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Finite violation of a Bell inequality for arbitrarily large spin
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A pair of spin- j particles, prepared in a singlet state, move away &om each other and are examined
by two distant observers. A simple experimental procedure can produce a 24% violation of a Bell
inequality, for arbitrarily large j.
PACS number(s): 03.65.Bz

Bell's inequality [1] is an upper bound on the correla-
tions of distant events. The only assumption needed to
derive that inequality is the principe/e of locaL causes—
also called Einstein locality —which asserts that events
occurring in a given space-time region are independent
of external parameters that may be controlled, at the
same moment, by agents located in distant space-time
regions [2].

The violation of Bell's inequality by quantum theory is
the most spectacular departure of quantum physics from
the canons of classical realism. It is therefore interesting
to examine whether quantum theory still asymptotically
satisfies Bell's inequality in the limit of large quantum
numbers, a limit which is commonly associated with the
emergence of classical properties. It was shown long ago
by Garg and Mermin [3] that a pair of spin-j particles,
in a singlet state, produced correlations violating Bell' s
inequality, for spin measurements along nearly all pairs
of directions. However, the magnitude of the violation
vanished exponentially for large spin. Garg and Mermin
conjectured (see footnote 15 of their Letter) that this
vanishing might be due to the use of slowly varying func-
tions of the spin components m, making their method
insensitive to the rapidly varying part of the quantum
correlations. The large-j limit was also investigated by
other authors [4—6], who achieved various degrees of im-
provement.

In this Brief Report, I describe a simple gedanken ex-
periment, involving two spin- j particles in a singlet state.
These particles are examined by two distant observers,
without mutual interaction. Each observer records the
quantity (—1)s = +1, which is a rapidly varying func-
tion of m. For an optimal choice of macroscopic pa-
rameters controlled by the observers, and for j -+ oo,
the Clauser-Horne-Shimony-Holt (CHSH) inequality [7]
(which is an experimentally convenient variant of Bell' s
original inequality) is violated by a constant amount:
2.481 in lieu of 2, the classical upper bound.

The experiment is performed as follows: The two spin-

j particles are prepared in an unstable singlet state [8],

I@) =(2j+1) ' ' ) (—1)' ]m) ] —m}, (1)

and fiy apart along the +2: directions (collimators elimi-

nate those particles going toward other directions). The
two distant observers, labeled 1 and 2, apply to their par-
ticles arbitrary torques around the direction of motion;
for example, they make them pass through solenoids, in
which each observer can control the magnetic field. The
state of the pair thus becomes

e
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because J2~[4'} = —Jqe]@'} for a singlet state.
Each observer then performs a Stern-Gerlach-type ex-

periment, to measure J~, and J2„respectively. There is
no fundamental limitation to the resolution that can be
achieved, because it is always possible, at least in princi-
ple, to position the detectors so far away from the Stern-
Gerlach magnets that the 2j+1 beams are well separated,
and the corresponding m can be precisely known. (An
equivalent experiment would be to apply no torque, and
to rotate the Stern-Gerlach magnets, together with all
the detectors, by angles 8q and 82 .)

The Stern-Gerlach experiment measures (among other
things) the following dichotomic variable:

j
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m=- j
(3)

with eigenvalues +1. The correlation of the values ob-
tained by the two observers for these dichotomic variables
is the expectation value of their product:

i (8)=e ' (4[e' '*e ' '*e ' "e ' '*~4}, (4)

where H = H2 —Hp, for brevity. Note that e ' ~" and
e 's~' commute, that e '~ "[4)= e'~~" ]8} (because
[@}is a singlet state), and that e ' generates a rota-
tion by an angle x around the z axis. We thus have

and therefore

g(g) e2wij (@,
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thanks to rotational invariance. Together with (1), this
gives
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t-"(8) =(2j+1) 'e' *' ) (—1)'' &(m]g (—rnite'" ]rn) g ]
—m), (7)

= (—1) ~ sin[(2j+1)8]/(2j+ 1) sin8. (8)

We can now apply the CHSH inequality: If the first
observer has a choice between parameters 8q and 8s, and
the second observer between 82 and 84, then it is a con-
sequence of local realism that [7]

iC(8g —8z) + C(8z —8s)

+C(8, -8,) -C(8. -8,)] & 2. (9)

Let us take 8q —82 = 82 8s = 8s—84 = z—/(2j+1). When
j ~ oo, the left-hand side of (9) tends to a constant,
whose maximum value is obtained for z = 1.054:

3 sinx sinsx
x 3$ (10)

Thus, if the resolution of our instruments is good
enough for discriminating between consecutive values of
m, their readings may strongly violate classical local re-
alism. This conclusion agrees with a statement by Mer-
min and Schwarz [9]: ".. . no matter how large j may be,
measurements that discriminate between the 2j+1 values
of m are inherently nonclassical. There is no reason to

expect classical behavior to be approached in a uniform
manner. "

These results can be considered as complementary to
those of preceding authors [3—6]. Here, the magnitude of
the violation (that is the rntio of the quantum correlation
to the maximal classical one) tends to a constant, which
is appreciably larger than l. On the other hand, the
range of parameters 8 for which this violation is achieved
becomes vanishingly small for large j.

After completion of this work, I was informed by N.
Gisin that he had found other, more sophisticated oper-
ators, giving for the same [4) the maximal violation of
the CHSH inequality allowed by quantum theory [10,11],
namely 2~2. However, an experimental realization of
Gisin's matrices is much more complicated than the sim-
ple experiment proposed here.¹teadded in proof. During editorial processing of this
paper, Refs. [12] and [13] appeared, which deal with the
same subject.
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