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Surface tension in the Widom model by low-temperature expansion
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The surface tension between coexisting plus and minus ferromagnetic phases of the Widom model [J.
Chem. Phys. $4, 6943 (1986)] is computed by performing a seventh-order low-temperature expansion. A
functional form for the surface tension is suggested, based on Fade-approximant analysis, for the com-

plete range from T =0 to bulk criticality. The surface tension is computed along the roughening line,
which had been recently calculated by a low-temperature expansion [B. Kahng, A. Berera, and K. A.
Dawson, Phys. Rev. A 42, 6093 (1990)]. The positivity and well-behaved form of our surface-tension

series along this line establishes the validity of the low-temperature approximation in this regime of pa-
rameter space. Comparisons of the low-temperature results to mean-field theory are made. A prelimi-

nary examination of the critical amplitude is discussed.

PACS number(s): 05.50.+q

I. INTRODUCTION

At a temperature of about one-half bulk criticality, it
has long been known that a three-dimensional nearest-
neighbor Ising model with a plus-minus interface will un-

dergo a transition from a low-temperature "flat-surface"
phase to one in which the average interfacial width
diverges. The onset of the latter phase is called the
roughening transition.

An interesting characteristic of the rough phase is the
presence of long-range correlations at all temperatures
above the roughening transition temperature T~ to the
bulk critical point T, . A simple physical picture for such
a transition is to imagine that for low enough tempera-
tures the interface effectively behaves like a two-
dimensional nearest-neighbor Ising model and that the
roughening transition corresponds to the usual order-
disorder transition in the 2D Ising model. Arguments
based on spin-flip energetics qualitatively justify this pic-
ture near the transition point because of the fact that the
interactions of the interfacial spins are of opposite signs
in the two adjacent layers next to an interfacial layer.
However, the persistence of the roughened phase above
TR is indicative of a more complex mechanism. It is pre-
cisely this complexity that results in producing a rich set
of phenomena that have much interest both for their
physical and theoretical implications.

In the present work, we will examine the roughening
transition in the Widom model of microemulsions [1], a
three-dimensional spatially isotropic, frustrated lattice
model, with Hamiltonian
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where the sum in the first term is over the six nearest
neighbors, in the second term over the twelve diagonal
nearest neighbors, and in the last term over the six linear
next-nearest neighbors. We will only examine the case
where y=2. For this case the phase diagram, obtained
from Monte Carlo simulation [2], is shown in Fig. 1,
where in reference to the figure j=—J/kT and m —=M/kT.

This model is a useful paradigm for a broad class of
bulk and surface phenomena not described by the
nearest-neighbor Ising model. Throughout most of the
bulk low-temperature phase diagram one finds stable or-
dered structures that disorder via fluctuation-induced
first-order phase transitions. There are a number of mul-

tiphase points such as R, Pz, and Qz in Fig. 1, from
which the low-temperature phases originate to form a
manifold of ordered structures with one, two, and three-
dimensional orders. In the vicinity of these multiphase
points, the interfacial tension between any two phases be-
comes very small, vanishing at the point itself. The inter-
facial tensions are thus extremely low near zero and the
critical temperatures, an aspect that is absent in unfrus-
trated systems. Since this is one of the simplest models
that exhibits these phenomena and the Hamiltonian has
the attractive feature of being isotropic, it shows poten-
tial applicability not just for microemulsions but also for
alloy systems and studies of magnetic order.
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tension is still positive. Otherwise the singularity we
found would have to be interpreted as just some artifact
of a low-order series. As such a more stringent test
would be to compute the surface tension along the
seventh-order approximated roughening line and make
sure it is positive. This will establish complete internal
consistency of the low-temperature expansion out to
seventh order. With this as our primary goal, in this pa-
per we present the low-temperature expansion series to
seventh order for the surface tension X( T) between coex-
isting plus and minus ferromagnetic phases, study this
series numerically, and confirm positive surface tension
along the roughening line.

