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Investigation of the first-order phase transition in the A-B2 reaction model
using a constant-coverage kinetic ensemble
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The first-order kinetic transition in the A Bz -(or Ziff-Gulari-Barshad) surface-reaction model [Phys.
Rev. Lett. 56, 2553 (1986)] is investigated using a simulation algorithm (or ensemble) in which the cover-

age of A is held fixed, while the rate y of A adsorption is allowed to vary. This ensemble allows the me-

tastability loop and spinodal point of the phase transition to be carefully examined. The metastable be-

havior is found to be in qualitative agreement with the predictions of mean-field theory made by Dick-
man [Phys. Rev. A 34, 4246 (1986)]. Furthermore, the transition point is precisely determined to be
y2=0. 52560+0.00001. The metastable behavior near the spinodal point is also investigated using the
standard constant-rate algorithm.

PACS number(s): 68.35.Rh

A few years ago, one of the authors and co-workers in-
troduced a kinetic lattice model based upon the reaction
of carbon monoxide ( A) with oxygen(Bz) on a platinum
catalyst surface. This model, which has become known
as the A Bz or th-e Ziff-Gulari-Barshad (ZGB) model [1],
shows complex kinetic behavior, and has been studied
and modified in many ways [2—10].

In the model's simplest form, diffusion, desorption of
reactants, and thermal effects are ignored. Molecules
contact the surface randomly and require empty sites in
order to adsorb: the A molecules require just one site,
while the Bz molecules require two adjacent (nearest-
neighbor) empty sites as adsorption is dissociative. The
temperature and pressure of the system are assumed to be
such that the kinetics are adsorption limited, so that
nearest-neighbor pairs of A and B react and desorb im-
mediately upon formation. The only parameter in the
model is y (also called y„oryco), defined as the normal-
ized rate (probability) that a molecule making an adsorp-
tion attempt is an A. The steps of this model are

A+SEAS [ rate~y],

Bz+2S~2BS [ rate cc (1—y)],
AS+BS~2S+ AB1

[rate= ac (for nearest neighbors)],

where S represents a reaction site on the catalyst surface.
In the usual algorithm for simulating these steps on a

computer [1],a new molecule impinging on the surface is
chosen to be an A with probability y, or a B2 otherwise.
If the molecule is an A, then a single site on the lattice is
chosen randomly, and if that site is found to be empty,
the A adsorbs there. The four-nearest-neighbor sites are
immediately checked in random order; if any B is found,
it reacts with the A and the two are removed from the
lattice. For a B2 striking the surface, a nearest-neighbor
pair of sites is chosen at random; if both are empty, ad-
sorption of the two 8's takes place, and all six-nearest-
neighbor sites are checked in a random order for A mole-
cules to react with the B's. In this paper, we call this
standard algorithm the "constant-rate" (or constant-y)

ensemble.
When this algorithm is carried out, an ensemble of

states rejecting the set value of y is generated. For
y (y, =0.387 [3,4], the system eventually saturates with

B, for y &y2=0. 5256 it saturates with A, while for

y& (y (y2 the system goes to a steady state where reac-
tion continues (nearly) indefinitely. In this reactive state,
some A and B rnolecules remain adsorbed on the surface,
along with many empty sites where further adsorption
and reaction can take place. At the transition point y,
the coverages of A and B are continuous functions of y
and the transition is termed second-order, while at y2 the
coverages are discontinuous and the transition is first or-
der.

In the past, investigation of the first-order transition
has been dificult because of the existence of long-lived
metastable states. In order to overcome this problem, we
introduce a new "constant-coverage" kinetic ensemble.
In the constant A-coverage (constant-8) ensemble, the
coverage of A is to be kept as close as possible to a
desired value, say 6. This ensemble is achieved by carry-
ing out an A adsorption trial whenever the instantaneous
coverage of A (denoted 8') is less than the set point value

6, and a B2 adsorption trial whenever 6' & 6. The rest
of the procedure —picking one or two sites, checking
that they are blank, and checking the neighbors for
reactions —remains the same as in the original algorithm.
While not every A trial results in an A molecule staying
on the surface because of blocking and reaction, eventual-

ly one will adsorb without reacting, causing 6 to in-

crease. Likewise, awhile not all 82 adsorption trials result
in a decrease in 6, eventually a reaction with an A will
occur and 6 will decrease. When the system reaches
steady state, one or a few A adsorption trials are carried
out, followed by one or a few B2 trials, back to A, and so
on.

