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Molecular-dynamics @nd Monte Carlo simulations of fluids and of crystals are typically performed us-

ing periodic boundary conditions and small numbers of particles, i.e., small compared with Avogadro s

number. For fluids, if the dimensions of the simulated system are large enough compared with the corre-
lation length of the material, the simulation can provide intensive thermodynamic properties that are
very close to those for the thermodynamic limit of large system size. For crystals, however, the periodic
boundary conditions and the crystal structure impose a constraint that makes it impossible, in practice,
for the system to develop an equilibrium concentration of vacancies. The effect of this constraint must
be taken into account when inferring thermodynamic properties from the results of computer simula-

tions of crystals. We develop the thermodynamic and statistical thermodynamic theory of a crystal sub-

ject to such a constraint. The results include a set of stability conditions that must be satisfied and a cri-
terion for equilibrium. We also describe a method for calculating the equilibrium concentration of va-

cancies in a crystal from computer simulations.

PACS number(s): 05.20.Gg, 05.70.—a, 61.70.Bv

I. INTRODUCTION

Point defects in crystalline solids, such as vacancies
and interstitials, have long been recognized as having an
important influence on the mechanical, elastic, and trans-
port processes of materials. When the material is in ther-
modynamic equilibrium, the concentration of such de-
fects can in principle be calculated using the methods of
equilibrium statistical thermodynamics. For example,
the elementary theory of the equilibrium concentration of
Schottky and Frenkel defects in a crystal is discussed in
standard textbooks [1,2]. There is ample reason to be-
lieve that a crystal in thermodynamic equilibrium con-
tains defects such as vacancies and interstitials and that
the concentrations of vacancies and interstitials are not
necessarily equal. A modern reexamination of the theory
of point defects in crystals is timely because computer
simulation studies of materials have become such an im-
portant method for understanding the properties of ma-
terials and because there are many hopeful attempts to
develop computer simulations into a predictive tool for
real materials.

It would be especially worthwhile to be able to use
computer simulations to study the melting of solids and
solid-liquid phase equilibria. More generally, it would be
worthwhile to be able to predict the phase diagram of a
material, including crystalline phases, by computer simu-
lations. One of the first triumphs of the molecular-
dynamics method was the observation of fluid-solid phase
transitions in the hard-disk and hard-sphere systems [3].
There have been many subsequent studies (too numerous
to list in detail) of phase transitions involving solids.
Many of them were inspired by the method of Parrinello

and Rahman [4] for studying solid-solid phase transitions
between phases of different crystal symmetry. The calcu-
lation of equilibrium phase diagrams requires the calcula-
tion of free energies of crystals. The method of Frenkel
and Ladd [5] provides an approach to such calculations
that is widely applicable. The Gibbs ensemble method of
Panagiotopoulos [6] has been very successful in studying
Quid-fiuid equilibrium, and it might be hoped that the
same or a similar method might be applied to Quid-solid
or solid-solid equilibrium.

The main points of this paper are the following.
(1) The use of periodic boundary conditions in the

computer simulation of a solid will impose a constraint
on the simulated system. The constraint referred to here
is that in a typical computer simulation of a stable solid,
the number of lattice sites is a conserved quantity, i.e., it
remains constant during the simulation and can neither
fluctuate nor' come to its true equilibrium value. As a re-
sult, the crystal cannot achieve its true equilibrium con-
centration of vacancies.

(2) If by some mechanism the system can rearrange and
change its number of lattice sites, it will in general be at
the cost of distortion of the shape of the unit cell or a re-
striction on the number of lattice sites that can be
achieved or a bias favoring certain numbers over others.
Thi.s distortion, restriction, or bias will influence the cal-
culations in a spurious way, and the result will be that
once again the crystal will not be able to achieve its true
equilibrium concentration of vacancies.

(3) In order for a simulation method to provide a valid
calculation of the equilibrium properties of a solid, it
must avoid the influences of the distortion, or bias; must
take the constraint into account; and must provide a way
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for calculating the true equilibrium concentration of va-
cancies.

In Sec. II, we discuss the basis for these three asser-
tions. In Sec. III we discuss the thermodynamics and sta-
bility of lattices that are subject to a constraint on the
number of lattice sites and the criteria for equilibrium of
lattices that are not subject to this constraint. In Sec. IV
we discuss the corresponding statistical thermodynamics.
In Sec. V we discuss a strategy for the use of computer
simulations to investigate the equilibrium properties of
crystals. Finally, a discussion of some of the implications
is in Sec. VI.

II. CONSTRAINTS AND BIASES
IN SIMULATIONS OF CRYSTALS

A typical simulation of a crystal starts with the atoms
or molecules in a crystalline configuration, with the crys-
tal axes aligned with the sides of the periodic cell so that
the simulated system contains an integral number of unit
cells of the crystal and hence a definite number of lattice
sites. (We are not referring to simulations in which the
crystal is formed by freezing of a liquid. Such solids are
often highly defective and not suitable for phase equilibri-
um calculations. ) As the simulation continues, the atoms
will vibrate and change their positions, but the number of
lattice sites remains the same, unless the crystal becomes
unstable and melts or otherwise transforms itself. This
assertion is basically an empirical statement that can be
attested to by anyone who has simulated stable crystals
and analyzed the structures that result.

