
PHYSICAL REVIEW A VOLUME 46, NUMBER 8 15 OCTOBER 1992

Effects of A desorption on the first-order transition in the A-B2 reaction model
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The A B2 s-urface-reaction model [R. M. Ziff, E. Gulari, and Y. Barshad, Phys. Rev. Lett. 56, 2553
(1986)] is studied including spontaneous desorption of CO from the catalyst surface. It is found that
when the spontaneous desorption probability P is above a critical value P, & 0.039, the system no longer
exhibits a first-order kinetic phase transition. The interface between coexisting phases is found to be
nonfractal for P below P„butit becomes fractal with dimension D = 1.46+0.05 when P =P, . The criti-
cal behavior of the model is qualitatively described by Dickman s one-site mean-field approximation.

PACS number(s): 05.70.Ln, 82.20.Mj, 05.70.Jk, 82.65.Jv

I. INTRODUCTION

It is known that nonequilibrium systems can exhibit
behavior similar to phase transitions seen in equilibrium
systems [1,2]. Recently, Ziff, Gulari, and Barshad (ZGB)
introduced a nonequilibrium model of surface reaction
which shows such kinetic phase transitions [3]. This
model describes the heterogeneous catalytic reaction of
carbon monoxide and oxygen over a platinum crystal,
and has become known as the ZGB or A B2 model -(A
denoting CO and B2 denoting oxygen). In this paper we
investigate an extension of this model previously con-
sidered by Ehsasi et al. [4] and Kaukonen and Nieminen
[5], in which an A-desorption step is incorporated. In
particular, we investigate the effects of this desorption on
the behavior of the first-order kinetic phase transition.

II. MODEL

A detailed description of the ZGB model can be found
in Ref. [3], so we present only a brief description here. In
the model's simplest form, surface diffusion, spontaneous
desorption, and thermal effects are ignored. The catalyst
surface is modeled by a two-dimensional square lattice,
onto which molecules attempt to adsorb one at a time
with random position. A molecules require one vacant
site to adsorb, while 82 molecules require two adjacent
vacant sites. The temperature and pressure of the system
are assumed to be such that the kinetics are adsorption
limited, so that nearest-neighbor pairs of A and 8 react
and desorb immediately upon formation. The only pa-
rameter in the model is y, defined as the probability that a
molecule making an adsorption attempt is an A.

Two different algorithms have been used to simulate
the ZGB model, the constant-y (C-y) algorithm and the
constant-coverage (C-8) algorithm. In the C-y algorithm
[3], a fixed value is chosen for y prior to beginning the
simulation. At each time step, an A adsorption is at-
tempted with probability y, or otherwise a Bz adsorption
is attempted. If an A adsorption is attempted, then a
random lattice site is chosen, and if the site is unoccu-
pied, an A molecule is placed at the site. If the site is oc-
cupied, then no change in the state of the lattice occurs at

this time step. In the case of Bz adsorption, a random
nearest-neighbor pair of lattice sites is chosen, and if both
sites are vacant, then a B atom is placed on each site. If
either or both of the sites are occupied, then no change in
the state of the lattice occurs at this time step. After
each adsorption of an A or B2 molecule, the neighboring
lattice sites are checked in a random order for the ex-
istence of A -B nearest neighbors. If such a pair is found,
then the A and B molecules desorb from the surface (as
AB), leaving behind two vacant lattice sites. One Monte
Carlo step (MCS) is said to have elapsed after the number
of time steps equals the number of sites on the lattice.

In the C-8 algorithm, which was recently proposed by
the authors [6], a fixed value 8& is chosen as the set
point for the coverage of species A before the simulation
is run. The choice of which species will attempt an ad-
sorption at a particular time step is made according to
the following deterministic rule: When the instantaneous
coverage of species A (denoted 8') is greater than the
set-point value e~, then only 82 adsorptions are at-
tempted. When e' & e ~ then only A adsorptions are at-
tempted. The rest of the procedure —picking one or two
sites, checking that they are vacant, and checking neigh-
bors for reactions —remains the same as in the C-y algo-
rithm. The total number of A and 8 adsorption attempts
are counted, and y is defined as the fraction of the at-
tempts where the adsorbing particle is an A.

