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Use of Coulomb-Sturmian functions in calculating scattering quantities
in Coulomb-like potentials
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An approximate solution to a scattering problem containing Coulomb and short-range potentials is

presented. The method is based on a separable expansion of the short-range part of the interaction

in terms of bound-state Coulomb-Sturmian functions. Similarly to the approximation based on

the expansion of the scattering wave function on a scattering-state Coulomb-Sturmian basis, the
method yields asymptotically correct wave functions. The convergence, however, is much faster in

the potential separable-expansion method.

PACS number(s): 34.10.+x, 34.80.—i, 24.10.—i

Recently Shakeshaft [1] presented a method for cal-
culating scattering quantities in a Coulomb plus short-
range potential. The regular solution of the Schrodinger
equation and the Coulomb-Green function at a given en-

ergy have been expanded in terms of scattering Coulomb-
Sturmian (CS) functions belonging to the same energy.
This choice of the CS functions ensures that, when the
phase shift is sufficiently well approximated, the solution
possesses the correct Coulomb-like asymptotic behavior.
In the case of a Coulomb plus Yukawa —type potential an
agreement up to two or three significant figures with the
exact value was reached by the aid of a [12, 12] Pade ap-
proximation. To generate an [N, N] Pade approximation
roughly 2N terms in the wave-function expansion on CS
basis are needed.

In the potential separable-expansion method, the
bound-state CS functions have been used for solving
single-channel bound-, resonant- [2, 3], and scattering-
state [4, 5] problems. In this method the potential is

expanded in a separable way, thus the solution of the
Schrodinger equation falls back to the solution of a sys-
tem of algebraic equations. In this Brief Report we

show that if only the short-range potential is expanded
the asymptotics will always be correct even if one uses
bound-state CS functions, provided convergence in phase
shift is reached. So, the potential separable-expansion
method based on bound-state CS functions shares the
most important advantage of the wave-function expan-
sion method based on scattering-state CS functions.

First we sketch the potential separable-expansion
method as it is applied in single-channel scattering-state
calculations. A Coulomb-like potential Vj can be written
in the form

V=V +V
where V is the Coulomb potential and V&' is a short-
range potential. The physical scattering wave func-

tion @&+ (k, r) corresponding to the regular physical

Coulomb function @&
+ (k, r) satisfies the inhomoge-

neous Lippmann-Schwinger equation [6]

IO' '(k)) —I~' " '(h))+&' '"'(h)V'I4"'(&)) (2)

where h = /2ms/h, m is the reduced mess, eud

G& is the radial Coulomb-Green operator; the(c)(+)

branch cut was taken along the positive E axis and k
is positive when E is on the upper rim of the cut.

For the expansion of the short-range potential we
choose the bound-state CS functions, the Sturm-Liouville
solutions to the hydrogen problem at negative energy. In
coordinate representation they are of the following form:

se - 1/2nf
("I"l )= (.,2, 1)

x(2br)'+ exp( —br)I „'+ (2br), (3)

where n is the radial quantum number, L is the Laguerre
polynomial, and b is a parameter, which is related to the
energy in the Sturm-Liouville problem. The functions
(r]nl; b) are orthogonal and form a complete set with re-
spect to the weight function (r]b ~r') = b(r r')/r. Int—ro-
ducing the notation (r~knl; b) = (r~nl; b)/r we can write
the unity operator Xi as

N

a, = »m ) ~anl;b)~N(b;nl]
n=o

N
= »m ) ~nl;b)~N(b;nia].

Vi' — ) ~Anl;b)cr (b;nl~V('~n'l;b)o„, (b;n'lb[,
n, n'=0

(6)

The o factors, which have the property limN ~ o N = 1,
were introduced to suppress the Gibbs oscillations [7].
The choice of 0.„,

1 —exp (—[n(n —N —1)/(N + 1)]2)
1 —exp (—o.~)

(5)

has proved to be very successful in practical applications.
let us write the short-range potential V&' as V&' ——

IliV&'1l. i and then approximate the unity operator ii by
keeping N finite in (4). In this way the short-range po-
tential V&' is approximated by a finite-rank separable po-
tential,
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and Eq. (2) appears as

~QI+ (k)) = ]tP&
+

(k)) + ) GI
+ (k)~Ent;b) (T (b;nl~V&'~n'l;b)o. (b;n'tA~@&+ (k))

n, n =0

Multiplying (7) by (b; ttA[ we get a set of algebraic equa-

tion for the overlap (C)„=(b; nth]QI+ (k)),

(1 —G' "+)V-)C=C( ) (8)

where (~G +J = (h;rrlk~G~
+ (h)(6e't, ;h) end

(~V' )„„=o„(b;nt]V&'~n'L;b)o„, are the Green and

potential matrices, respectively, and (C( ) )„
(b; ntb, ]g&~ )(+)(k)) . The wave function QI+)(k, r) de-
rives as

N

4I+'(» ) = 0I "+'(» )+).(B) g)'. '(k, ),

where B = ~V' C and g&(„(k,r) = (r]GI
+ (k) ~Anl; b)