A. Canonical and microcanonical simulations

Consider the case of simulations in which the number
of particles and the size and shape of the simulation cell
are held constant during a run. Suppose such a method is
used to simulate a crystal with equal numbers of particles
and lattice sites. As the simulation proceeds, a particle
may leave its initial lattice site to form an interstitial, but
it will leave behind a vacancy at its starting position. The
interstitial and vacancy might both move and additional
vacancy-interstitial pairs might form and recombine.
However, the number of vacancies minus the number of
interstitials, which we shall call the "net" number of va-
cancies, is fixed, in this case at the value of zero. (It is
clear that in general the net number of vacancies is equal
to the number of lattice sites minus the number of parti-
cles. ) However, as noted in the first paragraph of this pa-
per, there is no reason to believe that the equilibrium
concentration of vacancies and interstitials is the same
(i.e., that the equilibrium concentration of net vacancies
is zero). Thus, a crystal simulated in this way can never
be relied on to achieve true thermodynamic equilibrium.

The same conclusion is reached for simulations for
which the initial number of particles is not equal to the
number of lattice sites. Although such simulations can
be performed with a variety of concentrations of net va-
cancies, the simulations themselves do not allow us to
determine what the true equilibrium concentration of net
vacancies actually is.

For example, let us consider a simple situation in

which the following holds: (1) The equilibrium crystal
structure has two atoms per unit cell, (2) the equilibrium
shape of the unit cell is a cube, and (3) at thermal equilib-
rium there is a very small positive concentration of net
vacancies, for example, one vacancy per 2000 lattice sites.
Suppose the simulation cell is also a cube. If one knows
the value of the equilibrium concentration of vacancies,
then it is clear that one convenient way to simulate a bulk
crystal would be to construct a system of 2000 particles
in a cube that is ten unit cells in each dimension, remove
one particle, and then use this as the starting point for
the simulation. Even better would be to construct a sys-
tem that is eight times larger, namely, 16000 particles in
a cube that is 20 unit cells in each dimension, then re-
move eight particles, and use the resulting configuration
as the starting point of the simulation.

On the other hand, suppose we know the shape of the
unit cell and we suspect that the equilibrium concentra-
tion of vacancies is small, but we do not know the value
of the equilibrium concentration. If we simulate a system
with 16000 particles using the configuration with 8000
unit cells as a starting point, it is very likely that the sys-
tern will merely vibrate around the starting configuration.
In principle, with 16000 particles there should be 16008
lattice sites, in order to achieve the desired equilibrium
concentration of vacancies, but this would require 8004
unit cells. It is hard to imagine that the system could
rearrange to form exactly 8004 unit cells in the original
cubic simulation cell. If the specific numbers were some-
what different and if by some rearrangement a structure
with the required number of unit cells could be achieved
within the strictly cubic simulation cell, then it is exceed-
ingly likely that the shape of the unit cell would be dis-
torted away from its equilibrium cubic shape. The prop-
erties calculated during the simulation would not then be
characteristic of the undistorted crystal in the thermo-
dynamic limit.

Similarly, if we simulate a system with a starting
configuration of 8000 unit cells and 15 996 particles (i.e.,
four net vacancies), then it is difficult to imagine that the
system could rearrange to form a structure with 16004
lattice sites of 8002 unit cells, and even if it could do so,
the unit cell would be distorted.

A real macroscopic crystal, with a fixed number of
atoms, can change the number of lattice sites in the sam-
ple by, for example, having some of the atoms in the bulk
leave their lattice sites, migrate to the surface, and form
another layer of crystalline atoms at the surface. In this
way a crystal can change its number of lattice sites
without changing its number of particles. This provides a
mechanism for equilibration of the bulk concentration of
vacancies. Moreover, in a macroscopic system this need
not lead to a distortion of the shape of the unit cell be-
cause adjustments can always be made at interfaces and
boundaries and these adjustments do not affect the values
of extensive thermodynamic properties.

The simplest analogous process that can take place in a
periodic-boundary-condition computer simulation is for
the system to contract anisotropically to create a planar
void parallel to a lattice plane through the entire system,
and then to have some atoms migrate to this void and
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form an additional plane of unit cells, leaving some va-

cancies in the rest of the crystal. This will create a crys-
tal that is consistent with the periodic boundary condi-
tions and with a different number of lattice sites than was
in the initial crystal. However, this can only be accom-
plished at the cost of distorting the average shape of the
unit cell. Moreover, only certain particular numbers of
additional unit cells can be created in this way, and these
numbers may not correspond to what is needed to create
a true equilibrium concentration of vacancies.