We define y as the fraction of A adsorption trials to to-
tal A and Bz trials (successful or not). This quantity is

the average or effective value of the adsorption rate y cor-
responding to the given fixed value of 6. To determine
the behavior of the function y(8), we ran simulations us-

ing the constant-6 algorithm on a 256X256 square lat-
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tice for various values of 6. The results are summarized
in Fig. 1. In the range 0&8&6&=0.075, the values ofy
as a function of 8 agree with those of the constant-y algo-
rithmi This range corresponds to the stable reactive re-
gion in model (y, &y &y2). For 6&&6&6,=0.085, y
continues to increase beyond the value at the transition
point y2 to a maximum value of y, =0.527, and the sur-
face contains no unusually large A clusters. However,
when 6 is increased beyond 6„asingle large cluster ap-
pears (as shown in Fig. 2) and the value of y begins to de-
crease. At 6=0.4, the large A cluster wraps around the
periodic boundary of the lattice (much like Fig. 3), and y
jumps to a value of about 0.5256. As 6 is increased from
approximately 0.4 to 0.6, the width of the A-saturated
strip increases, but y remains nearly constant. For
8&0.7 the reactive phase ceases to connect around the
boundary, becoming just a cluster embedded in the solid
A background, and the value of y resumes its decline.
When 6)Oi90, the reactive region becomes very small,
and y is difBcult to measure due to fluctuations; we did
not study this regime in detail. (Here, a constant B-
coverage ensemble may be more appropriate. ) In all
these simulations, the steady states were found to be in-
dependent of the initial state.

The curve in Fig. 1 is effectively the metastability loop
for this system, and the point (y„8,) is effectively the
spinodal point. (Note that there is also a spinodal point
for 8~1.) This behavior is very similar to that found
from mean-field theory by Dickman [5], who found (using
a two-site approximation) a transition at y =0.5241 and
spinodal point at y =0.5610. The loop found here is less
pronounced than that in the mean-field theory.

We note that the shape of the curve y(8) is dependent
upon the system size for 8 & 6, . This is because when
the system contains a large A cluster, the value of y is
determined by the size or curvature of that cluster rather
than on the value of 6. As the size of the lattice is in-
creased, the value of 6 which produces a single large
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cluster of a given size decreases. Thus, on larger lattices,
the states for 8&6, and y &y2 will be moved lower
down in Fig. 1, and likewise, the steady states with
8 & 6, andy (y2 will move upward in that figure.

The relation between the two kinetic ensembles can be
seen by the following argument. Consider two large sys-
tems, one running the constant-8 algorithm until a
steady state, characterized by a value y, is reached, and
the other using the constant-y algorithm with y =y. The
lattice in the constant-y system is being randomly bom-
barded with A molecules with probability y and B mole-
cules with probability 1 —y, with no temporal correlation

FIG. 2. A snapshot of the catalyst surface in the constant-8
ensemble, with fixed 8=0.20. Here and in Fig. 3 the black dots
represent lattice sites occupied by A, while both adsorbed B
molecules and vacant lattice sites are white.
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FIG. 1. Enlarged section of the phase diagram of the
constant-0 simulation showing the first-order transition at
y =y2, generated from simulations on a 256X256 lattice. Each
dot represents a data point, and s marks the spinodal point.
Portions of the curve that were not studied in detail are
represented by dotted lines. As described in the text, the shape
of the metastabihty loop for 8)8, depends on the size of the
system used: for larger systems, the points E and 6 approach
the points F and H, respectively, along lines of constant y.

FIG. 3. A snapshot of a 1024X 1024 lattice in the constant-8
ensemble with fixed 8=0.5 in steady state, used to determine
y2. Periodic boundary conditions were used in both directions.
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between these two events. The lattice in the constant-6
system is also being bombarded with A and 8 molecules
with the same probabilities (since y =y), but these events
are correlated over short times due to the nature of the
constant-6 algorithm. However, if one considers just a
small patch of the constant-8 surface, then this correla-
tion between successive adsorption attempts will not be
seen, since it is unlikely that successive adsorption at-
tempts will take place in same small region of the lattice.
The A and B2 molecules will therefore arrive at the patch
essentially randomly. Thus we conclude that the ad-
sorbed rnolecules on the patch of the constant-6 system
will assume a steady state of the corresponding constant-

y system.
When 8&8, and y &y, (no large clusters), the argu-

ment given above predicts that the function y(8) of the
constant-8 ensemble should be equivalent to 8(y) of the
constant-y ensemble, as verified in our simulations. But
when 6)O„alarge A cluster forms on the lattice, and
there are three regions where we could choose to locate
the small patch: (1) wholly in the reactive phase, (2)
wholly in the adsorbed A cluster, and (3) on the bound-
ary between the adsorbed A cluster and the reactive
phase. All three of these locations must correspond to
steady states (stable or metastable) in the constant-y algo-
rithm.

To elucidate this point, we ran additional simulations
using the conventional constant-y algorithm at fixed
y=0. 526, using both 256X256 and 512X512 lattices.
This value of y is above the transition point yz, but below
the spinodal point y, . First, simulations on an initially
vacant lattice were carried out for over 100000 Monte
Carlo steps (MCS) each. Here, the system always at-
tained the low-8 (reactive) steady state, and the largest A

clusters that appeared were less than 30 sites across.
Next we chose as the initial state a circular island of A,
formed by setting all sites within a distance r of the
center of the lattice equal to A, and leaving the other
sites initially blank. When r (60, the initial A island al-
ways shrank and disappeared within 5000—20000 MCS,
with the system ending up in the low-6„steady state.
However, for r )70, the clusters always grew and the sys-
tem saturated with A within 100000—150000 MCS. For
60 & r & 70, the system sometimes went to the A-

saturated state and sometimes went to the reactive steady
state. A total of 25 runs were carried out.

