Klein [9] and

Ray [10] reached essentially the same conclusion. How-

ever, this method is still used on occasion [11]for the cal-
culation of the adiabatic elastic constants because of the
simplicity of Eq. (4) compared to the corresponding for-
mulas in the EhN (E is the energy) and ThN (T is the
temperature) ensembles [4,10]. Since Eq. (4) involves

only the fluctuations in the h matrix it furnishes a
method of calculating the elastic constants which does
not depend explicitly on the potential. In the EhN en-
semble the fluctuation formula for the adiabatic elastic
constants has the form [4,10]

C,,„.= —„(&P,,P„)—&P„)&P, ))
BT

2NkB T
+ (5 5, +5; 5jk)

Vo

1V

+ g ( U.'b —U.b /r. b )

a, b =1
a(b

XXab, Xab, xabkxabm «a»
where U,b

= U(r, b ) is the potential and the primes indi-

cate differentiation with respect to the distance between

particles. For simplicity we have given Eq. (5) assuming

a pair potential. The Th¹nsemble Auctuation formula
for the elastic constants has the same form as Eq. (5).
The first term in Eq. (5) is called the fiuctuation term, the
second term is called the temperature correction term,
and the third term is called the Born term. Thus the Quc-

tuation formula for the elastic constants in the EhN (and

ThN) ensemble depends explicitly upon potential deriva-

tives as is shown in Eq. (5).
Recently [12] we developed a method of carrying out

Monte Carlo simulations in all of the adiabatic (shell) en-
sembles of classical statistical mechanics [13]. For HtN
ensemble Monte Carlo simulations the probability densi-

ty has the form [12]

W, (s, h)=CV [H —U(q) —P,„,V

—V tr(te)]" (6)

where C is the normalization constant. Note that we

have included the external pressure as well as the tension
in the probability density. Thus this probability density

generates the isoenthalpic-isotension-isobaric ensemble.
This is in accord with the finite theory of elasticity where

the enthalpy terms for isotropic pressure and tension are
treated separately [10]. Therefore we can also carry out
Monte Carlo simulations in the HPN ensemble using this
same importance function. This is the Monte Carlo
counterpart of Andersen's [1] HPN molecular dynamics
and would be a more appropriate ensemble for simulating

liquids. For simplicity we shall refer to simulations using

Eq. (6) as the importance function as HtN Monte Carlo
simulations.

In HtN Monte Carlo one moves the particles, s„, and

the h matrix using the importance function 8'H,z,' the re-

sulting configurations generate the HtN ensemble and can
be used to calculate average values in the HtN ensemble
and in particular the elastic constants using Eq. (4).

III.HEN-ENSEMBLE SIMULATION RESULTS
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FIG. 1. The diagonal elements of the dimensionless scaling

matrix plotted every 500th move along the HtX Monte Carlo se-

quence generated using the weighting function Eq. (6). The

average value of h;; is also shown and is 8.1216.

We have carried out HtN Monte Carlo calculations on
a 500-particle first-nearest-neighbor Lennard-Jones fcc
crystal employed in previous studies of elastic constants
by Sprik, Impey, and Klein [9], Ray, Moody, and Rah-
man [14,15], and Cowley [16]. The main reason for using
this system is that accurate values of the thermodynamic
parameters are known from simulations in several ensem-
bles using both molecular-dynamics and Monte Carlo
methods. Periodic boundary conditions are employed
and the usual reduced, dimensionless units of the
Lennard-Jones potential are employed, the dimensionless
elastic constants are reported in units of Nk&T/V. We
shall present results for a temperature of T=0.301, and
zero pressure. We define an HtN Monte Carlo move to
consist of an attempt to move each particle, s„, and then
an attempt to change h, . Before the simulation that we
discuss, we equilibrated the system at an enthalpy of
H= —2516. 105 and zero pressure and tension in Eq. (6)
for several hundred thousand moves.

In Fig. 1 we show the variation of the diagonal ele-
ments of the h matrix along with their average value dur-

ing a 200000—move HtN Monte Carlo simulation. In
this figure we have plotted every 500th configuration
along the Monte Carlo sequence. The off-diagonal ele-
ments vary about zero. Figure 1 illustrates that the cell
variables vary about the fcc cube in the HtN simulation
in a manner entirely similar to HtN molecular dynamics.
In Fig. 2 we show the volume V = det( h ) as determined
every 500th move in the same 200000—move simulation.
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FIG. 2. The dimensionless volume plotted every 500th move

along the HtN Monte Carlo sequence. The average of V is

535.70.
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The average values of h and V determined for this simula-
tion give the reference values ho and Vo and are con-
sistent with the results obtained in molecular-dynamics
simulations [14,15] at this same temperature and pres-
sure.