There are more complicated processes that can take
place under periodic boundary conditions and that can
change the number of lattice sites. For example, certain
types of tilting of the unit cells relative to the orientation
of the simulation cell can increase or decrease the number
of unit cells while still generating structures that are con-
sistent with periodic boundary conditions. We have seen
the analogous process spontaneously take place in simu-
lations of two-dimensional crystals. But once again, if
such a process were to take place, it would distort the
shape of the unit cell and it might not be able to create
the appropriate equilibrium number of vacancies.

The net result of these considerations is the following:
(l) If, in a simulation of a crystal with a constant num-

ber of particles in a simulation cell of constant size and
shape, the system can change its number of lattice sites,
there is no guarantee that the true equilibrium number of
lattice sites will be achieved, even in a long simulation
run. This is so because of a combination of one or more
of the following.

(a) There might be no geometric way of packing the
correct equilibrium number of unit cells into the simula-
tion cell; (b) the resulting distortion of the unit cell might
affect the relative probability of finding the various possi-
ble numbers of lattice sites; and (c) the rate of such
structural rearrangements might be exceedingly slow,
leading to averages with large statistical uncertainties.

(2) On the other hand, if the system cannot change its
number of lattice sites, then it is also clear that true equi-
librium cannot be achieved.

B. Grand-canonical simulations

(To see this, note that the average volume of the unit cell
will in general not be the same for the two volumes simu-
lated. Thus, the two simulations sample quite different
states. ) But for a one-component system in thermo-
dynamic equilibrium, p is a unique function of p. The
resolution of this paradox is that the system in the simu-
lations do not have the true equilibrium concentration of
vacancies consistent with the specified chemical poten-
tial, even though they can change their particle numbers.
In grand-canonical simulations, changes in particle num-
bers and changes in numbers of net vacancies are always
coupled together in such a way that they cannot both
separately come to equilibrium. In fact, the number of
particles plus the number of net vacancies is constrained
to be a constant, equal to the number of lattice sites.

The above discussion of grand-canonical simulations
was based on the assumption that the number of lattice
sites remains constant during a simulation and does not
change even if the volume is changed slightly. If, on the
other hand, the system can change its number of lattice
sites, it will be at the cost of introducing distortions of
the unit cell that can influence and bias the results, as in
the previous discussion of simulations that conserve the
number of particles.

C. Other ensembles

Similar considerations can be used to show that con-
stant pressure simulation methods [7] also do not resolve
the difficulty, nor can true liquid-solid equilibrium be
achieved in the Gibbs-ensemble method [6], as it is
currently implemented for other types of phase equilibri-
um.

Finally, consider the Parrinello-Rahman [4] simulation
method that allows the dimensions and the shape of the
simulation cell to change. This is the one method that
can adapt itself to relieve any distortion that could arise
if the number of lattice sites were to change. However, it
is not clear that the proper number of lattice sites could
always be achieved in such a system subject to periodic
boundary conditions.

D. Remarks

The problems generated by the constraint are not elim-
inated by going to simulation methods that change the
number of particles, such as the grand-canonical Monte
Carlo method. A symptom of the problem can be recog-
nized in the following considerations: In a grand-
canonical Monte Carlo simulation, the volume of the sys-
tem is fixed. Let us suppose that the number of lattice
sites in fact does not change during the simulations. For
each fixed volume, we can perform the simulations for a
variety of values of p. The resulting equilibrium systems
will have a variety of different pressures. Thus, simula-
tions at one volume can generate the pressure as a func-
tion of chemical potential over some range of chemical
potentials. Now suppose the volume is changed slightly.
Again let us suppose the number of lattice sites will not
change. Simulations at this different volume will also
generate a plot of p versus p, but this plot will not neces-
sarily be the same as that generated at the first volume.

Because of the spurious effects, such as unit cell distor-
tion, that can arise if the number of lattice sites changes,
it is in fact preferable to perform simulations under con-
ditions in which the system stays in one crystalline
configuration, with the total number of lattice sites con-
stant and the unit cell undistorted in shape. Under these
conditions, the system is clearly not able to equilibrate
completely and is in effect subject to a constraint on its
number of lattice sites or net vacancies.

The problem generated by a constraint on the number
of lattice sites is in some ways analogous to the problem
that would arise if a simulation were being performed of
a chemically reactive fluid on time scales so short that the
chemical reaction could not take place. The concentra-
tions of each of the reactant and product species could
then be varied independently and the various systems
could be simulated, whereas only certain compositions
are consistent with chemical equilibrium. The correct
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way of determining the equilibrium concentrations is well
known, however, in principle. We should perform simu-
lations for a variety of concentrations, obtain the chemi-
cal potentials of each of the species as a function of com-
position, and then use the law of mass action to deter-
mine the states or compositions at which the system is in
chemical equilibrium. In other words, the thermodynam-
ics of the system subject to the constraint of no chemical
reactions can be studied and then thermodynamic reason-
ing used to see what states would be in equilibrium if the
constraint were released.

The same type of strategy can be used to attack the
problem of interest here, and this is the subject of the rest
of this paper. We investigate the thermodynamics and
statistical thermodynamics of particles in lattices con-
strained to have a fixed number of lattice sites. Then we
use thermodynamic reasoning to derive a law (analogous
to the law of mass action) that determines the true equi-
librium number of lattice sites as a function of the num-
ber of particles, the density, and the temperature. We
also derive a set of stability conditions that must be
satisfied if the crystal is to be stable against the develop-
ment of inhomogeneities in the distribution of particles
and lattice sites.