Thus we see all three steady states available to the
constant-y system: the reactive steady state with no large
clusters, a metastable state in which a large cluster exists,
and a steady (poisoned) state with all A. Which state the
system goes to depends primarily upon the initial condi-
tions. If the system is initially blank or contains only
small A clusters, then the system will almost always go to
a reactive steady state, which, for this value of y, is meta-
stable (but apparently with a very long lifetime). If the
system contains a critical cluster, then it is in an unstable
steady state, and small fluctuations will drive it to one of
the two stable steady states. Finally, if the system con-
tains a cluster larger than the critical size, it will almost
always go to the poisoned state. These three steady states
correspond to the three values of 6 in the phase diagram

in Fig. 1 corresponding toy =0.526.
The small patch argument implies that the large A

cluster which forms in the constant-6 ensemble for a
given 6&6, is a typical unstable critical cluster in the
constant-y ensemble with y =y. To show this, we ran the
constant-8 ensemble on a 256X256 lattice with 6=0.20,
and at steady state the value y=0. 52612 was found.
(The cluster formed is shown in Fig. 2). This surface was
then used as an initial condition for a series of constant-y
simulations with y =y =0.526 12, and indeed, the system
was found to saturate with A or go to the reactive steady
state with equal probability.

The existence of metastability in the system explains
why different investigators who used a blank initial lattice
found different values for y2. Meakin and Scalapino [3]
found the value 0.5277+0.0002 using a 512 X 512 lattice,
while Yaldram and Sadiq [6] found y2=0. 5255+0.0005
using a lattice 40X40. This discrepancy can be attribut-
ed to the different system sizes, which determined how
close each simulation could approach the spinodal point
before a cluster of critical size nucleated, triggering the
transition to the A-poisoned state. The lattice in Meakin
and Scalapino's simulations was large enough so that
they essentially found the spinodal point (although at a
slightly higher value than found here), while Yaldram
and Sadiq's lattice was sufficiently small so that the
boundary could help the nucleation process. Because the
latter authors happen to choose a lattice size not much
larger than a typical cluster at the transition point, they
found a value of y2 consistent with the actual transition
point.

In order to determine the true transition point, an in-
terface between the phases must exist. This interface
should be roughly flat or without net curvature, since y2
is effectively the value at which an infinite A cluster
grows or shrinks with equal probability. Such a flat inter-
face can be formed in the constant-8 ensemble by fixing
6 near 0.5, so that the phase boundary wraps around the
system (because of periodic boundary conditions). We
thus carried out a simulation of the constant-6 algorithm
on a 1024X1024 lattice, with 8=0.5. To speed up the
warm-up, we initially placed a 1024X 512 rectangle of A

on the lattice, leaving the other sites vacant. The value of
y appeared to reach steady state (as shown in Fig. 3) after
the system was allowed to run for 10000 MCS. Running
the simulation for an additional 205000 MCS, we found

y =yz =0.525 60+0.00001, with the error bars represent-

ing the measured sample error. This value is consistent
with, but significantly more precise than, previous deter-
minations in which nucleation was not a problem [1,7].
Note that, while we chose to run this simulation at
8=0.5, any value of 8 in the range 0.4—0.6 (on this size
lattice) could have been used, as long as an A cluster
formed that wrapped around the system to form a flat in-

terface between phases.
Finally, the constant-6 ensemble is also very useful for

studying the ZGB model with spontaneous desorption of
species A, which has been studied previously using the
constant-y ensemble [9,10]. Running the constant-6 al-

gorithm with various values of the desorption probability
Pd„(the rate of desorption divided by the combined rate
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FIG. 4. Enlarged section of the phase diagram of the
constant-8 model with spontaneous A desorption on a
512X512 lattice. The curves represent, from left to right,
Pd„=0,0.03, 0.05, 0.07, and 0.10. Each dot represents the re-
sults of a separate simulation. When Pd„&P, =0.04, slight me-

tastability loops were observed, but are not visible in this plot.

of A and 8 adsorption attempts), we find the behavior
shown in Fig. 4. When Pd„is small, the system still ex-
hibits phase separation, one phase being high in 8, and
the other low. When Pd„is greater than a critical value
of =0.04, the first-order phase transition does not occur.
Our results agree with those of a recent study of Tome
and Dickman [8], who also find a critical value of Pd„
slightly above 0.04. We note that in experimental obser-
vations of the oxidation of CO, a smoothed-out first-order
transition, similar to what is seen here with a nonzero
P~„,is observed [10]. Furthermore, it has been shown
that the existence of a rapidly decreasing reaction rate
with increasing y about this transition point —as seen
here —is essential for the occurrence of kinetic self-
sustained oscillations [11].
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