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Weakly bound ground states in three-body Coulomb systems with unit charges
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The stability of weakly bound ground states, with zero total angular momentum, in three-body
Coulomb systems with unit charges, is studied by means of highly accurate variational calculations.
Weakly bound ground states are predicted for a number of systems, including d+ t +p, t +K+ m.

m+p+p, and n-+ p+m- .

PACS number(s): 31.10.+z, 36.10.—k, 31.20.Tz

I. INTRODUCTION

Three-body Coulomb systems have a unique role in
nonrelativistic quantum mechanics. They are the sim-
plest nontrivial systems which can be treated to extreme-
ly high accuracy by approximate quantum-mechanical
methods even though they cannot be solved in closed
form.

Consider the bound states of three point particles X, Y,
and Z with unit charges interacting via Coulomb forces.
Without loss of generality, the particles can be chosen to
be X+, Y+, and Z because charges of both signs are
needed to obtain bound states, and because charge-
conjugation symmetry implies that X+ Y+Z is
equivalent to X Y Z+. The total and binding energies
of X+Y+Z depend only on the particle masses m~,
m ~, and mz, respectively, or, more conveniently, the di-
mensionless coordinates v;=m;/g m (i =X, Y,Z).
Only two of the v, are independent since they sum to uni-

ty; we choose vz and vz. Thus an arbitrary three-body
system with unit charges can be represented by a point
inside the v triangle with unit altitude [1]. The systems
with stable states are drawn as points inside the so-called
"region of stability. " The boundary of this stability re-
gion is characterized by the vanishing of the binding en-

ergy and therefore by the equation

&L.(vx vz)=o

where L denotes the total angular momentum, and v is
the "vibrational excitation" or "principal" quantum
number.

A partial understanding of the criteria for stable bound
states in three-body Coulomb systems with unit charges
has emerged from previous studies, primarily numerical
calculations [1—6]. Stable ground states with L =0 and
v=0 exist for three-body Coulomb systems only if the
masses of the positive particles are comparable, i.e.,
m& =mz so that a neutral cluster formed from Z and
the heavier positively charged particle can be polarized
suKciently by the third particle. Moreover, stable excit-
ed states (L )O, v) 1) exist only when the mass of the
negative particle is relatively small in comparison with
the masses of the positive ions. The ground state of
symmetrical systems such as X+X+Z is always bound.

However, the location of the boundary of stability
needs further refinement especially in the form of new nu-

merical results on prethreshold or weakly bound states
which lie near the perimeter of the stability region.
Moreover, weakly bound states are of experimental in-
terest as well. Such systems have a sharp cluster struc-
ture; that is, when m~~mz they can be modeled with

very good accuracy by two-body systems where the ion
Y+ moves in the field of the neutral cluster [X+Z ].
Weakly bound states, and even resonances, can be used to
conserve a number of exotic species [7,8]. We do not
wish to discuss here such well-known examples as p ca-
talysis of nuclear reactions where the weakly bound (l, l)
state of system d+t+p plays a remarkable role [9]. As
a final motivation, we note that the presence of a weakly
bound state in X+Y+Z can significantly distort the
cross section for the scattering of Y+ from the unstable
neutral moiety N which decays into X+ and Z (as in
the K meson) with a characteristic decay time compara-
ble to the total collision time [10].

The purpose of this paper is to report numerical results
on some novel weakly bound ground states (L =O, v=O)
of three-body Coulomb systems X+Y+Z to learn more
about the border of stability. All three-body Coulomb
systems with unit charges are relatively weakly bound;
the binding energy is typically 5 —10% of the total ener-

gy. We shall call a state weakly bound only if the binding
energy E is less than 1% of the total energy E of the sys-
tem, that is, when s/E =s/(E+E, z ) (0.01 where E,z is

the threshold or dissociation energy for the
X+Y+Z:X+Z + Y+ process.