III. THERMODYNAMICS OF LATTICES

A. Unconstrained lattices

We first consider a one-component system and con-
struct its thermodynamic description using the approach
of Callen [8]. For simplicity we consider a one-
component monatomic material, but the generalization to
two-component and molecular materials is straightfor-
ward. We assume that the system is capable of achieving
total thermodynamic equilibrium, including the adjust-
ment of the concentration of net vacancies if it is a solid
and the possibility of making a phase transition to anoth-
er phase if that is required for achieving equilibrium.
The state of such a system in equilibrium is determined
by three extensive properties, the number of atoms X, the
volume V, and the internal energy E. In particular, the
entropy S is an extensive function of these extensive state
variables. In the usual way, we are led to define a
Helmholtz free energy A (N, V, T), defined as E —TS,
where T is the thermodynamic temperature. Its
differential is

dA = —S dT —p dV+pdN,

where the pressure P and chemical potential p are

BA
p BV

where a (u, T) is the Helmholtz free energy per particle.
It follows that

Ba

BU

Ba@=a(u, T) —u
BU

B. Constrained lattices

Next we consider a crystal that is constrained to have a
certain number of lattice sites M and constrained to
remain a crystal. Then the thermodynamic state is
specified by four extensive properties N, V, E, and M, and
there is an extensive entropy S,(N, V, E,M) that is a func-
tion of these state variables. (In the discussion of a con-
strained system, we are led to define quantities, like en-
tropy, that are clearly related to, but not necessarily
equal to, those for the unconstrained system when the
latter happens to adopt a crystalline state. Such variables
for the constrained system will be denoted by a subscript
c.) Similarly, we can define a Helmholtz free energy

A, (N, V, T,M) =E,(N, V, T, M) —TS,(N, V, T, M) .

Its differential is

dA, = —S,dT —p, dV+p, dX+v, dM,

where

pc=
aw,
av

vs' ' (4)

~M vz;~

The latter quantity v, plays a central role in the current
theory and might be called the chemical potential of lat-
tice sites or the chemical potential of net vacancies.

For the constrained system, it is convenient to define
the following intensive variables: U = V/M is the volume
per lattice site and n =N/M is the number of atoms per
lattice site. Then, clearly,

From these results, it is clear that p and p are functions
of the intensive variables U and T only. Moreover, it is
straightforward to use these two equations to show that,
at constant temperature,

dp=U dp

aN VT

It is convenient to define U = V/N, the volume per atom.
Since 3 is an extensive property, it can be written in the
form

A (N, V, T) =Na (u, T),

The extensive nature of the 3, guarantees that it can be
expressed as

A, (N, V, T,M) =Ma, (n, u, T),
where a, is the Helmholtz free energy per lattice site. It
follows that
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Pc
Bv N, T

v =a —N
C C

o, T

Ba,

Bn g, z.

Ba,

dv, =avdp, —Sdp, .

In order to be thermodynamically stable, the con-
strained system must satisfy certain stability conditions,
which we now derive. In the constrained system, N, V,
and M are conserved quantities. There exists the possibil-
ity that the system might become inhomogeneous by, for
example, forming two phases with different concentra-
tions of particles and lattice sites in such a way as to
preserve the total values of N, V, and M. Consider the
following situation: A homogeneous system, character-
ized by the values N, V, and M, is imagined to be two
smaller adjacent subsystems, each characterized by the
values N/2, Vl2, and Ml2. (Throughout the discussion
we keep the temperature T fixed in the system and both
subsystems. ) The sum of the free energies of the two sub-
systems is equal to the total free energy of the original
system, because the free energy is extensive. Next we im-

agine transferring 5N atoms, a volume 5V, and 5M lattice
sites from one of the subsystems to the other. The free-
energy change associated with this change in state is

6 A, = A, (N /2+ 5N, V/2+ 5 V,M /2+ 5M, T)

=0, +p, v —p, n .

It is clear that —p„p„and v, are functions of the inten-

sive variables 8, V, and T. A large number of Maxwell re-
lations can be derived, relating the various derivatives of
—p„p„and v, . Moreover, from these equations it is

easily shown that, at constant temperature,

8 A,

dN

8 A,
a VaN

8 A,
OMAN

8 A,

dNd V

0 A,

BV

8 A,
mdiv

8 A,
dNBM

8 A,
ave
8 A,

BM

must be positive semidefinite. Here it is understood that
the independent variables in the partial differentiation are
N, V, M, and T and that the derivatives are to be evalu-
ated for the state in which the arguments are equal to
N/2, V/2, M/2, and T. It follows that, in order for the
homogeneous system to be stable against development of
inhomogeneities, (1) the diagonal elements of this array
must be nonnegative; (2) the determinant of the 2X2 ar-
ray obtained by eliminating the ith row and the ith
column from this array must be non-negative for each
i =1,2, 3; and (3) the determinant of this 3 X 3 array must
be non-negative.

