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We study the distribution of zeros of the Husimi functions for the spin-boson model, following an ap-
proach introduced by Leboeuf and Voros. The interest lies in the model's double feature of possessing
both a classical integrable to chaotic transition and an unbounded four-dimensional phase space. The
latter gives rise to several new questions regarding the Husimi zeros which are discussed and partially
answered. Some significant results occur in spite of the fact that we treat the case of spin 2.

PACS number(s): 05.45.+b, 03.65.Sq, 32.80.—t

I. INTRODUCTION AND SUMMARY

The spin-boson model is a very popular model in phys-
ics, with a large variety of applications (see, for example,
[1—3] and references therein). Recently, there arose some
renewed interest connected with the model's chaotic clas-
sical dynamics [1,3]. In particular, it has a very rich
structure from the point of view of level-statistics transi-
tions [4] and Husimi distributions [5,6]. In fact, from the
correspondence principle we expect that in the semiclas-
sical limit the quantum behavior reflects somehow the na-
ture of the classical dynamics.

In this paper we have also studied Husimi distributions
of eigenstates of the spin-boson model but the emphasis is
on different aspects than the ones treated before, akin to
the theory developed in [7]. There it was found that in
the case of quantum systems having a two-dimensional
compact phase space an arbitrary state of Hilbert space is
completely determined by the zeros of its Husimi func-
tion. Moreover, for eigenstates, the phase-space distribu-
tion of zeros reflects, in the semiclassical limit, the under-
lying classical dynamics in a precise way: the distribution
is one dimensional (i.e., concentration of zeros along
curves) for integrable systems whereas it becomes highly
spread out (diffusive behavior) for chaotic systems.

The two main features distinguishing the spin-boson
model from those treated in [7] (shared by other interest-
ing models with chaotic dynamics [8,9]) are (i) the un-
bounded phase space and (ii) the dimension of that space,
which is now four instead of two. It is therefore of con-
ceptual interest to know whether the aforementioned pic-
ture suggested in [7] remains valid for the spin-boson
model. One simple way to overcome the second difhculty
is through the study of quantum Poincare sections, which
are introduced in Sec. II. In what concerns the first
point, two additional questions arise naturally: (a) is the
number of zeros finite or infinite, and, more importantly,
{b) do these zeros still determine the wave function?

Problems (a) and (b) are difficult and one cannot hope for
a general solution, but in this paper we provide partial
answers to these questions in the special case of the spin-
boson model. In its most general form, we describe the
spin-boson model by the Hamiltonian

H=ficoa a+ S, +&A'/2 —[(S+a+S a )
COp

s 2s

+e(S+a +S a }]

HsB =stoa a+ S, +&A/2 —S (a+aCOp

s s
{1.2)

is obtained by setting e= 1 in (1.1}. On the other hand,
when the boson is interpreted as one mode of the elec-
tromagnetic field interacting with a (2s+1)-level atom,

on the tensor product C '+'89; where at, a are standard
creation and annihilation operators corresponding to one
boson with [a,a ]=1 and acting on Fock space V. S„,
S, and S, are dimensionless spin operators correspond-
ing to a spin quantum number s and satisfying SU(2)
commutation relations [S„S]=iS, (with cyclic permu-
tations). Moreover, S+ are defined as usual by
S+ =S +iS . The frequencies co and cop are real positive
constants and A, is the coupling constant between the spin
and the boson. We have introduced in the coupling term
an additional parameter e which gives a generalized ver-
sion of the model. In the nonrelativistic theory of in-
teraction between atoms and the cutoff radiation field the
well-known spin-boson Hamiltonian [10]
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the term S+a+S a is the resonant one, and hence e=O
in (1.1) corresponds to the rotating-wave approximation
of (1.2). Furthermore, if a=0 an additional quantum
constant of the motion (apart from energy conservation)
appears and the classical system corresponding to (1.1) is
integrable, while, if a=1, chaotic solutions to the dynam-
ics exist [10]. We therefore make E into a variable param-
eter ranging from 0 to 1 and we keep e as a measure of
the deviation of the system from classical integrability.
Besides this regular-to-chaotic transition in e, other pos-
sible transitions of the model are of interest. Firstly, vari-
ation of fi in (1.1) permits interpolation between classical
and quantum boson regimes. Secondly, we may also con-
sider a transition between quantum and classical spin re-
gimes by changing the spin quantum number s. Howev-
er, the full classical limit of the model is only obtained
when R~O and s~ao simultaneously, with As=1. In
fact, (1.1) is written in a way which is adapted to this
latter limit and hence A is replaced by 1/s when multiply-
ing a (dimensionless) spin operator.