The paper is organized as follows. The low-
temperature expansion of the surface tension and its eval-
uation along the roughening line is given in Sec. II. Then
in Sec. III, comparisons of our series with mean-field
theory will be made. Finally in Sec. IV, following the
work of Shaw and Fisher [5], a preliminary examination
is made of the surface-tension critical amplitude Az
defined by the behavior of the surface tension at the bulk
critical point as

(1.2)

FIG. 1. Monte Carlo phase diagram obtained from Ref. [2]
for the Widom model at y =2. A sketch of the roughening line
obtained in Ref. [4] is denoted by r.

where t —=
~
T —T, ~/T, and p is the interfacial tension

critical exponent. However, due to insufficient accuracy
in the available estimates of the roughening critical tem-
peratures, we are unable at present to make reliable quan-
titative statements about A z. We feel that more
comprehensive studies of our series in Ref. IV are neces-
sary before further calculations in A & can be attempted.

We have been pursuing a series of studies of the low-
temperature behavior [3,4] of the Widom model. One of
the purposes of this communication is to complete the
study in Ref. [4], which examined the roughening transi-
tion in the ferromagnetic two-phase region. To briefly
summarize the relevant aspects of that paper, it was
found that a line of roughening transitions existed in the
j-m plane. This conclusion was based on studying several
different seventh-order low-temperature series expan-
sions. Each of the series were chosen so that in exact
form they would exhibit the roughening singularity if one
existed. A schematic picture of the roughening line that
was obtained from the analysis in Ref. [4] and its relation
to the rest of the phase diagram is shown as line r in Fig.
1.

Due to the nature of this, as most low-temperature ex-
pansions, there is no a priori way of knowing its region of
validity. That is to say, without knowledge of the
higher-order terms, one is generally forced to rely on how
reasonable the results are qualitatively and then decide on
their quantitative validity. In the present case of the Wi-
dom model the problem is accentuated since there is little
in the way of a developed intuition, as yet, about this
model. For the case in Ref. [4], since we were able to find
the nontrivial singular behavior associated with roughen-
ing, we felt confident that our expansion was valid. How-
ever, finding the singularity is not sufficient because one
must also know that it occurs below the temperature
where, to the same order of approximation, the surface

II. SURFACE TENSION

In this section we construct the low-temperature series
for X and evaluate it along the roughening curve. The
coefficients of X(y) that we have obtained are given in the
Appendix, Eq. (Al). There, two expansion coefficients
are used, the small parameter

e
—4J/kT (2.1)

and the auxiliary parameter
—4M lkT (2.2)

Note that the latter is not meant to be small necessarily.
It is introduced merely as a notational convenience.

To compute the coefficients, a modified Martin-type al-
gorithm [6] was used to obtain all connected clusters and
clusters with only one disconnected monomer. The
remaining clusters were computed by hand. Our algo-
rithm incorporates summing over nearest, next-nearest,
and diagonal neighbor interactions and thus is more ela-
borate than the original Martin algorithm for the
nearest-neighbor Ising model. The extension to even
higher orders in the low-temperature expansion is mainly
hindered by the difficulty of counting the terms done by
hand. Observe that in the limit M =0.0, or equivalently
x =1, (Al) is the series for the surface tension of the
three-dimensional Ising model [7].

Our numerical work is based on both the direct evalua-
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g„(y)—=x'y'" exp
X(y)
kT

(2.3)

tion of the series and a Pade approximant technique. For
the latter, in analogy to the work of Shaw and Fisher [5],
we define the function

P (t)= C
l+Dt ' (2.5)

able t tt—t, obtain the desired [N, D] approximant, and
then reexpress the result in terms of the variable t. A
particular low-order approximant P~0, ~, valid in the
range TR &T&T, is

This definition is convenient since it removes the zero-
temperature limit energy term, hence permitting a Pade
approximant in the parameter y. We emphasize that in
this definition we do not attempt to well represent the
nonanalyticity at the roughening transition. Rather, we
seek an approximant to the interfacial tension below TR,
the roughening critical temperature, which extrapolates
the low-order low-temperature series.