We note that this 3 X 3 matrix is symmetric, because
the off-diagonal elements are mixed second partial deriva-
tives. It can easily be verified, by evaluating the matrix
elements using Eq. (6), that the third column is a linear
combination of the first two columns and that the third
row is a linear combination of the first two rows. Hence,
the 3 X 3 determinant is zero, and so the third condition
is never violated. All the elements of this matrix can then
be expressed in terms of the 11, 12, and 22 elements. It
can then easily be verified that the various 2X2 deter-
minants are simply proportional to one another, with
proportionality constants that are positive. Thus the
conditions generated by the various 2X2 determinants
are all equivalent. Finally, it is straightforward to show
that the entire set of conditions is equivalent to just two
of them, namely, that the central matrix element be non-
negative and that the determinant obtained by deleting
the third row and the third column be non-negative. The
necessary conditions for the stability of the system can
then be expressed as

+ A, (N/2 5N, V/2 —5 V—,M/2 —5M, T)

2A, (N/2, V/2—,M/2, T) .
pc )

v
(10)

This is a change that is not prevented from happening in
the constrained system. By the second law of thermo-
dynamics, a necessary condition for the stability of the
system against development of such an inhomogeneity is
that

AA, 0

for all possible choices of 5N, 5V, and 5M. In particular,
we consider small values of these changes and perform a
Taylor-series expansion in powers of 5N, 5V, and 5M.
hA, is then expressed in terms of the second partial
derivatives of A, with regard to N, V, and M and the
values of 5N, 5V, and 5M. Since hA, must be greater
than or equal to zero for any choice of 5N, 5 V, and 5M, it
follows that the matrix of second derivatives, namely,

5Pc 5Pc

Bv

8pc

Here it is to be understood that the independent variables
for the partial differention are n, v, T. States that satisfy
one of these conditions as an equality and the other as an
inequality (or that satisfy both as equalities) are called
marginally stable. The marginally stable states represent
the boundary separating unstable states from stable states
in the space of thermodynamic states. It should be noted
that, at the boundary, the second of these conditions (or
perhaps both of them but not only the first) must be
satisfied as an equality.

To summarize, these non-negativity conditions are
necessary conditions for the stability of the constrained
system (i.e., the system constrained to remain a crystal
and constrained to have a fixed total number of lattice



4544 WILLIAM C. SWOPE AND HANS C. ANDERSEN 46

sites) against the development of macroscopic inhomo-
geneities. By analogy with the corresponding situation in
gas-liquid phase transitions, we assume that the violation
of these conditions would be a signal of the existence of a
phase transition in the system. In the gas-liquid system,
marginal stability exists at states on the spinodal curve.
In this case, however, before the spinodal is reached, the
system undergoes a first-order transition and the instabili-
ty is not in the range of equilibrium thermodynamic
states. The marginal stability condition is also satisfied at
the critical point. Thus, the present stability analysis
may be of relevance for critical phenomena in solids. In
particular, we propose that the Kosterlitz-Thouless criti-
cal point [9] in two-dimensional crystals represents a
state at which the system is marginally stable in the sense
discussed here.

states of the system in terms of intensive variables. The
state of a constrained system is specified by giving the
values of two intensive quantities U and n. The state of an
unconstrained system is specified by giving the value of U.

Equation (15) determines the locus of states in the two-
dimensional state space of the constrained system that
correspond to equilibrium states of the unconstrained
system. Along this locus, the ratio U/n gives the value of
U for the corresponding unconstrained system. More-
over, the values of —p, and p, along the locus give the
values of —p and p for the corresponding unconstrained
state. It is easily shown from the stability conditions that
when proceeding along the locus of v,. =0 states, the sys-
tern is crossing lines of constant p, and constant p, .
Equation (9) leads to the conclusion that along this locus

Udp, —n dp, =0,
C. Release of the constraint

Suppose now the constrained system is allowed to
change its M and thereby achieve total equilibrium.
Moreover, assume that the total equilibrium state is crys-
talline, rather than some other phase. Callen's formula-
tion of the second law of thermodynamics asserts that, at
fixed N, V, and E, the number of lattice sites M will adopt
a value that maximizes the entropy S,(N, V, E,M). More-
over, it follows that, at fixed N, V, and T, the number of
lattice sites M will adopt a value that minimizes the
Helmholtz free energy A, (N, V, T,M). This latter cri-
terion is the most useful one for the present discussion.
Thus, there is an equilibrium value of M, to be denoted
M,q(N, V, T), that minimizes A, subject to the indicated
constraints. It follows that

A(N, V T)=A, (N, V T M, (N, V T)) .

A necessary condition for equilibrium is

(12)

(13)

i.e., that the chemical potential of net vacancies be zero.
More precisely,

v, (N, V, T M,„(N, V, T))=0, (14)

or, expressing v, as a function of the intensive state vari-
ables,

v, (n, u, T) =0 .