The main purpose of this paper is to analyze the distri-
bution of the zeros of the Husimi function for the eigen-
states of (1.1}and to study how they evolve when we vary
the parameter e in the above-mentioned regular-to-
chaotic transition. The changes on the distribution of
zeros can be studied in the different semiclassical regimes
already mentioned. Unfortunately, for technical reasons
explained later on, we are forced to restrict ourselves to
the special case of s =

—,
' in our treatment of the zeros in

Secs. III and IV, which represents the extreme quantum
limit for the spin. Nevertheless, we keep for the moment
(1.1) with an arbitrary s in order to motivate the discus-
sion in Sec. II, which is of wider scope and introduces
concepts of general applicability.

The organization of the paper is as follows. In Sec. II
we discuss the appropriate coherent-state representation
of this model in order to study the eigenfunctions of
Hamiltonian (1.1) in phase space. This leads us to intro-
duce the Glauber and spin coherent states [11,12] and to
find closed-form expressions for the Husimi functions as-
sociated with the eigenstates. The quantum Poincare sec-
tions are then defined.

The spin components
~ tg ) (m = —s, —s+ 1, . . . , s) of

an eigenstate of H corresponding to energy E may
be expanded in the harmonic-oscillator basis

~
n )

(n =0, 1,2, . . . ). The large-n behavior of the coefficients
of ~g ) in this expansion determines the order [13]of the
(entire analytic) wave function P (z) in the (Glauber)
coherent-state representation. This large-n behavior is a
crucial point when trying to elucidate items (a} and (b) al-
ready mentioned; these topics are discussed in Sec. III.
There we show that, at least for s= —,

' and for special
values of the parameter e and the energy E, the zeros of
the Husimi function associated to ~/+i&2) completely
determine the eigenstate. The limitations and shortcom-
ings of this result are further discussed there.

Finally, Sec. IV presents numerical computations of
the distribution of zeros of the Husimi functions for A

small and different values of e, with a careful analysis of
the spurious zeros associated to the process of truncation
of the entire analytic function pi&2(z).

II. REDUCED FRAMEWORK

For clarity we first consider the general case (1.1}of a
spin-s particle interacting with a boson field. We denote
by ~n ) and ~m ) the eigenstates of ata and S„respective-
ly, labeled by the number of bosons n =0, . . . , ~ and
the projection of the spin over the z axis m
= —s, —s+1, . . . , s. Then the boson and spin coherent
states [11, 12] are defined as

/zb ) =e"' /0), (2.1)

z, S+
zs =e s (2.2)

1/2
2$

g(zb, z, )= g g — + zbz,
'+

n =am=-s
where (b) denotes binomial coefficients. If ~p) is an
eigenstate of (1.1), the coefficients g„=( nm

~ f),
~
nm ):—

~
n ) ~

m ) are obtained by diagonalizing that
Hamiltonian. The phase space for the boson is a two-
dimensional plane spanned by the variables (q,p), while
for the spin it is a two-dimensional sphere spanned by the
spherical angles (8,y). These coordinates are related to
zb andz, via

1
zb = —(q ip), —

&zx
(2 4)

(2.3)

0
z = cot—e''P .S (2.5)

Equation (2.5) corresponds to a stereographic projection
of the sphere onto the complex z, plane through the
north pole. The variables (cos8, p) are canonically conju-
gated, cos8 being the classical continuous version of the
normalized discrete quantum projection over the z axis,
cos8- m /s.