We expect Pade approximants of the low-temperature
series represented through Q„(y) to converge well up to
the first singularity, the roughening temperature. Beyond
this we extend the fit by using a suitable approximant
[5,8], which matches with X and its derivatives at Ttt and
vanishes at T, . The general form we consider is

where

C)C=
1 —D, t

DiD=
1 —D)tR

and

C =t-&X"'
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1

(2.6)

(2.7)

(2.8)

(2.9)

[N D]( t) = t P[tv D]( t) (2.4)

This equation can be taken as the definition of P[tv D](t).
To construct the Fade approxirnant, we expand the
known low-temperature series for X in terms of the vari-

with X'R'= X(—ttt ), XII'= dXldt(—t„), and ttt ——(T,—TR )/T, .
Hence for any desired value of x, one can use P~o & ~

as
given in (2.5) and a suitable Pade approximant to Q„(y)
defined in (2.3) to obtain a closed-form expression of X

TABLE I. Low-temperature expansion results for the surface tension along the roughening line by
three different series approximation approaches. The data for the roughening line were taken from Ref.
[4] based on the two series (using their denotations of these series) (a) (z )so and (b) R s&&. The asterisk
denotes spurious poles encountered.

X
2J+20M

mR JR Direct Q„(y) [7,0]—approximate Q„(y)—averaged

0.0
—0.01
—0.02
—0.03
—0.04
—0.05
—0.06
—0.07
—0.08
—0.09

0.0
—0.01
—0.02
—0.03
—0.04
—0.05
—0.06
—0.07
—0.08
—0.09
—0.10
—0.11
—0.12

0.385
0.439
0.495
0.555
0.619
0.691
0.771
0.863
0.976
1.132

0.359
0.450
0.514
0.569
0.621
0.672
0.721
0.769
0.815
0.860
0.903
0.944
0.982

0.804
0.811
0.823
0.842
0.869
0.902
0.936
0.965
0.985
0.996

0.714
0.839
0.867
0.874
0.873
0.864
0.841
0.778
0.272
1.155
0.992
0.923
0.845

(a) (z )so

(b) RBo

0.810
0.817
0.828
0.846
0.871
0.903
0.936
0.965
0.985
0.996

0.729
0.843
0.869
0.876
0.875
0.866
0.843
0.781
0.281
1 ~ 152
0.990
0.918
0.830

0.787
0.796
0.803
0.819
0.849
0.889
0.930
0.963
0.985
0.996

0.668
0.829
0.858
0.862
0.855
0.830
0.747

0.486
1.172
1.028
0.956
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for the complete range 0(T (T, . At present, the uncer-
tainties in the known values of both Tz and T, make the
complete program, for general x, too ambitious.

We now turn to the results for X, given in Table I,
which were evaluated at values on the roughening lines.
The data for the roughening lines were obtained from
Ref. [4] from two different series denoted [see Eqs. (2.1)
to (2.5) of that paper] (z )Bo and Rso corresponding to
the cases of parts (a) and (b) of Table I, respectively (the
index BO means that the series includes bulk excitations
and overhangs). We clarify that we expect only one
"true" roughening line on the phase diagram. However,
as stated in the Introduction, we examined several series
in Ref. [4] to determine this roughening line, each giving
approximately but not exactly the same line. In the
present analysis we used the results from the two above-
named series, since they were the most relevant. In Table
I, the first two columns give the coordinates of the
roughening line in the j-m plane. Column 3 gives the
direct evaluation of the series, column 4 is based on an
expansion of Q, (y) to seventh order, and column 5 is

based on averaging the [2,5], [3,4], [4,3], [5,2] Fade ap-
proximants of Q„(y). This choice for the average was
made simply to give a concise summary of the results for
the near diagonal Fade approximants.

