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Wave-function simulation of the master equation in terms of quantum jumps is illustrated for
vacuum, thermal, and squeezed reservoirs. We discuss simulation techniques for (i) atomic density
matrices, and resonance fluorescence and weak-field absorption spectra of atoms, (ii) decay of a
two-level system in a squeezed vacuum, and (iii) a strongly coupled atom-cavity system driven by

thermal light.
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I. INTRODUCTION

Damping and fluctuations in quantum mechanics can
be described by coupling a system to a heat bath. Elimi-
nating the heat bath in the Markov approximation leads
to a master equation for the reduced density operator of
the system [1]. In a series of recent papers simulation of
the quantum master equation in terms of system wave
functions has been proposed [2-6]. Apart from the inter-
esting conceptual questions that arise in the simulation
of quantum noise, the problem is of significant practi-
cal interest in seeking a solution of the master equation
for systems with a large number of degrees of freedom
close to the quantum limit, in particular in the context
of quantum optics. Our work in this context has been
based on propagating a system wave function with a non-
Hermitian (damped) system Hamiltonian and simulating
a sequence of quantum jumps [7] of the system according
to a delay function for the occurrence of the “next jump”
(2, 3]. Dalibard, Castin, and Mglmer [4] and Carmichael
(5] have formulated a simulation method in which a se-
quence of fictitious measurements are performed at small
discrete (fixed) time steps.

In Ref. [2] we have presented a simulation approach for
an atomic system undergoing spontaneous emission (an
atom driven by a laser and coupled to vacuum modes)
including mechanical light effects. This work has been
based on reinterpreting Mollow’s pure state analysis of
resonant light scattering [8] in terms of a simulation pre-
scription. In Ref. [3] we have derived a general formalism
for vacuum, thermal, and squeezed reservoirs from the
point of view of the Srinivas-Davies theory of continu-
ous measurements [9], and have connected this approach
to an Ito calculus for a stochastic Schrédinger equation.
The purpose of the present paper is to illustrate this
wave-function simulation method for vacuum, thermal,
and squeezed noise by specific examples in a quantum-
optics context. In addition, we discuss in some detail a
simulation procedure for system spectra and correlation
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functions.

The paper is organized as follows. In Sec. II we give
a brief summary of the simulation method. In Sec. III
we present the calculation of photon statistics [1,10], and
the Mollow resonance fluorescence and absorption spec-
trum of a two-level system driven by a strong laser field
[11,12]. Our approach to calculating the spectra relies
on introducing a coupling of the system to weak (exter-
nal) probe fields. This gives rise to a set of equations
for the first-order perturbed wave functions which are
propagated according to a sequence of quantum jumps
dictated by the particular realization of the zeroth-order
system wave function (see also Ref. [8]). In Sec. IV we
simulate quantum jumps for a two-level system coupled
to a squeezed vacuum which leads to inhibition of phase
decay [13]. Finally, in Sec. V we illustrate simulations for
a cavity QED problem [14], namely a single damped two-
level system strongly coupled to a cavity mode which is
driven by a broadband thermal light field [15]. We have
chosen these particular examples because (i) they pro-
vide a spectrum of typical quantum-optics questions and
problems, and (ii) exact solutions are available which al-
low an assessment of the accuracy and reliability of the
simulation methods. Appendixes A-D contain techni-
cal details on the simulation of finite resolution spectra,
subtraction of the coherent part of the spectrum and sim-
ulation of system correlation functions.

II. WAVE-FUNCTION SIMULATION
OF THE MASTER EQUATION

In this section we give a brief summary of the sim-
ulation procedure for vacuum, thermal, and squeezed
reservoirs discussed in detail in our preceding paper [3].
Section II A summarizes the wave-function simulation in
terms of quantum jumps for a general master equation,
while Secs. IIB and IIC give specific results for a vac-
uum, thermal, and squeezed heat bath.
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A. General formalism

The master equation for a reduced system density op-
erator p(t) is, in its most general form [1],

/5 = —i [Hsysrp]
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with Hgys a Hermitian operator (the system Hamiltonian
divided by ), a, a set of system operators where the
multidimensional index < identifies a decay channel of
the system, and A, > 0. We rewrite Eq. (1) as
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with

Ap =i (Heap - pHY;) (3)
where

He = Hoys — z% > Aala, @)

¥

is a non-Hermitian “effective” Hamiltonian, and

Byp = )\.,a.,pa,’; . ()

p=Ap+ Z B,p (2)  The time evolution of p(t) can be written in the form
Y
i
L) t tn t2
p(t) = Z Z / din din-1... Aty S, By, Statn_y ** * Staty By Stato P(t0) (6)
n=071,..,n * 0 to to
[
ith
W p[to,t)(tm')’n;---;tly')’l)
Suaplta) = e Hen(t=t0) p(tg) ¢Haut=0) . (7)

[In writing Eq. (7) we have assumed for simplicity that
H,gy, is time independent.)