The normalized squared modulus of g(zb, z, ) associates
with each eigenstate of the system a quasiprobability dis-
tribution function in phase space, usually called the
Husimi function [14—16]. In our case, it is given by

W&(zb, z, ) =
~

(1+~z ~2)
—2s b

2s
X

' 1/2

n s+m
zb zs

which, using (2.5), can be written as
(2.6)

where ~0)—:~n =0) and
~

—s ) = ~m = —s ) are, respec-
tively, the ground states of the bosonic and spin degrees
of freedom. zb and z, are two complex variables labeling
the coherent states, while the bar indicates complex
conjugation. These states are not normalized:
(zb~zb)=exp(~zb~ ), (z, ~z, )=(1+~z,

~
) '. Using Eqs.

(2.1) and (2.2) the coherent-state representation
g(zb, z, )=(zbz, ~1(), ~zbz, ) =~zb) ~z, ), of an arbitrary
quantum state ~g) is an analytic function of the two com-
plex variables zb and z, :



CIBILS, CUCHE, LEBOEUF, AND WRESZINSKI

2 s 2$
W~(zb z ) e

n=pm= —s

0
cos

2

s+m
t9sin—
2

s —m

imp Wnm ne —zb (2.7)

This is a positive function defined in the four-dimensional
phase space. Just as in the classical counterpart, we can
define Poincare sections of it. Let us consider, for exam-
ple, a Poincare surface of section defined by cos0
=const=cos0p, i.e., we fix the spin projection onto the z
axis. Classically, this corresponds to plotting a point in

l

2'R„,e (p, q) = dip W&(p, q, cosBo, qi)

I

the bosonic phase space (q,p) each time the particle
crosses the parallel defined by cosOp on the sphere, the
angle y being fixed by energy conservation
qi=q2(E, p, q, cosBO). Since in the semiclassical limit 8

&

is, for an eigenstate, sharply peaked on the energy shell

[16],an equivalent definition is [17]

2(s +m)
s 2$ p

s+mm= —s

' 2(s —m)
8p

sin
2

Wnmb
Zb.=o &n!

(2.8)

(zb) g zi, &n!
(2.9)

appearing in (2.8) is just the coherent-state (or Bargmann)
representation for the bosonic degree of freedom comput-
ed for the mth component of the spin, and

This Poincare section was already used in order to show
the emergence of classical structures in the eigenfunc-
tions of two-dimensional chaotic systems [16]. The quan-
tity

l

multiplication by a nonvanishing entire function. Obvi-
ously, truncation of the basis (which is always needed in
practical computations) faces us with the problem of ap-
proximating an entire function by a finite polynomial.
We will come back to these problems in Sec. III. Let us
finally mention that, by construction, the function
R (p, q ) will have the same zeros as P (zb ).

We now consider the special case s =
—,', which is used

in our treatment of the zeros in Secs. III and IV. Hamil-
tonian (1.1) becomes in this case

—
lzb I'

R (p, q)=e '
IP (zb)I, m= —s, . . . , s (2.10)

H=ltoa a+2cooS,

+ A'/ 2A, [(S +a +S a )+e(S+a +S a)] .

its phase-space quasiprobability distribution function.
We call R (p, q) the reduced quantum Poincare section of
8'&(z bz, ) over the plane fixed by the discrete index m.
There are obviously 2s+1 of them.

The full section R„,e (p, q) is a sum over all the re-
0

duced sections (2.10) with a binomial weight

The conserved parity operator [1] is given by

P =25,T,
with

(2.11)

(2.12)

2$
Is+m(1 I )s

—m

s+m

Op cosdp+ 1

Ip =cos
2 2

In the classical limit s~ ~, the binomial distribution be-

comes highly peaked around mp/$=2Ip —1=cos8p, so
that only the spin component mp significantly contributes
to the sum (2.8), and R„,e (P, q ) and R (p, q) essentially

0 0

coincide.
In any case, it is clear that the set of 2s+1 functions

(2.9) for m = —s, . . . , s contains full information about
the quantum state. For systems with a compact phase
space, the analytic function (2.9) is polynomial-like [7]
and, by factorization, completely determined by a finite
number of zeros. In our case, due to the unbounded na-
ture of the bosonic phase space, (2.9) is an entire function
and the question is whether or not it can be completely
characterized just by its zeros, and if that number is finite
or infinite. These complications arise from the fact that
an entire function is determined by its zeros only up to

n even

+ g Pn —1/2ln & I

—
—,
'

n odd

(2.13)

where S, I+—,
' ) =+—,

' I+—,
' ). We now restrict ourselves to a

reduced section (2.10), which we take to be m =+—,
'