These results confirm positivity of the surface tension
and so as discussed earlier demonstrate the consistency of
our expansions in [4]. Furthermore, from Table I one
sees that the three ways we used to calculate X give ap-
proximately the same results within each of the parts of
the table and also in comparing the two parts. Some of
the entries in the fifth column, based on the average, do
show significant differences from columns 3 and 4. This
is a consequence of variations between the [L,M] Pade
approximants used in our average. The most striking
feature is in part (b) of Table I, where X suddenly dips
down at m = —0.08, jumps up at m = —0.09, and then
steadily decreases again. This is not an effect of a low-
order series, but arises in fact because the ratio j/m ~

be-
comes less than 10.0, which in the zero-temperature

TABLE II. Estimated coordinates of bulk critical points
based on series for surface tension.

0.00
—0.01
—0.02
—0.05
—0.10

0.29
0.34
0.40
0.58
0.76

III. COMPARISON TO MEAN-FIELD THEORY

phase diagram is outside of the ferromagnetic phase and
in the region of the layered phase.

A general survey of the behavior of X is displayed in
Fig. 2 for a wide parameter range. The surface tensions
in this figure were obtained by a direct evaluation of our
series, without the use of any Fade approximants. Note
that the normalization of X amounts to a division only by
kT. The graphs of X/kT are for the values ofj+km =0,
with k = 15.0, 12.0, 11.0, 10.5, 10.1 and also the Ising lim-
it, which is the uppermost curve.

An interesting feature of the present model occurs at
j +10m =0, which for one thing is a point of degeneracy
when T=O. In this limit it turns out that the surface
tension vanishes at T =0, which is in addition to the usu-
ally expected case of T~ ~. This is demonstrated in
Fig. 2 by the fact that X decreases in the double limit
k ~10,T~O.

It is also possible to estimate the bulk transition tem-
perature T, from the ferromagnetic to the disordered
paramagnetic phase by computing where X vanishes.
These estimates have to be taken with the caveat that X
has a nonanalytic term at Tz, although X and all its
derivatives are smooth across T~. Table II presents some
estimated critical temperatures in terms of the coordi-
nates j and m along the critical-point locus. They were
obtained by approaching along the j direction while hold-
ing m fixed at various values.

1.5

0
0 1.5

1cT/J
2.5

FIG. 2. Surface tension from the direct evaluation of series
for Ising limit (top) and j +km =0 with k =15,12, 11,10.5, 10.1.

In Fig. 3 a comparison between the low-temperature
series (solid lines) and mean-field theory [9] (dashed lines)
is shown. We adhere to the same choice of coordinate
axis as used in Ref. [9] so as to make the most direct com-
parison. The curves exhibit the surface tension at the
fixed values of 1/( j +3m ) = 1.0 (top) and 2.5 (bottom).
The curves from the low-temperature series were ob-
tained by the direct evaluation of the series. As an aside,
we remark that the comparison of the low-temperature
data between the direct evaluation of the series, as shown,
and the averaged Pade approximant analysis, as defined
for column five of Table I, is very good for the top curve
and shows marked disagreement for the bottom curve.

Turning to the comparison with mean-field theory, we
see that the agreement in Fig. 3 is excellent for the case
I3—:1/(j+3m ) = 1.0 and poor for 1/( j +3m ) =2. 5,
where there is total breakdown. The former is a good pa-
rameter regime for both methods and so the good com-
parison is understandable. To understand the breakdown
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I I S cise region of validity. Beyond the above remarks, we
can only say that the best method to understand this re-
gion, should it be of interest, is Monte Carlo simulation.

IV. ISSUE OF CRITICAL AMPLITUDE

.4 .6
-m/Q+8m)

FIG. 3. Comparison of direct series evaluation of surface ten-
sion (solid line) to mean-field theory results (dashed lines) for
1/(j +3m) =1.0 and 2.5.

Based on the approximant given in Eq. (2.5), which ex-
trapolates X from Tz up to T„one can compute the crit-
ical amplitude easily by inspection to be A z = C, where C
is given in Eq. (2.6). Unfortunately, we have found from
our numerical studies that A& is highly sensitive to the
value of Tz that one uses. In particular, the derivatives
of X vary drastically for small changes in Tz. As such,
we do not quote any estimates of A& at this stage. A
more careful analysis of our series in Ref. [4], using more
reliable approximants, seems necessary before further
progress can be made. Nevertheless, given this data, esti-
mates of Az can be obtained directly using Eq. (2.4) to
(2.9).

