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Quantum dynamics from the Brownian recoil principle

Piotr Garbaczewski* and Jean-Pierre Vigier
Laboratoire de Physique Theorique, Institut Henri Poincare, Universite Paris VI,
11 rue Pierre et Marie Curie, F-75231 Paris CEDEX 05, France
(Received 9 June 1992)

We formulate a theory of the Brownian motion for particle ensembles, whose diffusive evolution is en-
tirely generated by the surrounding random environment. By demanding the validity of the momentum
conservation law on all conceivable scales adopted for the investigation of individual particle scattering
(collisions) on the medium constituents, we are forced to incorporate the environmental recoil effects in
the formalism. The Brownian recoil principle elevates the individually negligible phenomena to the
momentum conservation law on the ensemble average. The resultant dynamics of the statistical ensem-
ble is governed by the Schrodinger equation, once the diffusion constant D is identified with #/2m.

PACS number(s): 02.50.+s, 03.65.—w

Nelson’s stochastic mechanics [1] gives a persuasive
stochastic insight into phenomena of exclusively quantum
origin (Schrodinger wave mechanics). The resulting Mar-
kovian diffusions are, however, highly nonlinear diffusion
processes, with an explicit dependence on the particle
probability  distribution mediated by the de
Broglie—Bohm-Vigier “quantum potential.” For years
its role was notoriously associated with the notion of the
Einstein—-de Broglie “pilot wave” capable of guiding
micro-objects (e.g., particles) in space, so that the wave
and particle features of the quantum dynamics could be
to some extent simultaneously maintained. This is to be
contrasted with Bohr’s concept of the wave-particle dual-
ity.

Recent experiments [2] (mostly in the domain of neu-
tron interferometry) suggest that if one extends the valid-
ity of energy-momentum conservation laws to the micro-
scopic level, on which a detailed individual particle
motion takes place, then the particle behaves as being un-
der the influence of the nonlocal “quantum potential.”
On the other hand, the quantum potential itself must en-
code information about some realistic collective motions:
particles appear to be members of statistical ensembles
propagating in the totally chaotic (for us synonymous
with random) environment. The problem of reconciling
the individual and collective (ensemble) feature of such
propagation has never, to the authors’ knowledge, been
convincingly addressed.

Our work can be considered as the natural extension of
the Einstein and Smoluchowski pioneering investigations
of the Brownian motion, where we consider as non-
negligible (at least on the ensemble average) a reciprocal
interaction (recoil effect) of particles being Brownian scat-
tered by the random medium, with the medium itself.

For a very rough analogy with this situation, let us
consider a substance (like, e.g., milk) whose constitutive
elements undergo a completely chaotic (which might be
Brownian as well) motion. Let us immerse a droplet of
ink (one should rather think about individual ink mole-
cules which are consecutively one by one implanted in
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the medium according to some prescribed initial particle
distribution) in milk, and assume that the ink elements
will undergo the Brownian diffusion which is entirely
generated by the chaotic medium and has nothing in
common with the traditional picture of ink self-diffusion
via its own molecular agitation. The idea of energy-
momentum conservation on the individual (ink) particle
level certainly must give rise to some reciprocal (recoil)
effects in the random environment.

Further reasoning depends on the properties of the
random environment, which one considers to be relevant
to the problem. If one neglects such reciprocal phenome-
na, as Einstein did [3], the standard theory of Brownian
motion emerges. If, however, one considers the recoil
effects to affect random particle motions, then one ends
up (as we wish to demonstrate) with the nonlinear
diffusion of Nelson’s stochastic mechanics.

To avoid any misunderstandings, let us once more
stress the active role of one substance only (e.g., the ran-
dom medium). In the conventional statistical physics
problem of a diffusion of one gas (ink) in another (milk),
the Brownian motion of each gas separately comes ex-
clusively from the molecular agitation of its own constit-
uents, based on the assumption of their simultaneous
presence in abundance. In our case the random medium
can be interpreted conventionally, while the ink (using
the analogy) ensemble is constructed by considering the
completely independent single-particle—random-medium
(joint in our case) propagation problems.

In the configuration-space description of the standard
Brownian motion [1,3] the statistical destiny of the parti-
cle following a random path X,,(X,ER't, <t=t,) is
completely determined by the fundamental microscopic
law of random displacements, i.e., the transition probabil-
ity density of the diffusion process for small times. Its
primordial (Einstein’s) version tells us that irrespective of
the actual particle position and time spent in contact
with the random environment, the effect of random fluc-
tuations remains statistically the same on the chosen time
scale At. Namely, the probability that a particle originat-
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ing from a point x at time ¢ will be found between x and
x + Ax after time Af >0 is given by the formula

p(Ax,At)=Axp(x,t,x +Ax,t +At)
(Ax)?