("spin up"). Hence, denoting by Ig, /2) the "spin-up"
component of the eigenstate (2.13), one has

I pl/2)
n even

(2.14)

where we wrote c„ for g„,/2. This wave function may be

written in the Bargmann representation as

a~aT=( —1)' '.
Then, the eigenstate Ig ) of H corresponding to eigen-
value E of (for definiteness) positive parity (i.e., eigenval-

ue + 1 of the operator P) may be written as

1/2

I1/J )= y y q„ In)Im)
n=P m = —1/2

X 4., i/2In &@ I-,
'

&
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Cn
n

Pl/2(z} ~ z
l el/2 & rf

n even

(2.15} A+. n + 1V„+&

= —
A,e&n c„& —&2/A(Piton +coo

—E )2'„

for n even, (3.1a)
where we set zb=z in (2.9). From (2.10) the reduced
quantum Poincare section is thus Ae&n + lc„+&

= A—~nd„& &—2/fi(Arun c—oo E—)c„
—I~I'

R&/2( } ltd/2(z)l = W~ (z) .
1/2

(2.16) for n odd, (3.1b)

U=(S, +i'�)+(S, iS —)T . (2.17)

It may be proved [3,18] that H, given by (2.11), is unitari-
ly equivalent through U to a much simpler Hamiltonian
H involving only the operators S„a,and a:

H= UHU (2.18)

with

H =Rema a+2cooS, T

+&A/2A, (a+a )+(1 e)S,(a——a )T1+E

(2.19)

This Hamiltonian is of tridiagonal type and therefore
easily numerically diagonalizable. Clearly, from (2.18)

(2.20)

is an eigenstate of H corresponding to the same eigenval-
ueE:

ale&=El@&,
and the parity operator (2.12) becomes

P=UPU '=2S, .

(2.21)

Our choice of section (I =
—,
'

) corresponds to restricting
ourselves to the eigenspace associated to the eigenvalue
+ 1 of P. Hence

l P & may be written as

l@ &
= g c„ln &Nil-,' &,

n=0
(2.22)

As mentioned before, this is precisely the Husimi func-
tion associated to the "spin-up" component (2.14). We
have numerically verified that the distribution of zeros of
W,~ (z) does not depend qualitatively, either on the sec-

+1/2
tion (m =+—,') or on the parity (P =+1). We shall there-

fore henceforth consider only the "spin-up" case with
positive parity. In order to search for eigenvalues and
eigenvectors of Hamiltonian (2.11) it is convenient to in-
troduce the following unitary operator on C P:

with

c = —/2/A' —(co E—)c1
1 0 0 (3.1c)

M(r ) =0(e" )

when r~no (see [13]). When the order is finite, it de-
pends on the asymptotic behavior of the coefficients [see
(2.15)]

cn
d. —=

&n!

in a simple way:

(3.2)

The c„'s depend rather sensitively on the eigenvalue E,
and it was seen that their determination from the above
recursion relations (with E given by numerical diagonali-
zation of H) was plagued by numerical instabilities,
which led to a divergence of the c„'s for large n. On the
other hand, because of the &n! in the denominator in
(2.15), it is the first coefficients c„(i.e., for small n) which
are important, but the determination of these by numeri-
cal diagonalization of (2.19) was seen to be unreliable.
We therefore found the c„'s for small n by the recursion
(3.1), and for large n by numerical diagonalization of
(2.19). Equations (3.1a)—(3.1c) show that all coefficients
are uniquely determined when Vo is given. The first
coefficient co was chosen in such a way that the two
branches (for large and small n} join at a certain point.
The resulting curve turned out to be smooth (see Appen-
dix), giving us confidence in the procedure. Unfortunate-
ly, this method does not work for higher spin values, be-
cause no simple recursion relation is available in this case
and we have not found a substitute.

In the rest of this section, we will address problems (a)
and (b) mentioned in the Introduction. Since g&/2(z) is
not simply a polynomial of finite degree, these questions
require a detailed discussion.