Simulations of the ZGB model using the C-y algorithm
[3—5,7 —17] show that after many Monte Carlo steps, the
system reaches a steady state where the average fraction-
al coverage of A and B (denoted 8„and8z, respective-
ly) remain roughly constant. For y &y, =0.3907 [17] the
surface achieves a 8-saturated steady state in which every
site is occupied by 8, and no reaction can occur. For
y, &y &yz=0. 52560 [6] the system achieves a steady
state in which the surface is occupied by both A and 8,
separated by vacant sites. Steady-state reaction occurs
only in this region. For y )y2, the surface achieves an
A-saturated steady state where every lattice site is occu-
pied A, and again, no reaction occurs at steady state in
this region. The transition to the A-saturated state at y2
is first order, in that e A and Oz change discontinuously
with a change in y. The transition from the 8-saturated
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state at y, is second order, since the derivative of the
change in surface coverage is discontinuous with a
change in y.

Simulations of the ZGB model using the C-6 algo-
rithm produce the same relationship between y, 6~, and
6~ seen in the C-y algorithm, except that the first-order
transition at y2 is replaced by a metastability loop. The
states represented by this metastability loop have been
shown to be metastable and unstable steady states of the
C-y algorithm [6].

The relationship between the two algorithms can be
seen as follows: In the C-6 algorithm there is a correla-
tion between the type of species attempting an adsorption
at one time step and the type of species attempting an ad-
sorption at the next time step, while no such correlation
exists in the C-y algorithm. The correlation is present in
the C-6 algorithm because when 6')6„,there will like-

ly be many B2 adsorption attempts before a B2 molecule
successfully adsorbs and reacts, and similarly for A ad-
sorption attempts when 8'&8„.Note, however, that if
one considers only a very small region on the lattice in a
C-6 algorithm, then on this region there will be no tem-
poral correlation between the types of particles attempt-
ing to adsorb, since it is unlikely that successive adsorp-
tion attempts will fall in the same small region of the lat-
tice. Thus, if one considers the simulation from the per-
spective of a sufficiently small region of the catalyst sur-
face, the two algorithms are indistinguishable. Hence
each small region of the lattice must behave in a way that
is consistent with both algorithms operating at the aver-
age or constant value ofy.

III. DESORPTION OF SPECIES A

Initial investigations into the effects of A-desorption in
the ZGB model were independent studies by Ehsasi et al.
[4] and Kaukonen and Nieminen [5]. The two groups in-
corporated A desorption into the model in slightly
different but equivalent ways, and we have adopted the
method of Ehsasi et al. In this method the C-y algo-
rithm is run as usual, but after each adsorption attempt, a
site is chosen at random, and if occupied by A, the site is
made vacant with probability P. This results in a rate of
desorption rd„=P6„moleculesper MCS per lattice site.

For low values of P, both studies found that the transi-
tion value y2 increases with increasing P. Also, the sur-
face remains reactive for y &y2, since A desorption
creates vacant sites where reaction can occur. Thus the
first-order transition at yz is now between a low-6~ state
and a high-8„state, both of which are reactive (as op-
posed to the case with no desorption, where the transi-
tion is between a reactive, low-6~ state and an adsorbing
state where every site is occupied by A).

Kaukonen and Nieminen noted in their work that as
the value of P is increased beyond some critical value P„
the first-order transition at y2 seems to disappear. From
their published results it is difficult to estimate the value
of P, . However, from the results of Ehsasi et al. (Fig. 11
in Ref. [4]), which also imply the existence of such a crit-
ical value, one can estimate 0.03 & P, (0.25.

We ran simulations of the model with A desorption,
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FIG. 1. The phase diagram for the ZGB model with desorp-
tion probability P. The curves correspond, from left to right, to
P =0, 0.03, 0.05, 0.07, and 0.10. Each dot represents the results
of a separate simulation using the C-e algorithm.

making use of the C-6 algorithm. Because the C-6 algo-
rithm has no instability at the first-order transition, we
were able to collect more data near the transition than
was possible in either of the previous studies. Our results
are consistent with those of Ehsasi et al. and Kaukonen
and Nieminen, but are of higher precision. These results
are shown in Fig. 1. For P &0.03, a metastability loop
was found, implying the existence of a phase transition.
(The loop is, however, too small to be seen in the figure. )

For P ~0.05, no metastability loop was found, and thus
we conclude that 0.03&P, (0.05. It is interesting to
note that P affects the curves of Fig. 1 in a way that is
similar to the effect of temperature on the curves of a
PVT diagram for a fluid near its critical point.