The difFerence g&+ (k, r) —
Q&

+
(k, r) should be reg-

ular at the origin and should tend to in6nity as the
Coulomb-Jost solution f&

)(+)(k, r), which is the solution
to the Coulomb-Schrodinger equation with the boundary
condition

f(c)(+)(k )
i(kr y—( skag-)

f'~GO
(10)

where p = Zqze m/5 k is the Coulomb parame-

ter. The Coulomb-Green function GI +)(k, r, r') can

be constructed from the functions QI (+)(k, r) and(c)(+)

f")")(k.) ~

G(C)(+) (k g)
e y(C)(+) (k )f(C)(+)(k )

where r& ——min(r, r') and r& ——max(r, r') [6]. We can

see now that the function g&„)(k,r), which is propor-
tional to the integral

dr' Q)
+

(k, r()f(
+ (k, r))(r']b, nt), (12)

0

behaves in the r ~ 0 limit like QI
+ (k, r) and in the

r h oo limit like f&~ )(+)(k, r) So, in th. e potential

separable-expansion method the difference &PI+ (k, r)—
+)(k, r), which is a linear combination of the

functions gI„(k,r), possesses the correct Coulomb-like
asymptotic behavior. This result is independent of
the basis. The asymptotics is determined only by the
Coulomb-Green function.

The advantage of using bound-state CS func-
tions comes up in the calculation of the quanti-

ties (b; tbn, ]GI
+ (k)]bn'l; b), (b; tEn]Q&

+ (k)), and

(r]GI
+

( )k]A nbt) They ca.n be calculated analyi;i-
cally or quasianalytically [2—5]. The short-range poten-

TABLE I. Convergence of the non-Coulombic l = 0 and
t = 1 phase shifts for the potential V( = 2/r+ —4exp( 2r)/r-
mith k = 0.5 as the function of the maximal radial quantum
number N.

0
1
2
3

5
6
7
8
9

10
11
12
13
14
15
16
17

19
20
21
22
23
24

6'p(k)

-1.509004
1.185569
1.352081
1.353765
1.331342
1.348846
1.359452
1.361686
1.362847
1.363527
1.363828
1.364000
1.364108
1.364165
1.364191
1.364203
1.364209
1.364212
1.364213
1.364214
1.364215
1.364215
1.364216
1.364216
1.364216

6g(k)

-0.5115865
-0.7100061
-0.6297025
-0.5592434
-0.5632251
-0.5658368
-0.5603505
-0.5573900
-0.5564093
-0.5558843
-0.5556103
-0.5554950
-0.5554414
-0.5554106
-0.5553928
-0.5553834
-0.5553787
-0.5553760
-0.5553745
-0.5553736
-0.5553731
-0.5553728
-0.5553727
-0.5553726
-0.5553724

Exact 1.364 -0.5554

tial enters into the method via its CS matrix elements.
The method thus becomes rather general: one has to
calculate only the CS matrix elements of the short-range
potential, which can be done, at least numerically, for all
physically reasonable potentials no matter whether they
are local, nonlocal, complex, etc. , and then the rest is
exact and quasianalytic.

This method is not variational. Convergence on a basis
of reasonable size cannot be easily reached without the
o factors, which damp the rather large oscillations of the
phase shift. We have experienced that the optimal o.
value in (5) is n = 6 regardless of the potential and the
state. The parameter b of the CS functions should be of
the same order of magnitude as the characteristic range
of the potential to be expanded. The rate of convergence
is, however, nearly insensitive to the choice of b within a
rather broad interval.

To demonstrate the power of the potential separable-
expansion method based on bound-state CS functions
in comparison with the method of [1] we calculate the
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same physical example: the l = 0 and 1 non-Coulombic
phase shifts b for the Coulomb-like potential Vj = —2/r+
4exp( —2r)/r at k = 0.5. The calculations were per-
formed with the computer code of Ref. [5]. The param-
eter b was chosen as b = 4, which is about the optimum
in this case. The results are shown in Table I. The
convergence is considerably faster than in [1] and much
higher accuracy has been achieved with the same number
of basis functions; the best values in [1] are bo(k) = 1.35
and bq(k) = —0.555. Reference [1] gives the exact val-

ues up to four significant figures as 6o(k) = 1.364 and
bq(k) = —0.5%4. The quasimonotonic nature of the
convergence exhibited in Table I shows the power of the
damping factor (5).

We can conclude by saying that the potential
separable-expansion method based on the bound-state
CS functions, similarly to the wave-function expansion
method based on the scattering-state CS functions, pre-
serves the correct Coulomb-like asymptotic behavior of

the solution. From the numerical point of view it seems
to be more advantageous. The codes of Refs. [3] and

[5] are tailored for accurate and fast computations. The
generalization of the method for multichannel problems
with nonorthogonal channels is under way [8].

Note added in proof. The author is thankful to Pro-
fessor R. Shakeshaft for calling his attention to recent
work [R.M. Potvliege and R. Shakeshaft, J. Phys. B 21,
L645 (1988)], where the method of [1] has significantly
been improved by using basis functions with appropri-
ately chosen complex wave numbers. A double basis
set, involving two different wave numbers, has proved
to be particularly efFective. It seems, however, that in
this method the solution does not possess the correct
Coulomb-like asymptotic behavior.

The author is indebted to B. Gyarmati for useful dis-
cussions. The work has been supported by OTKA under
Contract No. F4305.
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