The function f, /2(z ), defined by (2.15), is an entire ana-
lytic function of z. Let M(r) denote the maximum
modulus of Pf/2(z) for lzl =r. The order of fez(z} is a
number p such that, for every positive 5 but for no nega-
tive 5

where the coefficients are c„=1(„,/2 for n even and

c„=f„,/2 for n odd.
n inn

ln(1/ld„ l
)

(3.3)

III. THE COEFFICIENTS:
RECURSION RELATIONS AND ORDER OF gf/2(z)

The coefficients c„may be found from (2.13), (2.20),
and (2.22) if we determine the c„'s. It follows readily
from (2.19), (2.21), and (2.22) that the c„'s satisfy the fol-
lowing recursion relations:

How does the order relate to problems (a) and (b) of the
Introduction? The basic ingredient is Hadamard's
theorem on the factorization of entire functions: iff(z) is
an entire function of order p with a k-fold zero at the ori-
gin, we have

f(z ) =z "e~"P(z),
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where Q(z) is a polynomial of degree q &p and P(z) is a
canonical product [13] built from the zeros (other than
z =0) of f(z ). A corollary is that, if p & 1, Q(z ) is a con-
stant and therefore f(z) is determined by its zeros. This
concerns problem (b). Problem (a) has a clear-cut answer
at least in one special case: an entire function of nonin-
tegral order has an infinite number of zeros. A well-
known counterexample for integral order is provided by
the exponential function f(z ) =exp(z ), which has order

p = 1, and no zero at all. However, the function
coshz = [exp(z ) +exp( —z ) ] /2, which has the same in-
tegral order p=1, has an infinite number of zeros located
along the imaginary axis, illustrating the fact that the sit-
uation for integral order is much more delicate.

It follows from (3.3) that if the c„'s are such that

c„=O((n!) ~} (3.4)

when n )No for some fixed but large No, then the order
of 1//1/2(z ) is

(3.5)

0(p&1 . (3.6)

This particular Husimi function is studied in our treat-

0.0 I I

+8++
x&O ' + 0+++

0 +++ 0 ++
+ 0 + ++

0 + +
0 + + +

0 + ++
I + + ++

+ 0 +
0

0
0

+ a

+ a
0

0
+ 0

+ 0
+

+ 0
+ o+ 0

+ 0
+

-2.0

ln ~
~Np

-4.0

-6.0

-8.0

Np

Figure 1 shows the logarithmic plot of ~c„/c~ ~
as a func-

0

tion of n Xo, for the special case of an eigenstate of
Hamiltonian (2.11) for one set of parameters in the regu-
lar region ( e=0.01). The curves representing
in[(No!/n!)' ] and ln[(Xo!/n!) ] are shown for com-
parison. Clearly in this case (3.4) holds with —,

' &P& oo,

which implies, by (3.5),

~PE (z) & e!z l2 (3.7)

Equation (3.7) is indeed true, and follows from (2.15) and
the Schwartz inequality, together with the normalization
condition

y /c„/'=1 .
n=0

However, Eq. (3.7) gives just an upper bound, which im-

plies that p ~ 2. In fact, the case

f(z)= g
o (n!)

is standard, and corresponds to order p= 1/a [the same
happens if f(z)= g„" oc„z", with c„=O[(n!) ] see

[20], example 1, p. 255]. If —,
' & a & oo, (3.7) remains true

but O~p ~2.

ment of zeros in Sec. IV. From (3.6) and the previously
cited theorems, we may conclude that, in this special
case, the zeros of W&s (z) determine the function

1/2

itj»2(z), and that there is an infinity of zeros. There are,
however, several limitations to this result. The asymptot-
ic behavior (3.4} depends sensitively on E, so that it is not
clear whether in each region of parameters (A, , e, fi, E)—
integrable or chaotic —a representative ~1(»2) may be
found, such that the zeros of W~E (z ) determine g»2(z).

1/2

In fact, for one set of parameters in the chaotic region
(@=1, the one where the distribution of zeros was also
found in Sec. IV), a similar plot for the coefficients of the
corresponding eigenstate led to inconclusive results, i.e.,
it was not possible to assert that p(1 conclusively, be-
cause there the range of n values was too small.