For atomic systems in HtN molecular dynamics the
computational cell does not rotate if one starts the simu-
lation with no cell rotation since the angular momentum
of the cell is a constant of the motion for a symmetric mi-
croscopic stress tensor [17]. In HtN Monte Carlo simula-
tions, on the contrary, moves of h that correspond to ro-
tations are accepted since they do not change the energy.
In order to eliminate this nuisance rotation we impose
the constraint that the it matrix remains symmetric [17].
For consistency of our comparisons we imposed the same
constraint on the h matrix of the HtN molecular-
dynamics simulations.

In Fig. 3 we show the calculated values of the three
sets of symmetry equivalent elastic constants C» Cpp,

C33 C]p C$3 C$ 3 and C44, C55, C66, for the crystal at
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FIG. 3. The dimensionless elastic constants in units of
Nk~T/V as calculated during the 200000—move HtN Monte
Carlo simulation using Eq. (4). Here we show the three elastic
constants that should be equal by cubic symmetry for the fcc
crystal. The degree of coincidence of the three lines in each
graph is a measure of the convergence of the calculation.

FIG. 4. The elastic constants as calculated during a 200000
time-step HtN molecular-dynamics simulation using Eq. (4).
The same quantities are plotted as in Fig. 3.

TABLE I. Elastic constants of the nearest-neighbor
Lennard-Jones model at 200000 moves (time steps), with a tem-
perature of 0.301 and zero pressure as calculated in HtN Monte
Carlo and HtN molecular dynamics using Eq. (4). Under each
group of three elastic constants an average value is listed togeth-
er with an error estimate.

CI I C22 C33 CI2 C13 C$3 C44 C5q C66

MC
196.4 162.9 187.5 109.8 75.6 99.6 81.7 83.2 81.8

C I I
= 1 82.3+14.2 C I 2

=94.8+14.1 C44 =82.2+0.7

MD
162.6 215.3 166.4 73.0 127.8 79.8 79.8 88.6 85.6

CII = 181.4+24.0 CI2 =93.5+24.4 C44 =84.7+3.7

the given temperature and pressure using Eq. (4) in a
200000—move Monte Carlo simulation. In Fig. 4 we
show the same quantities as calculated in HtN molecular
dynamics using a time step of 0.0025. With this value for
the time step we observed excellent energy (enthalpy)
conservation in all of the molecular-dynamics simula-
tions. These HtN molecular-dynamics results are similar
to those given by Sprik, Impey, and Klein [9] for this
same system. A comparison of Figs. 3 and 4 shows that
the Monte Carlo calculation has better convergence be-
havior. (As a point of correction we mention that the
wrong values were given in Table I by Ray [10]; the
values in Table I in this reference should show conver-
gence of the same nature as the values shown in Fig. 4.)
If we use the three values of the symmetry equivalent
elastic constants to introduce an error estimate we find

that the Monte Carlo error estimate is generally smaller
than the molecular-dynamics error estimate as is obvious
from studying Figs. 3 and 4. In Table I we give these
values along with the error estimates determined using
the three values as three independent determinations of
the elastic constants. We have also calculated other
properties of the system using other HtN fluctuation for-
mulas; kinetic-energy fluctuations give C while kinetic-
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TABLE II. Properties of the nearest-neighbor Lennard-Jones system at a temperature of 0.301 and
zero pressure as calculated in different ensembles by molecular dynamics (MD) and Monte Carlo {MC).
The elastic constants are the adiabatic elastic constants divided by Nk~ T/V, the specific heat at con-
stant pressure C~ is divided by Nk&, and the isothermal and adiabatic bulk modulii BT and B, are divid-
ed by Nk~T/V. All of these thermodynamic quantities are calculated using fluctuation formulas
specific to the particular ensemble denoted in the first row. The agreement of the values is within the
error bars associated with each quantity. The first column gives the HtN Monte Carlo values at the end
of the 3X10 -move simulation while the second column gives the HtN molecular-dynamics values at
the end of the 3 X 10 -time-step simulation.

Ci2
C44

Cp

BT
B,

Ensemble
Simulation

HtN
MC

179.9
92.7
81.6
3.53

96.98
121.81

HtN
MD

180.2
93.2
81.3
3.49

97.5
122.0

EhN'
MD

183.3
94.8
82.9
3.43

102.8
124.3

ThNb

MC

182.0
94.1

82.0
3.53

98.6
123.4

TAN'

MD

184.4
96.0
82.0
3.49

105.4
125.5

'References [10,14,15].
bReference [16].

energy volume cross fluctuations together with C and
the adiabatic bulk modulus, B,=(C»+2C, 2)/3, give the
isothermal bulk modulus BT, these other properties are
listed in Table II, along with previous calculations of
these quantities in EhN molecular-dynamics and ThN
Monte Carlo simulations.