4D At

_ Ax
172 €XP

s (1)
(47D At)

which does not depend on the reference point (of particle
origin) X, =x reached by the particle in the course of an
unspecified, but quite complicated evolution.

Apparently, such a displacement law basically charac-
terizes the random medium itself and its highest possible
level of the statistical homogeneity. The only informa-
tion about a particle proper (like, e.g., its mass) is con-
tained in the diffusion constant D, which is kept fixed if
particles of the same sort are subject to the environment
perturbing effect in the series of single particle trials (sta-
tistical samples).

If we consider the initial probability distribution of the
random variable X, (representing a particle in the course
of the stochastic diffusion process) to be given by

2

a2

polx)=(ma?) " 2exp , (2)

then its statistical evolution, as a consequence [4,5] of (1),
is given by the familiar heat kernel:

p(y,s,x,t)=[47D(t—s)]"?exp ——————4(;(:{):) ,
s=<t,
p(x,t)=fp(y,s)p(y,s,x,t)dy
_ x?
=[m(a?+4Dt)] " ?exp ~apr | 3)

9,p=DAp ,
p(x,0)=po(x),

which extends the applicability of the microscopic dis-
placement law (1) to time intervals of arbitrary size.

Let us notice that in addition to the forward transition
probability density p(y,s,x,¢) allowing for statistical pre-
dictions about the future of the diffusing particle, we can
as well define a convenient device (actually the backward
transition probability density of the process) which makes
it possible to reproduce the statistical past of the process,
given the present. Indeed, since (3) defines p(x,t) for all
instants of interest, we can introduce

p*(y,s,x,t):p(y,s,x,t)%, s=<t 4)

with the obvious property
fp*(y,s,x,t)p(x,t)dx=p(y,s), s=<t. (5)

The transition probability densities p(y,s,x,t) and
P« (¥,5,x,t) entail a deeper insight into the microscopic
structure of the diffusion process.

For example, the conditional average taken over all po-
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sitions starting from which at time ¢ — Atz (alternatively)
the diffusing particles are given a chance to reach a
prescribed point x at time ¢:

Eﬁ’[x,t]:fyP*(J’,t—At,x,t)dy

= fyp(y,t—At)

Xp(y,t —At,x,t)dy

/p(x,t) (6)

in virtue of

24+4Ds
3,5 (p,5,x,8)dy =xZ""=3 5(x, 1) (7
fypySPysx =% ran:”

yields (set s =t —At)

Ef'[x,t]=x—-—#)X—At=x—b*(x,t)At ,
o?+4Dt
D (8)
X
b, (x,t)=——x—=—2DVp(x,t)/p(x,t),
< A aD pEEIP

where b, (x,t) plays the role of the mean velocity of (in-
coming [6] to x at time ?) particles, which approach a
given point x in the course of the uniform rectilinear
motion in a small time interval [t —At#,¢]. In fact [1], in
the absence of external forces the particle should show a
certain tendency to persist in the uniform rectilinear
motion on small time scales Az. The mean velocity
b,(x,t) denotes here the best possible estimate of such
motion tendency before x has been reached at time ¢.

By invoking the standard [1] definition of the back-
ward drift of our diffusion process, we realize that

.1 Ar
—{x— t]}= 9
AI}TOAt{x E[x,t]}=b,(x,t) 9)
coincides with (8). The analogous best prediction about
the expected motion tendency in the interval [z, +At]
comes from

EA'[x,t]=fp(x,t,y,t+At)y dy=x, (10)
which implies
3 L At — = =
Q}TOAt{E [x,t]—x}=b(x,t)=0, (11)

hence neither direction is particularly privileged by parti-
cles outgoing (originating) from x at time #: there is no
specific motion tendency.

Drifts b,(x,t) and b(x,¢) thus give account of a single
particle (mean) tendency of motion respectively in time
intervals [t —At,t] and [¢,¢ + At ] where x stands for the
actual (present) particle location at the time instant ¢ of
its random motion [random variable X, is being prop-
agated by the universal displacement law (1)].