II. NUMERICAL RESULTS

All our calculations are variational. The ansatz is

M

( 1+fiF l2 ) X Ck exp( ~kr32 ~kr31 Ykr12 )
k =1

where P,2 is a permutation operator, and 6=0 for the
nonsymmetrical systems considered in this work. The
nonlinear parameters are chosen by a pseudorandom al-

gorithm first used by Thakkar and Smith [11]. Further
details can be found elsewhere [1,11]. The masses of the
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where lcL is a characteristic length of the [t+p ] cluster
(t -p distance), while l„, is a characteristic length of

TABLE I. Total energies in p.a.u. ("proton" atomic units
with m~ = 1, and 1 p.a.u. of energy =8.005 16345 0) and bind-

ing energies in eV (1 eV =0.16021773 aJ) for the ground S state
of d+t+p . The threshold energy =0.37480334777 p.a.u. To-
tal energies for the model (231) system defined by mg =2Nlz and
m z =3rnz are also given in quasiatomic units (mz = 1); the
thresold energy is 0.375. M is the number of basis functions.

Total energy
d+t+p

Binding energy
d+t+p

Total energy
(231) system

proton (p), deuteron (d), triton (t), muon (p), and the K
and m. mesons, relative to the electron mass m„were tak-
en from CODATA 1986 to be [16]

m /m, = 1836.152 701, md /m, =3670.483 014,

m, /m, =5496.921 58, rn „/m, =206.768 262,

mx /m, =966.1521, m /m, =273. 126 95 .

The conversion factor 2 Ry = 27.2113961 eV was used
to obtain binding energies from total energies.

Table I shows that the deuteron-triton-antiproton sys-
tem 4+t+p has a bound ground state, although it obvi-
ously does not have any other bound states. The table
also includes results for the model (231) system with
m+=2mz and m+=3mz for comparison. Since particle
masses are subject to experimental revision, we deter-
mined the constants a=0.224 and P=0.068 (in "proton
atomic units" where mz = 1) for the conversion formula

E'(d+t+p )=E(d+t+p )+a(m '/m, '
m /m—, )

+P(m '/md —
m~ /md ),

where the unprimed quantities are current values and
primed quantities are revised ones. a»P lends further
support to the cluster structure [t+p ]+d+. The physi-
cal properties of d+t+p are obviously of great interest
since it is an anomalously weakly bound system with rela-
tively heavy particles; the binding energy = —319 eV,
while the value of the potential hole is = —40000 eV.
Moreover, it has two competing decay channels: annihila-
tion with width I ~,

d+t+p =d++n+n+1876. 56 MeV,

and nuclear fusion with width I f,
d+t+p =a2++n+p +17.559 MeV .

The ratio of these widths is approximately

100
200
300
400
500
600
700

—106.898 755
—107.566 339
—107.572 215
—107.572 704
—107.572 748
—107.572 766
—107.572 768

—69.712 353
—70.978 879
—70.999 516
—71.002 585
—71.002 799
—71.002 900
—71.002 933

—60.284 505
—61.803 549
—61.839 138
—61.844 488
—61.844 862
—61.845 036
—61.845 101

d+t+p (d+-t+ distance). Analysis of the neutron spec-
tra, produced when this system decays, could lead to
direct information about the geometry of the system and
vice versa. Note that the binding energies of the bound
states in the analogous symmetrical systems d+d+p
and t+t+p which are not weakly bound can easily be
determined with good accuracy from the data of Table I
in Frolov and Bishop [1].

Results for the mesonic systems p+E+n. , t+K+m
and d+K+m. are presented in Table II, and for
p+EC+p, d+E+p, and t+K+p in Table III. These
states turn out not to be weakly bound in the sense that
the binding energies are greater than l%%uo of the total en-
ergies. However, it is interesting to note the decrease in
the s/E ratio as p+ is replaced by d+ and then t+.