IV. FRACTAL SCALING OF THE INTERFACE
BETWEEN PHASES IN EQUILIBRIUM

The next series of simulations that we ran were direct-
ed at characterizing the fractal properties of the interface
between the two phases present at the first-order transi-
tion. These simulations involved running the C-6 algo-
rithm on a lattice of L X 8' sites with periodic boundary
conditions. The initial state of the lattice was an
L /2 X W rectangle of adsorbed A, with the other sites in-

itially vacant. The simulations were run with 6„=0.5.
Figure 2(a) shows a snapshot of a lattice with
L =8'=1024 sites after the simulation was run for
236000 MCS at P =0. A clear separation exists between
the high-8„and low-8„phases. Figures 2(b) —2(e) show
that as P is increased, the phases seem to mix, until there
is no longer any sign of phase separation by P=0.05.
This phenomenon is reminiscent of the disappearance of
surface tension as a fluid passes through its critical point.

To determine the fractal properties of the phase bound-
ary, we carried out the following procedure: An interface
between phases was defined as a path of A-occupied sites
that wrapped around the periodic boundary in the verti-
cal direction (as oriented in Fig. 2), and along which one
could walk, always keeping vacant sites to the left (as
shown in Fig. 3). Each L X W system was initialized for a
period during which the phase interface was checked
every 3000 MCS. If an interface was found, then its
length (defined as the length of the walk along the bound-
ary) and width (defined as the standard deviation of the
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FIG. 3. The arrows show a walk that defines a smaH section
of a sample phase interface, as described in the text. Black dots
are adsorbed A, open circles are vacant sites, and small grey
dots are adsorbed B. For a walker moving in the direction of
the arrows, vacant sites are always to the left, and adsorbed A is
always to the right.

(d) P. '.J ~+': .'-'. ."".-";,. new point on the interface serving as the central point,
unti1 each point on the interface had served as a center.
These results are plotted in Fig. 4. To reduce the sys-
tematic scatter due to the use of circular shells on a
discrete square lattice, these data were plotted as a func-
tion of R,fr= &N/rr, —where N is the total number of lat-
tice sites inside a circle of radius R. The use of R,z re-
sults in much smoother curves for small R.

Of course, not all values of P produced systems where
a phase interface could be found every time a search was
made, so the data of Fig. 4 is an average over only those
states where an interface could be found. For P +0.039,
it was always possible to find the interface between the
two phases, but for P =0.040 the interface was we11

defined only about 95% of the time. For P =0.045 the

FIG. 2. Snapshots of typical configurations of the catalyst
surface for runs of the C-e algorithm as described in the text.
Black dots represent adsorbed A. Adsorbed 8 and vacant sites
are not shown. (a) 1024 X 1024 lattice with P =0. (b)
1024X 1024 lattice with P =0.030. (c) 2048 X 1024 lattice with
P =0.039. (d) 2048 X 1024 lattice with P =0.041. (e)
2048 X 1024 lattice with P =0.050. The lattices are longer for P
near the critical point in order to accommodate larger Auctua-
tions in the phase interface.
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horizontal coordinates of the sites on the interface) were
measured. When these two parameters stopped increas-
ing consistently and began fiuctuating randomly (which
typically took from 50000 to 150000 MCS to occur), we
began taking measurements of the fractal dimension, re-
peating at 500 MCS intervals. Each measurement was
made by choosing a lattice point on the interface to be at
the center of a coordinate system, and then finding the
length of the interface that fell within a circular region of
radius R about this central point, for values of R from 1

to 8'/2 sites. This calculation was then repeated with a

0 4 6
log~ R,~

FIG. 4. A base-2 log-log plot of dM/dR vs R,z, where M is
the length of the phase interface inside a circle of radius R, and
R,~ is the effective radius defined in the text. The curves corre-
spond, from bottom to top, to P =0, 0.030, 0.039, 0.040, 0.041,
0.042, 0.045, and 0.050. The fractal dimension D of the inter-
face for each P is given by D =m + 1, where m is the slope of
the curve in this plot.