We might wish to analyze the available statistical in-
formation not about a single particle but about an ensem-
ble of particles. In fact, if the initial (¢ =0) random vari-
able X, (particle) distribution is given by (2), then in vir-
tue of (1) we have immediately initiated the Brownian ex-
pansion of the whole ensemble, whose individual constit-
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uents execute the previously described Brownian motion
scenario. Apparently the random variable (and the en-
semble [3]) distribution after time Az reads
x2

a?+4D At

pa(x)=[m(a?+4A1)] 2exp . (12)

However, if in contrast to the single particle propagation,
it is the ensemble evolution which attracts our attention,
then a new characteristic of motion enters the scene.
Namely, we can consistently ask for an average velocity
of the locally uniform rectilinear motion on the time scale
At, which stands for the tendency of motion of a single
particle when considered as a member of a particular en-
semble. The pertinent analysis was accomplished in Ref.
[6] albeit with a slightly different goal in mind, and im-
plies the following: Given the forward drift in the time
interval [t —At,t] (mean velocity of particles outgoing
from x at time t—At), b(x,t—At) and the backward
drift b, (x,?) in the time interval [z —A¢,¢] (mean veloci-
ty of particles incoming to x and time #), then the average
velocity of particles propagating (flying) in the vicinity of
the point x in the time interval [z —At,t] reads

b(x,t—At)+b,(x,t)]=v_(x,t), (13)

where v _(¢) is the original notation of Ref. [6].

If specialized to our case, we know that b(x,t)=0 for
all x and ¢, while b, (x,t) is given by the formula (8). In
consequence, the mean tendency of motion evaluated for
the Brownian ensemble in each time interval At preced-
ing a given time instant ¢ is given by

vix,t)=v_(x,t)=1b,(x,t)=—DVp(x,t)/p(x,t)

(14)

in consistency with both the probability conservation law

9,p=—V(pv) (15)
and the macroscopic diffusion law [3]

d,p=DAp, (16)

which is a direct consequence of the induced particle
current j(x,t)=(pv)(x,t).

In particular, the average flow implying the Brownian
expansion of the py(x ) ensemble to p,,(x ), (12), is charac-
terized by

vix,A)=— DX (17)
o> +4D At

in the time interval [0, At ].

It is interesting to notice that both p(x,t) and
(pv)(x,t) ingredients of the formula (15) come from the
propagation of the initial data py(x) and (pgvy)(x ), where
vo(x)=—DVpy/pg, through the formulas (3) and (7), re-
spectively. The reader must, however, be aware of the
fact that although

(pv)ix,0)= [ p(»,0,x,0)po(y vg(y)dy (18)

holds true, the quantity v, (y) is not an initial average par-
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ticle velocity at all, if we refer to the Brownian expansion
of the initially static ensemble.

In virtue of (17) the purely Brownian scattering of par-
ticles implemented by the displacement law (1), locally (in
the vicinity of each point x) induces a nontrivial momen-
tum mv(x,t) transfer. Even if the overall averaging
fv(x,t )p(x,t)dx =0 does not give any hint, locally the
momentum cannot be gained from nowhere by indepen-
dently propagating members of the considered ensemble.
If such gain does appear, then by elementary conserva-
tion laws (here adopted in the local mean) it must arise at
the expense of the random environment.

We are quite intentionally using the word “momen-
tum” although a pedestrian understanding of the Einstein
diffusion is completely devoid of this notion. By classical
arguments [1,3], the configuration-space diffusions (see
also Refs. [6-8] need to be derivable from random phase-
space motions to be placed on the sound physical basis of
the problem of random accelerations. In fact, an explicit
reference to a physical intuition about how the Brownian
diffusion arises is quite rewarding in this case. Let us
literally think about the white noise (idealized description
of random accelerations) mechanism leading to highly er-
ratic Brownian paths of the configuration-space Browni-
an (Wiener) diffusion. We shall cite Nelson [1] here, only
slightly paraphrasing his original comment on the classic
Kappler’s experiment: “One has the feeling with [Wiener
paths] that one can occasionally see where an exception-
ally energetic gas molecule [liquid or other random medi-
um constituent] gives the [monitored particle] a kick.
This is not true. Even at the lowest [gas] pressure used,
an enormous number of collisions takes place per [time
unit], and the irregularities in the [paths] are due to
chance fluctuations in the sum of enormous numbers of
individually negligible events. It is not correct to think
simply that jiggles in the Brownian trajectory are due to
kicks from molecules. Brownian motion is unbelievably
gentle. Each collision has an entirely negligible effect on
the the position of the Brownian particle, and it is only
fluctuations in the accumulation of an enormous number
of very slight changes in the particle’s velocity which give
the trajectory its irregular appearance.”

However (we are not far away from Boltzmann’s dis-
cussion of collisions in the kinetic theory of gases and
liquids), even the slightest change in the individual parti-
cle velocity is accomplished by locally imparting a con-
crete amount of momentum to the random environment,
if its opposite is imparted to a particle itself. Then only
the momentum conservation law in any collision event
will not be violated. We should have indeed the action-
reaction principle respected in the random accelerations
problem.