Table IV lists results for three-body Coulomb systems
containing both muons and m. rnesons. Both systems are
remarkably weakly bound. It is very interesting that
there are no other known bound states in nonsymmetrical
systems with muons and n. and E rnesons, although the
corresponding symmetrical systems must have a bound
ground state. We do not consider the latter here, since
they are not weakly bound. Some results for such
symmetrical systems can be found elsewhere [12]. More-
over, energies for Ps -like systems, such as p p p, can
be obtained by simple rescaling of the Ps energies, for
example, s(p+p p )=m„s(Ps ). The results presented
in Tables II-IV may be useful in meson physics because a
number of such systems have been observed in nuclear
experiments; see, for example, Refs. [13,14].

TABLE III. Binding energies (in eV) of the ground states of
p+K+p, d+K+p, and t+K+p which have threshold ener-
gies =2528.4940860, 3458.7140030, and 3540.180973 1 eV, re-
spectively.

p+K+p d+K+p

TABLE II. Binding energies (in eV) for the ground states of
p+K+m. , d+K+m. , and t+K+m. which have threshold ener-
gies =3234.893 7513 eV, 3458.7140030 eV, and 3540.180973 1

eV, respectively.

100
200
300
400
500
600
700

—0.381 188 995 6
—0.381 190860 6
—0.381 190898 2
—0.381 190900 7
—0.381 1909012
—0.381 1909014
—0.381 1909015

—319.054 289
—319.147 471
—319.149 348
—319.149473
—319.149 500
—319.149 509
—319.149 514

—0.381 363 214
—0.381 365 111
—0.381 365 149
—0.381 365 152
—0.381 365 153
—0.381 365 153
—0.381 365 153

100
200
300
400
500
600
700

—122.889 382
—122.978 323
—122.979448
—122.979 520
—122.979 526
—122.979 528
—122.979 528

—98.305 775
—98.406 403
—98.408 099
—98.408 176
—98.408 185
—98.408 187
—98.408 188

—91.796 119
—91.913322
—91.915 649
—91.915 731
—91.915 741
—91.915 743
—91.915 744
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TABLE IV. Binding energies (in eV) of the ground states of
m. +p+p and ~+p m which have threshold energies
= 1601.116 1709 eV and 1858.041 4268 eV, respectively.

[(2pxz &) '[ —tl /Br +l(1+ I)jr ]+V(r)]gt(r)

=Ept(r), (2)

200
300
400
500
600
700
800

—8.970 36
—9.683 52
—9.71967
—9.746 14
—9.747 22
—9.748 00
—9.748 52

III. DISCUSSION

—2.264 72
—4.070 82
—4.222 03
—4.359 05
—4.368 96
—4.376 02
—4.382 34

where p~z r=(m~+mz)mr/(mx+m„+mz) is the re-
duced mass of the cluster [X+Z ] and the ion Y+, and
E and I are the binding energy and total angular momen-
tum of the underlying three-body system. Then the num-
ber of bound S states (N) in the initial three-body problem
is the number of bound S states for the effective two-body
system which can be obtained via the Bargman theorem
[15]:

&=2pxz, v f rl V(r)I« .
0

As mentioned above, a three-body Coulomb system
with unit charges such as X+F+Z has a bound state if
the lightest positive ion F+ can polarize the neutral clus-
ter [X+Z ] sufficiently. The ground state of an arbitrary
X+Y+Z can be considered [1] a weakly bound state of
the two-body system consisting of the neutral cluster
[X+Z ] and the ion Y+ This . simplification allows us to
introduce a model two-body potential that, at least ini-
tially, can be chosen as a central potential V(r) that does
not depend on the angular momentum l. This reduces
the three-body problem to the two-body radial
Schrodinger equation

It is possible, in principle, to construct a model potential
V(r) by using Eqs. (2) and (3) with the results of many
binding energy calculations for bound states of three-
body Coulomb systems with unit charges, including
prethreshold states. Then the potential can be used in the
correlation of scattering data. Such an investigation
would be worth undertaking.
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