What conclusions may be drawn from these remarks?
In the case of unbounded phase space, the zeros of
W F. (z) may determine P&&z(z), and the set of zeros of

1/2

W s (z) may be infinite. It is not clear "how often" this
1/2

occurs in physical models with unbounded phase space
(i.e., whether this is an exception, or the rule, or neither),
but there is, of course, not a priori reason for any of these
properties to hold [19]. However, even if the zeros do not
completely determine ff&2(z) in some cases (e.g. , for the
case shown in Sec. IV which corresponds to the classical-
ly chaotic region), it is interesting to remark that a transi-
tion from a one-dimensional alignment to a partially
diffusive behavior occurs, although then the picture con-
veyed by the zeros is rougher with regard to the form of
the Husimi function.

We end this section with the following remark. It is
often wrongly asserted that the order of 1(/&2(z) is 2, be-

cause

1.9 2.0 2.1 2.2 2.3
x 10'

IV. SOME NUMERICAL RESULTS

FIG. 1. Large-n behavior of the coefficients c„of
~ i(, ~z) with

E= —2.0485X10 and a=0.01, X=1.5, %=0.01, co=coo=1 in

(2.11). The plot shows ln~c„/cv ~
vs n for n ~No (=172).

0

The + plots show in[(No! In! )~], n ~ No, for y = —' (upper curve)

and —(lower curve).

We have studied the distribution of zeros of the
Husimi function associated with the "spin-up" com-
ponent of several eigenstates of Hamiltonian (2.11). We
get the eigenvalues of H by diagonalizing a 1200X1200
matrix and the coefficients c„ in (2.15) have been obtained
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as explained in Sec. III. Here we present two significant
results. In (2.11) we fix fi "small" (tri=0. 01 correspond-
ing to a classical boson regime), A, =1.5, co=coo= 1, and
we vary e from 0 to 1. Figure 2 shows the distribution of
zeros for the "spin-up" component of an eigenstate corre-
sponding to a classical integrable case (a=0.01) whereas
Fig. 3 corresponds to a classical chaotic case (a=1).
These two eigenstates have comparable energy E =0 (see
figure captions). Similar results for the Husimi zeros
have also been found for some other eigenstates in the
same energy range. We have verified the aforementioned
classical behavior —integrable or chaotic —in the corre-
sponding Poincare sections, which are not shown here.
In Figs. 2 and 3 a clear transition from regular (one-
dimensional) to partially diffusive behavior takes place
for the zeros. One remarks in Fig. 3 that some zeros still
concentrated along curves; this coexistence of some
diffusive zeros with others concentrated on lines is similar
to what has been observed, in the semiclassical limit, for
the distribution of roots of eigenstates of classically
mixed systems [7]. In our case, this behavior is probably
due to the fact that the spin quantum number is indeed
s =

—,
' (extreme quantum limit for the spin) and we are not

therefore in the full semiclassical regime. But since the
role of the spin is to bring about a nonlinear effective
self-interaction in the boson field, it may not be too
surprising that some classical features are still visible in
(1.1) for fi small even if s =

—,'. One might think that for a
large s these curves will disappear and that the distribu-
tion of zeros will become fully spread out. We have not
verified this conjecture which clearly requires further
study.

Moreover, we point out that the triangle located at the
origin of Fig. 2 represents 98 zeros which are all concen-

4.0

2.0

�

+44444 44~44 44~t
44

~A-~A 1L A

0.0
g44 4

-2.0
4 4 444 44 4 44 4 4

-4.0

4 0 -2.0 0.0 2.0 4.0

FIG. 3. Phase-space distribution of zeros in the boson plane
of P&zz(z) (E=5.2288X10 ), classical chaotic regime: @=1,
A, = 1.5, %=0.01, co =coo= 1 in (2.11).

trated in a little neighborhood near the origin. This is re-
lated to the fact that we are not far from the a=0 case for
which (2.11) is analytically diagonalizable and where it is
easy to see that each 1(&&z(z) has only a multiple zero at
the origin [only one eigenstate

~
n ) contributes to the sum

(2.14) and so the Husimi function has a monomial form].
For increasing values of e this structure breaks down and
the zeros progressively leave the origin. This seems to
occur in Figs. 2 and 3: for @=0.01 &0 the zeros are close
to the origin (some of them remain localized very near
the center) whereas for higher values of E ( = 1), the state
has its roots spread out farther on the phase space.