It follows from these results that

(15)

—p(N, V, T)= p, (N, V, TM, (N—, V, T)),
p(N, V, T) =p, (N, V, T,M, (N, V, T)) .

Equations (13)—(15) provide the thermodynamic solu-
tion to the problem of the relationship between the con-
strained and unconstrained systems. (They play the same
role in the present problem as does the law of mass ac-
tion, expressed in terms of chemical potentials, in the
theory of chemical equilibrium. See the discussion in Sec.
II D.) Let us consider a fixed temperature and discuss the

which is consistent with Eq. (2) for the unconstrained sys-
tem (see Eq. (5)].

The results of the stability analysis for constrained lat-
tices are relevant for unconstrained lattices as well. Con-
sider an unconstrained system that is in stable thermo-
dynamic equilibrium in a homogeneous crystalline state.
Its state corresponds to a point that is on the locus of
v, =0 states for the constrained system. At that point,
the constrained system must satisfy the stability condi-
tions given in Eqs. (10) and (11). (This is easily proven by
contradiction. Suppose that point violated the stability
conditions. Then a constrained system at that point
could lower its free energy by developing an inhomo-
geneity. It follows that the unconstrained system could
lower its free energy by developing the same inhom. o-
geneity. Therefore, the unconstrained system is unstable,
contrary to the initial assumption. )

The results of the thermodynamic analysis can be sum-
marized in the following way: Suppose for a temperature
T we can determine a, (n, u, T) for a range of values of U

and n. This range then represents the range of states ac-
cessible to a homogeneous crystal that is constrained not
to change its number of lattice sites. Next we determine
the region in which a, not only exists but satisfies the sta-
bility conditions, Eqs. (10) and (11). If there are any
points at which the second of these conditions is satisfied
as an equality, such points are at the boundary of this re-
gion and represent marginally stable states. This region
represents the range of states in which the constrained
system may be stable against the development of inhomo-
geneities. Within this region we determine the one-
dimensional locus of states for which v, (n, u, T) =0.
These represent the states that in addition have the equi-
librium concentration of net vacancies. Finally, along
this locus we must examine the chemical potential as a
function of pressure and compare this with the values for
other possible phases (liquids, crystals with different crys-
tal structures, hexatics, etc.). Those points on the locus
for which there is no other phase at the same pressure
with a lower chemical potential are the states of the crys-
tal that are in total equilibrium. If this locus of total
equilibrium states extends all the way to a point of mar-
ginal stability, this point is presumably a critical point.
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IV. STATISTICAL THERMODYNAMICS
OF LATTICES

8 lnQ,
p, = k—T

V, T, M

The statistical thermodynamic description of the un-
constrained lattice system is the well-known one, and the
corresponding description of constrained lattices is
straightforward to construct. We restrict our attention
to the case of classical statistical mechanics with
Boltzmann statistics.

The partition function corresponding to A (N, V, T) is,
of course,

Moreover,

a, (n, V ) = —(kT/M)lnQ, (N, V, T,M) .

It follows that

(20)

(21)

Q(N, V, T)=(N!) 'h

X f dr fdp exp( H~(—r, p )/kT),

(16)

where Hz(r, p ) is the Hamiltonian for N atoms. We
then have

—p, = —kT
8 lnQ,

av
(18)

A (N, V, T)= kTlnQ—(N; V, T),
as well as the usual relationships for —p and p as partial
derivatives of lnQ.

To construct the partition function for the constrained
system, we imagine that in principle each point in N-

particle configuration space can be analyzed to determine
the number of lattice sites that the system has in that
configuration [10]. For example, this might be done by
Voronoi analysis followed by analysis of the spatial ar-
rangement and connectivity of those Voronoi polyhedra
that have the shape appropriate for the perfect crystal
structure. For values of N, V, and T appropriate for ther-
modynamic stability of solids, the configurations that pri-
marily contribute to Q in Eq. (16) will have a number of
lattice sites proportional to and approximately equal to
N. There are a variety of ways that the analysis could be
performed, and there is no uniquely best definition, but
we assume that a reasonable one has been adopted. (The
definition will have to be consistent with some rnathemat-
ical and physical conditions that we will discuss below. )

Then we define a function mz(r, V) as the number of lat-
tice sites in the N-particle configuration r in volume V.
The partition function for the constrained system can be
defined as

Q, (N, V, T,M)=(N!) 'h

X f dr fdp 5(M, m~(r, V))

Xexp( H~(r, p )/kT—),
(17)

where 5(m, n) is the Kronecker delta function. In effect,
it provides a complicated set of limits on the range of in-
tegration in configuration space. The corresponding free
energy is

A, (N, V, T,M)= kT lnQ, (N, V, T,M—) .

Comparing with Eq. (3), we conclude that

Q(N, V, T)= QQ, (N, V, TM) .

Under conditions of N, V, and T for which the crystal
structure is thermodynamically most stable, we expect
that there is one value of M whose term dominates the
sum on the right. This is equivalent to the M, that mini-
mizes A, at fixed N, V, and T. Using standard maximum
term arguments, we conclude that in the thermodynamic
limit,

lnQ(N, V, T)=lnQ, (N, V, T,M,q(N, V, T)),
which is the statistical analog of Eq. (12).