In order to further study the convergence of the elastic
constants we extended the Monte Carlo simulations to
3 X 10 moves and the molecular-dynamics simulation to
3 X 10 time steps. In Fig. 5 we show the elastic constants
for the extended Monte Carlo simulation and in Fig. 6 we
show the same for the molecular-dynamics simulation.
Note that we have changed the scale in order to show the
convergence in these extended simulations. The original,
first 200000—move (time steps) simulations in Figs. 3 and
4 are often off the scale in Figs. 5 and 6. The superior

convergence of the Monte Carlo calculations is again
clear from a comparison of Figs. 5 and 6 as well as by de-
tailed error estimates.

IV. CONCLUSIONS

We have discussed Monte Carlo simulations which
generate the HtN ensemble and compared the calculation
of equilibrium properties in HtN Monte Carlo simula-

tions with the calculation in HtN molecular-dynamics
simulations. At low enough temperatures molecular dy-
namics will not furnish accurate average values because
the system becomes harmonic, however, the Monte Carlo
averages are still valid at low temperatures. Hence at low

enough temperatures the only reliable method of carrying
out Ht¹nsemble simulations is with the HtN Monte
Carlo method.
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FIG. 5 ~ The same as in Fig. 3 but extended to 3X 10 moves

to investigate convergence. The first 200000 moves correspond
to Fig. 4.

FIG. 6. The same as in Fig. 4 but extended to 3X 10 moves
to investigate convergence. The first 200000 time steps corre-
spond to Fig. 4.
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Note also that in HtN Monte Carlo simulations we do
not have to worry about the influence of the arbitrary
"wall" mass parameter or the form of the kinetic energy
of the "walls" (e.g., the form of the equation for the Jt

matrix) on the results of simulations. Of course, in order
to study properties of the system as a function of time,
such as diffusion and time correlation functions,
molecular-dynamics simulations must be employed.

We presented detailed calculations for a nearest-
neighbor Lennard-Jones crystal at a temperature of 0.301
and zero pressure. Other simulations at higher and lower
temperatures for this system lead to the same con-
clusions. Other preliminary simulations using
embedded-atom-method potentials have also given con-
sistent results among HtN Monte Carlo, HtN molecular-
dynamics, and EhN molecular-dynamics simulations. A
study of Figs. 3-6 and Table I shows that the HtN Monte
Carlo method is a better method of calculating elastic
constants than the HtN molecular-dynamics method, but
both methods are ineScient. Recall that EhN or ThN
molecular-dynamics calculation of the elastic constants
gives an error =1% in 20000 time steps [10,14,15]. The
reason the EhN and ThN calculations are more efBcient is
that the fluctuation formula for the elastic constants in
the EhN ensemble involves the Born terms as the major
contributor, Eq. (5), and this term is not a fluctuation ex-
pression and, therefore, converges to an accurate value in
a few thousand time steps. Fluctuation expressions,
which involve the difference between quantities which are
close in value, are inherently slower to converge. The
same advantage would be present in EAN Monte Carlo
[12] calculation of the elastic constants which would use
the same fluctuation formulas as the EhN molecular-
dynamics method. Comparing the convergence of EhN
molecular-dynamics formulas for the elastic constants to
the HtN results in this paper we see that one must run the
HtN Monte Carlo simulations at least ten times as long to
reduce the error to the approximate values obtained in
the EhN or ThN simulations [10,14,15]. Somewhat

longer simulations would be required in HtN molecular-
dynamics simulations as is clear from our previous dis-
cussion.

Although we have concentrated on equilibrium simula-
tions using the HtN Monte Carlo method it is clear that
this method can be used to study solid-solid phase trans-
formations or other nonequilibrium processes in a
manner similar to HtN Andersen-Parrinello-Rahman
molecular dynamics and we are presently studying such
processes using HtN Monte Carlo methods. Monte Carlo
simulations in the isothermal TtN ensemble have been
used by Toukan, Carrion, and Yip [18] to study solid-
solid phase transformations.

The results of the present study show that HtN Monte
Carlo, using the importance function given in Eq. (6), is a
viable method for carrying out Monte Carlo simulations.
Figures 1 —6 and Tables I and II show that the probabili-
ty density WH,~, Eq. (6), gives equivalent values for ther-
modynamic properties as EhN molecular-dynamics or
conventional ThN Monte Carlo simulations. The accu-
rate calculation of the elastic constants using the HtN
fluctuation formulas given in Eq. (4) is a superior method
compared to the more slowly converging results obtained
in HtN molecular dynamics using this same formula but
neither method is competitive with EhN or ThN molecu-
lar dynamics or Monte Carlo simulations. Obtaining ac-
curate first and second derivatives of the potential can
often be a nontrivial problem in the case of complicated
many-body, tabulated, or ab initio potentials and there-
fore HtN Monte Carlo calculations of the elastic con-
stants will remain useful for such cases.
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