3(x

1+8A

(3.1)

P(1+5a)
(3.2)

In the context of the phase diagram in Fig. 1, going from
p=1.0 to p=2. 5 at fixed a corresponds to moving along
a ray of fixed ratio j /m toward increasing temperature.

Higher temperatures immediately imply that the low-
temperature series is less reliable. In the region of in-
terest here, one can establish that the low-temperature
series is at the onset of breaking down. For this an esti-
mate at p =2. 5 and a =0 shows that the fifth-, sixth-, and
seventh-order terms from the series (Al) are all at the
same magnitude of about 0.01. Similar behavior is found
all along the P=2. 5 line at higher a. This lining up of
successive terms is indicative of a breakdown of the
series.

Turning to the mean-field theory curve, we cannot
speak for the results of [9], but one observation is
noteworthy. Since the parameter region under discussion
corresponds to the ferromagnetic phase, not the
paramagnetic phase, the corresponding temperatures are,
relatively speaking, intermediate, not high. In this re-
gime it is well known that mean-field theory is not ideal.
However, unlike for the low-temperature series, it is hard
to assess within the confines of mean-field theory its pre-

in the latter, it is beneficial to note what the correspond-
ing ratio j/m and the magnitudes of j and m are in rela-
tion to the coordinates in Fig. 3. In these terms, as
a= rn /(j+Sm) —goes from 0 to 1, the ratio j/m goes
from —~ to —9 with, in particular, j/m = —10.0 at

rn /( j + S—m) =0.5. For fixed value along the abscissa

[ —m /( j + Sm) = const], as one moves from
1/(j+3m)=1. 0 to 1/(j+3m)=2. 5, the magnitudes of
j and m decrease. To be precise, the relation between j
and m to o. and P is

V. CONCLUSIONS

In this paper we have presented a closed formula that
describes the variation of the interfacial tension
throughout the ferromagnetic region of the phase dia-
gram fairly well. It should be quite useful for a number
of applications including, for example, a description of
the interfacial tension of amphiphilic mixtures as a func-
tion of amphiphile concentration [1,9], and nucleation
and growth studies of magnetic domains where the ex-
change interaction causes frustration.

Nevertheless, our quantitative knowledge of the Wi-
dom model lags far behind that of the much simpler
nearest-neighbor Ising model. In particular, further pro-
gress could be achieved by deeper analysis of the various
low-temperature series, which have already been obtained
for this model.
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APPENDIX

The low-temperature series for the surface tension X is
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X
kT

=2j+20m —(y [2x ]+y [4x +2x' —4x' ]+y [4x' +4x"—18x' +4x' +8x' +4x' +4x ]

+y 5[» 12+ 16» 16+24» 96» 18+8» +22» 20+ 16» 21+4» 22+ 16» 23+ 8» 24+ 4» 26

+4»28+2»29 13»30]+y6[8»13+4» 14+ 16» ' —92x 16 120x 7+ s4~» &s

3

+40x 19 62x 20+ 68x 21 196x22 92x 23 4x 24

+80x 25 28x 26+44x 27+ 25x 28+ 14x 29

+73x +14x +2x +4x ]

+y [8x' +8x' —26x' +40x' +40x +148x ' —660x —1160x +2732x

+ 100x —852x —194x —404x —632x + 160x +532x ' —196x

+272x +94x +60x +72x +32x +8x +16x +12x '+8x
—54x —14x ]) .

The low-temperature series for the free energy per site for the bulk ferromagnetic phase in the Widom model is

F =3j+ 15m (y 3[» 15]+y 5[3»30]+y 6[6»2s+3» 29 25» 30]+y 7[ 12» +3x44] )kT 2

(A1)

(A2)
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