46 EFFECTS OF A DESORPTION ON THE FIRST-ORDER. . . 4537

0.75—

A

0.50—

0.25—

0 I ~ ~ f
(

I I ~ I
l

I I I I
1

I I I I

0 0.25 0.50 0.75 1

FIG. 5. The solution of the modified one-site approximation,
Eqs. (1) and (2) in the text. The curves correspond, from left to
right, to P =0, 0.01, 0.1, 0.214, and 1.0.

the two-phase envelope must have extremely steep slope
and low curvature for 0.08 ~8& ~0.89, and 8&, must
fall within this range of 6&, i.e., 0.08~6&, ~0.89. We
take the midpoint of this range, 8& =0.5, as our approxi-
mation to 6„,for these simulations. We expect that this
approximate value will be sufficient to produce critical
behavior in our system since the low curvature of the
two-phase envelope near the critical point should cause
the system to show critical behavior for all 6& within a
large neighborhood about 6~, . As demonstrated in

Figs. 2(a) —2(e) and 4, this approximation is indeed
sufficient, since in Fig. 2 we see that the two phases mix
as P is increased (rather than one phase taking over the
system as would be the case away from the critical point),
and in Fig. 4 we find the fractal behavior expected near a
critical point.

interface was defined a httle less than half the time. Note
that the snapshot shown in Fig. 2(e) does in fact have a
continuous interface, even though there is no clear phase
separation.

The slope m of the curves in Fig. 4 is related to the
fractal dimension of the interface by D =m+1. From
the figure one can see that for P &0.039 the interface is
nonfractal (D = 1) for sufficiently large R, while for
P ~0.040 the interface remains fractal (D ) 1) for R as
large as the width of the system. This behavior is remin-
iscent of the behavior of an equilibrium fluid, where the
correlation length diverges as the system approaches its
critical point. By extension from equilibrium systems, we
assume that the interface between the two phases in our
system becomes fractal on all length scales at the critical
point, and conclude that P, )0.039. From the slope of
the curves of Fig. 4, we find that for P =0.040 the inter-
face has dimension D =1.41, for P =0.041 the interface
has dimension D =1.44, and for P =0.042 the interface
has dimension D =1.51. Averaging these results, we find
that the fractal dimension of the interface at the critical
point is D =1.46+0.05.

Simultaneous to our work, Tome and Dickman [18]
also performed an investigation on this system to find the
value of P, . They made use of the C-y algorithm ex-
clusively, and report a value P, =0.04, consistent with
our results.

As mentioned previously, all the simulations described
in this section were run with 8~ =0.5. This value of 8&
was chosen as a rough approximation to 8~

„

the cover-
age of species A at the critical point. We arrived at this
approximation for 8&, as follows: In Fig. 1, the curve
for P =0.03 has a metastability loop with negative slope
in the region 0.08 6~ 0.89, while the curve for
P =0.05 shows no metastability loop (i.e., the slope is
positive everywhere). Since the presence of a metastabili-
ty loop along a line of constant P indicates a phase sepa-
ration, the two-phase envelope for this system must inter-
sect the curve for P =0.03 at e~ =0.08 and 0.89,
without intersecting the curve for P =0.05. Therefore

V. MEAN-FIELD APPROXIMATION

Dickman's one-site mean-field approximation to the
ZGB model [19] can be modified to account for the
desorption of species A. The resulting equations are

=2(1—y)8„(1—6„)—y8„[1—(1—8s) ],
de„

dt
= —2(1—y)8 [1—(1—8 ) ]U A

+y8„(1—8s ) P8„,— (2)

VI. CONCLUSIONS

The addition of a probability P for the spontaneous
desorption of species A adds richness to the first-order
transition in the ZGB model. The effect on the model of
varying P is similar to the effect of varying temperature
in equilibrium systems with first-order phase transitions.
The model exhibits critical-like behavior at
P=P, )0.039. The interface between the high- and
low-6~ phases is fractal only at the critical desorption
probability, with dimension D = 1.46+0.05.
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with 6„=1—8„—8&. We numerically solved these
equations at steady state for e„and6& as a function of
y, and found that P, =0.214 is the lowest value of P
which does not produce a metastability loop (Fig. 5).
Thus the one-site mean-field approximation predicts criti-
cal behavior for this system, although at a somewhat high
desorption probability. An in-depth study of the effects
of incorporating spontaneous desorption in the one-site
mean-field approximation has been performed by Fischer
and Titulaer [20].
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