In our previous discussion, the agitation of particles
represented by the law of random displacements (1) was
found to induce the nontrivial and non-negligible (macro-
scopic regime) particle flows, when considered on the en-
semble average. Since we are dealing with massive parti-
cles, the momentum conservation law tells us that on the
ensemble average, the individually negligible momentum
losses or gains by the random environment (individual
recoils) give rise to the nontrivial and non-negligible recoil
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effect (local turbulences [9]) in the random medium itself.

The local Brownian recoil principle can be formulated
as follows: If Brownian fluctuations due to the medium
produce an average field of local particle flows v(x,?),

then an average field of local drifts —v(x,¢) is induced in
|
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the medium itself: the —7 local drag of particles does
compensate the m? local momentum associated with the
ensemble of Brownian scattered particles. As a conse-
quence the infinitesimal law of random displacements (for
the subsequent time interval A¢) takes the form

=(4 -1/2 1
p.(y,t,x,t +At)=(4wDAt) exp{ 4D At

b(y,t)=—0v(y,t),

(x—y)?
4D At

Po»,0,x,A1)=(47DAt) " exp

x—y—b(y,t)At]? ]

(19)

By starting at time ¢ =0 from the distribution py(x ), after time At we arrive at the new particle distribution p,,(x),
(12), resulting from the ensemble expansion with the mean velocity field 7(x,At), (17). Because of the Brownian recoil
principle we have induced turbulences of the random environment, whose ensemble average gives rise to the field of
mean drifts (flows in the medium) b(x,At)= —0(x,At). The universal displacement law (1) for the next period At of
the random propagation is replaced by the field of local displacement laws p,,(y,At,x,2At) as given by (19). Let us

denote

?=q’+4DAt, U(x,At)=2Dx/B? py(x)=(mB*) " %exp(—x2/B*)=pp(x) (20)

and investigate the transition probability density

_ (x—y+2Dyt/B*}
4Dt

p(y,O,x,t)=(47rDt)‘1/Zexp

’

t>0. 21)

In the notation wxo(x,t ), xo—>y this object was utilized in Ref. [8], and we know that

202
(1,0, )(mB?) ™ 2exp( —p2/B)dy = b exp |- =P | =pyx,1) @2
Jewy g pl=y™/Bdy [r(B*+4D% D] 2T | prrapht | PP
and [cf. formula (45) in Ref. [8]]
2 __
[ p(3,0,%,1) %(ﬂﬁz)_”zexp(—yz/ﬁz) dy=%pﬁ(x,t)=—bﬁ(x,t)pg(x,t) 23)
[
in close analogy with (3) and (18). The important obser- The conservation law
vation here is [8] that

_ 2D(B*—2Dt)x

balx,t)=
A B*+4D%t?

(24)

coincides with the forward drift of the diffusion process
of Nelson’s stochastic mechanics associated with the
solution of the free Schrodinger equation:

id,(x,t)=—DA¢(x,1),

(25)

P(x,0)=pp"*(x,0)=(7p*)"Vexp(—x2/28%) ,

where, evidently, ps(x,t)=|¢(x,?)|* and

bB(x,t)=uB(x,t)+vﬁ(x,t) ’

__2DBx
B*+4D%? "’
4D3xt

B*+4n?t?

ug(x,0)=—2Bx (26)

Bz —>UB(x,t)=

uﬁ(x,0)=0—>vﬁ(x,t)=

should be compared with the previous (conventional
Brownian) probability conservation law (15).

As noticed in Ref. [8], we deal here with a concrete
realization of  Nelson’s acceleration formula
(m/2XD D_+D_D_ )X(¢t)=0 in the form of the
momentum balance equation (in the conditional mean)

Qg tvgVug=—-VQ, , (28)

where the “quantum potential” Q,p(x,t)
=—2D*Ap}/*(x,t)/p/*(x,t) has now a definite statisti-
cal origin linked with the Brownian propagation of parti-
cle ensembles, which is affected (modified) by the Browni-
an recoil principle.

Let us add that for times ¢ >> At we can everywhere in
(20)-(28) neglect the initial (purely Brownian phase of
motion) At contributions, and replace 32 by o?.

It is also instructive to notice that the conventional
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Brownian dynamics (3) is characterized by the momen-
tum balance equation

d,v+vVv=—VQ, Q=2Dp'"?/p'?, (29)

which is an alternative realization of another Nelson’s ac-
celeration formula (m /2)(D D +D_D_)X(t)=0 val-
id for Markovian diffusions; see, e.g., Refs. [7,8,10,11] for
more details.

*On leave of absence from: Institute of Theoretical Phys-
ics, University of Wroclaw, PL-50 205 Wroclaw, Poland.
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