The numerical method used to find these distributions
of zeros is based on the well-known result of complex
analysis relating the number of zeros of an analytic func-
tion on a certain domain with the variation of its phase
on the boundary. By dividing the phase space into small-
er cells, one can determine the position of the zeros very
precisely. We have checked their stability with respect to
the numerical precision of the coefficients and with
respect to the size of the diagonalized matrix. In an Ap-
pendix we discuss also how the "spurious zeros" intro-
duced by truncation of the power series in (2.15) were
handled.
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APPENDIX

In this appendix we consider the effect of spurious
zeros introduced by the process of truncation of the
power series representing the function ff&2(z) [given by
(2.15)] at some value n =N, thereby replacing gf&2(z ) by

g Ic„I'&~,
n=0

it is clear that g&&2(z ) (no truncation) is an entire analytic
function, and that

i2(z)~g, r2(z) (A2)

N

p, ', ( )—= g.=o &n!

With

(A 1)
as X~ oo uniformly in compact subsets of C. Hence, by
Hurwitz theorem (a corollary of Rouche's theorem [20]),
zp is a zero of P, &z(z ) if, and only if, it is a limit point of
the set of zeros of the functions ffg(z) (points which are
zeros for an infinity of values of N being counted as limit
points). Because of (A2), when N ~ ao one has
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FIG. 4. (a) Logarithmic plot of the coefficients ~c„~ as a func-

tion of n (truncated at N, =195) for the state !1Pfq2) of Fig. &

(regular case). The logarithm is base 10. (b) Corresponding set

of spurious zeros of 1(,)z '(z), see (Al). The stable zeros shown

in Fig. 2 are not drawn here because of scale reasons.
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FIG. 5. The same as Figs. 4(a) and 4(b) but for a truncation
~alue N2 =223.
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1 [4fi'z( )] 1 [4&y2(z)]'dz~ . dz,
2771

& g2 z 2m z

where C is the boundary of a fixed subset of C. Hence
the spurious zeros [i.e., zeros of g, zz(z) which do not
tend to zeros of P, &2(z)] must leave any finite region, as
Pf —+ oo.

To test for these spurious zeros, we compare two trun-
cations [two different N's in (Al)] for the states of Figs. 2
and 3. Notice that for these different truncations we
determine always the coeScients c„ in the same way,
keeping, in particular, unchanged the size of the diago-

nalized matrix. We first consider the case of Fig. 2
(a=0.01). Figures 4(a) and 5(a) are logarithmic plots
showing the coefficients lc„ l

as a function of n, for n ~ N,
and n ~N2 (N, (N2), respectively. Figures 4(b) and 5(b)
show the corresponding sets of spurious zeros (not shown
in Fig. 2): notice that their location has varied (the varia-
tion in number is of course normal). In contrast, the po-
sition of those zeros shown in Fig. 2 remained rigorously
stable under this process of truncation. Similarly, Figs.
6(a) and 7(a) show the logarithmic plots of the coefficients
lc„ l

for two truncations N', and N2 in the case of Fig. 3
(a= 1). In Figs. 6(b) and 7(b) we show the corresponding
distributions of zeros. Again, we see that the location of
some zeros has changed and Fig. 3 displays only those
which remained unchanged under this process.
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FIG. 6. (a) Logarithmic plot of the coefficients
l c„ l as a func-

tion of n (truncated at Ã', =527) for the state lg&&2) of Fig. 3
(chaotic case). The logarithmic is base 10. (b) Corresponding

distribution of zeros of g, ~z (z), see (Al).
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FIG. 7. The same as Figs. 6(a) and 6(b) but for a truncation
value N2 =571.
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As indicated in Sec. III, the coefficients shown in Figs.
4(a) and 5(a) and 6(a) and 7(a) have been found by the re-
cursion relation (3.1) for small n (i.e., in the increasing
part of the plot) and by usual diagonalization routines for

large n (i.e., in the other part of the plot). The two
branches join at a certain point, and note that the plots of
the coefficients c„as a function of n have the smooth be-
havior referred to in Sec. III.
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