V. COMPUTER SIMULATION OF LATTICES

The partition function Q(N, V, T) and its associated
free-energy density a (v, T) should in principle be calcu-
lated in the thermodynamic limit. In the limit of a large
system, no matter what the shape of the system and no
matter what type of boundary conditions are used, a crys-
talline material with the desired shape of the unit cell can
fill essentially the entire system. It can even create sur-
faces and domains, should that be necessary, and parti-
cles can migrate to the surface, thereby changing the
number of lattice sites and equilibrating the bulk density
of net vacancies. This can all be accomplished without
any distortion of the shape of the unit cell, and the pres-
ence of surfaces will not affect the values of the bulk ex-
tensive thermodynamic properties. Such undistorted
crystalline configurations will dominate in the calculation
of the partition function Q in the thermodynamic limit.

For simulated (and hence small) systems under period-
ic boundary conditions, the shape of the system and the
precise number of particles can have a significant effect
on the results. In particular, certain combinations of
shape and particle numbers may make it impossible for
the atoms to arrange in an undistorted perfect crystalline
arrangement. These particular combinations will lead to
simulations that are of no practical utility for learning
about the thermodynamic limit. Care must be exercised
in constructing simulations of small systems so that the
simulation samples the types of undistorted crystalline
configurations that dominate the partition function Q in
the thermodynamic limit. Let us assume, for the sake of
discussion, that we know (or are willing to guess) what
the shape of the unit cell actually is in the thermodynam-
ic limit [10]. Then the most reasonable thing to do is to
construct a simulation volume that contains an integral
number of unit cells that pack together and fill the
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volume in a way consistent with periodic boundary con-
ditions. If the particles are originally positioned in a way
consistent with this arrangement of unit cells, perhaps
with some vacancies and/or interstitials, then a simula-
tion at constant N, V, and T (either canonical Monte Car-
lo or canonical molecular dynamics) can be performed
and the structure analyzed as a function of time.
(Grand-canonical Monte Carlo calculations can also be
performed. )

It is precisely this type of siinulation (the only type that
for small systems is able to explore the undistorted crys-
talline configurations that dominate in the thermodynam-
ic limit) in which it is most likely that the periodic
boundary conditions will tend to stabilize and preserve
the lattice structure and keep the number of lattice sites
constant. If a constant temperature simulation is long
enough for the system to explore all of the important
regions of configuration space that contribute to
Q, (N, V, T, M), then it is reasonable to assume that aver-
ages of dynamical variables over the states generated in
the simulation are equal to averages over an ensemble
characterized by fixed N, V, T, and M, i.e., just the en-
semble whose partition function is Q, and whose proba-
bility density is proportional to the integrand in Q, .
Thus the quantities calculated in the simulation are quan-
tities of the type that we have indicated with the sub-
script c. (If a grand-canonical simulation method is used
in such a simulation, the number of lattice sites will still
be fixed. The averages calculated will then correspond to
an ensemble in which V, T, p, and M are all specified.

This is definitely not the usual grand-canonical ensemble.
It is a constrained ensemble whose relationship to the
grand-canonical ensemble is analogous to that between
Q, and Q. )

In particular, the pressure is normally calculated in
simulations by calculating the average of the virial. The
proof that the average virial is equal to the pressure is
usually based on a mathematical trick in which the
configuration integral is expressed in terms of scaled
coordinates [11]. Above we noted that the definition of
Q, was based on a function mz(r, V), which gives the
number of lattice sites in the material when the
configuration of the system is r . If this function is in-
variant to an overall dilation of the system (as is the case
when it is defined in terms of Voronoi analysis of the
configuration), then the standard proof that the pressure
is the ensemble average of the virial holds also for the
constrained ensemble. Hence when the average virial is
calculated in the normal way for a simulation in which N,
V, and T are held fixed, the result is in fact equivalent to
the constrained pressure p„whose thermodynamic mean-
ing is given in Eqs. (4) and (7) and whose statistical mean-
ing is given in Eq. (18), rather than to the pressure p,
whose meaning is given in Eq. (1).

Thus one of the partial derivatives of a, (n, u), that
with respect to U, can be obtained straightforwardly by
computer simulation. The derivative with regard to n is
the chemical potential p, . When analyzing the n depen-
dence of a„ it is preferable to deal with finite differences
rather than derivatives. Applying Eq. (21), we find

Q, (N, V, T, M)
a, (N/M, V/M) a, ((N —1)/—M, V/M) = — ln

f dr 5(M, m~(r, V))exp( —U~(r )/kT)
ln

NA f dr~ '5(M, m~, (r ', V))exp( —U~, (r ')/kT)

(22)

where U~(r ) is the potential energy of N atoms at posi-
tions r and A is the usual thermal de Broglie wave-

length. The ratio of integrals on the last line can in prin-
ciple be evaluated if the mz(r, V) function defined above
satisfies a certain simple property, namely, that

m~(r, V)=m~, (r ', V), (23)

where r ' denotes the N positions r with any one of
the N positions deleted. The meaning of this is that when
a particle is removed from a system of N particles in
volume V with M sites, keeping the other N —1 positions
fixed, the resulting configuration must still have M sites.
This is actually a quite reasonable requirement to impose
on the function m [12]. When it is satisfied, then the re-
gions of integration in the numerator and denominator,
which are restricted by the 5(M, m) factors, are related in
just such a way that various methods such as the Widom

method [13] become applicable to the evaluation of the
ratio. (For exainple, if a test particle is inserted into an
N —1 particle configuration that makes a nonzero contri-
bution to the denominator of Eq. (22), Eq. (23) guarantees
that the resulting configuration is contained within the
range of integration in the numerator. This makes it pos-
sible to express the ratio in Eq. (22) in terms of a certain
ensemble average, namely, the exponential of the energy
change for insertion of the particle averaged over a con-
strained ensemble of N —1 particles and M lattice sites in
volume V at temperature T.) Moreover, the grand-
canonical Monte Carlo method can be used to obtain
equivalent information in a slightly different way. We
have invented a simulation method that is especially suit-
ed for evaluation of such ratios [14].

Although both partial derivatives of a, can thus be ob-
tained from simulations, this is not enough information
to evaluate v„which is critically important to determine
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the equilibrium concentration of net vacancies in a crys-
tal. From Eq. (8) it is clear that the absolute value of a,
is also needed. For this, at least two methods are possi-
ble.

(1) The method of Frenkel and Ladd [5] can be used to
calculate the free energy of a crystal relative to an Ein-
stein solid. This is best done for lattices with no net va-
cancies.

(2) If the solid is stable down to zero temperature, the
temperature-dependent energy can be evaluated by simu-
lations at various temperatures and a thermodynamic in-
tegration used to get the free energy of the crystal relative
to that of the zero-temperature crystal. The theory of
harmonic lattices can then be used to evaluate the abso-
lute free energy of the solid at low temperatures.

To map out the behavior of v, and hence determine the
locus of equilibrium states for which v, =0, it is neces-
sary to have three types of information: (1) the virial
pressure for a range of values of n and U, (2) the chemical
potential p, for the same range, and (3) the absolute free
energy of the crystal for at least one value of n and U in
tltat range [15]. With this information the value of v for
any state in the range studied can be calculated.

VI. DISCUSSION

When computer simulations are performed on solids in
order to infer their bulk thermodynamic properties, the
small size of the system studied and the periodic bound-
ary conditions can have a subtle effect that requires a
reevaluation of the relationship between the quantities
calculated in the simulations and the bulk properties.
The averages calculated during such a simulation are
averages over a constrained ensemble, one in which the
number of lattice sites is a constant. In this paper, we
have presented a thermodynamic and statistical thermo-
dynamic analysis of this ensemble and have described
some of the consequences of the analysis for computer
simulations of solids.

The problem discussed in this paper arose for us in
simulation studies of phase transitions in a system of par-
ticles moving in two dimensions and interacting through
an inverse twelfth power repulsion interaction. For this
problem, the present analysis, including the necessity for
determining the locus of v, =0 states and the stability
analysis, is important for constructing the equilibrium
phase diagram for the material [16]. We have developed

a practical method, also planned to be reported else-
where, for calculating p, by the insertion and deletion of
particles [14].

In closing, we make a few miscellaneous comments
about computer simulation of solids, based on our experi-
ence with this two-dimensional system and on the
analysis presented here: (1) In simulating solids, it is very
important to have some means for analyzing in detail the
structure of the resulting configurations. For example, if
the system is started in a crystalline configuration, with
the unit cell axes oriented with regard to the simulation
cell boundaries, then the system should be monitored to
see if that situation persists. If it persists, then averages
calculated do correspond to averages over a constrained
ensemble. If the structure does not persist, but fluctuates
from one crystalline arrangement to another, then it is
likely that the averages have no meaning. (2) The stabili-
ty analysis above suggests that even in a computer simu-
lation with a fixed number of lattice sites, it is possible for
a system to be unstable with regard to the development of
inhomogeneities and that these inhomogeneities are man-
ifestations of the possibility of a phase transition in the
system. If the simulation run is long enough, the inho-
mogeneities may develop. In the case of a gas-liquid
transition, such inhomogeneities are typically not ob-
served in small systems because the positive interfacial
free energy suppresses the inhomogeneity. However, we
have seen an example of this instability in our simulations
of two-dimensional crystals. It appears in systems with
0.001 or more net vacancies per lattice site. It shows it-
self as an average tendency for the majority of the vacan-
cies to cluster together. Sometimes, in addition, at lower
densities, vacancy-interstitial pairs will form, and the va-
cancies will cluster together in a small number of clus-
ters. As just mentioned, some method for structure
analysis is invaluable for detecting this effect. When this
is observed, simulations in a finite system should not be
expected to give valid information about the thermo-
dynamic limit since the clustering is evidence that under
the conditions of the simulation the crystal is not thermo-
dynamically stable.
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