Following arguments given in Refs. [2, 3] we inter-
pret (6) as the time evolution of a system in terms of
“quantum jumps,” and a nonunitary (dissipative) evolu-
tion between these jumps. The indicesn =0,1,2, ... and
,--.,7n in Eq. (6) identify the contributions to the den-
sity matrix from the subensemble which has undergone
exactly n quantum jumps at times ¢t > ¢, > --- >t > tg
with a sequence of realizations ~;,...,7,. Each of the
quantum jumps is associated with the action of the oper-
ator B, (1/Aya,), while the time evolution between the
jumps is described by Sty (Hes). The exclusive prob-
ability density for the occurrence of exactly n quantum
jumps (t1,71), ..., (tn, o) during the time interval [to, t)
is

]

I DS

a n=07v1,...,Yn
where the |@(t|tn,Yn;-..;@)) are a hierarchy of system
wave functions that obey

.d
i P (tltms 1o ) = Hoalip(tltm, i) (62 )
(11)

with initial condition
le(tol@)) = |a) .
At the times of the quantum jumps

|‘p(tﬂ,tm Tny - - )) =V ’\‘Yna"yn "P(t'nltn—ly Tn—-1;-- ))
(13)

(12)

t tn t2
/ dt'n./ dtn—1~--/ dty |@(tltn, Yn; - - 381715 @)Y (@(ttnTns - - - 3 E171; )| Pa
to to to

= 'I‘I‘sys [Sgt" B7n St,.tﬂ_1 e B‘YI St;top(to)] . (8)

Furthermore,

p[to,t)(t’7‘tnv Tny--- ;t1171)

_ Trsys [B'ystt,, B'y,. St,.t.,_l t B‘yl Stltop(to)]
Trsys [B'y,. Stntn—l e B‘Yx Stxtop(t())]

is the conditional density that, given the sequence of
quantum jumps 7vi,...,7Yn, has occurred at times tj,
t2,...,tn, respectively, the next quantum jump will be
at time ¢ with realization .

A wave-function representation of p(t) can be con-
structed by diagonalizing the initial density operator,
p(to) = LaPala)(al (0 < pa <1 3, pa = 1), and
rewriting Eq. (6) as

9)

(10)

[
and the wave function is reduced according to the action

of the operator /A, a.,, [16)].

The construction (10) suggests a wave function simu-
lation of the reduced system density matrix in terms of
Monte Carlo system wave functions |¢,t) as follows.

(i) We choose a normalized initial system wave function
|¢, to) = |a) according to the probabilities p,, and set the
counter n for the number of quantum jumps equal to zero
(n =0).

(ii) We propagate |¢,t) according to

. d
i216,8) = Heald,?) (14)

and simulate the time ¢t and decay channel v of the next
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quantum jump according to the conditional density

p(t,7) = [VAvaql8, )7 (> tn). (15)

One possible way to determine ¢ and <y is to proceed in
two steps.

Step A: We find a decay time ¢ according to the delay
function p(t) = 3__ p(t, ). This is conveniently done by
drawing a random number 0 < r < 1 from a uniform
distribution and monitoring the norm of |¢,t) until

t
dt'p(t') =1-| ¢, t)1> =7 € [0,1]. (16)

tn
Step B: The decay channel v is determined from the

conditional density p(v|t) = p(t,v)/ 3, p(t,7) for the
given t.

Increasing n — n+1 we identify t, = ¢t and v, = v with
the decay time and decay channel, respectively, and find
the normalized wave function after the quantum jump
according to

lo(th)) = \/X;:a'yn

6(t))
Dl GE )

(t* denote the times before and after the jump) and con-
tinue integrating (14) up to the next jump time, i.e., re-
turn to the beginning of (ii). Note that we normalize
|, t) after the quantum jump.

(iii) An approximation for the system density matrix is
obtained by repeating these simulations in steps (i) and
(ii) to obtain

¢, t)(¢>,tl>>
t) = ({ ————)), 18
0= (e -
where (( )) denotes an average over the different real-
izations of system wave functions.

The master equation (1) remains invariant under the
transformation

Vi = Ry = Y Roa/Aate

with R a unitary matrix. In this sense the jump operators
for the quantum jumps in Eq. (17) are not unique, and
there is infinitely many simulation prescriptions which
lead to the same density matrix. Note that it is even
possible to employ a different, unitarily equivalent set of
jump operators at each quantum jump. Determination
of the “next jump time” remains invariant under these
transformations.

System correlation functions and spectra can be cal-
culated by introducing weak probe fields in the system
Hamiltonian Hgys. This will be illustrated in the context
of specific examples below.

(19)

B. Master equation for a vacuum, thermal,
and squeezed reservoir

The standard master equation for a system interacting
with a broadband squeezed vacuum has the form
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. . 1
Psys = —i[Hgys, p] + "2"7(N + 1)(2cpct - CTCP - pctc)
1
+-2-'7N(2cfpc —cctp — pech)
1
—§7M(2c1‘pc“ —cletp — peteh)

—%7M"(2cpc — ccp — pec). (20)
Here ~ is related to the system-reservoir coupling. The
parameter N is the number of quanta per mode in the
reservoir and M with N(N+1) > |M|? is a measure of the
squeezing. c is a system lowering operator as it appears in
the system-field coupling. To identify the decay channels
~ of the preceding section we must rewrite Eq. (20) in
the normal form (1).

With the identifications ¢; = ¢, ¢; = ¢!, and by defin-
ing a field correlation matrix

N+1 —M*
)= (Y3 V) (21)
the damping term in Eq. (20) is
1 2
Ap=73 D % (2qp0} —cleip - PC;'Ci) : (22)

1,j=1

Diagonalizing the Hermitian field correlation matrix +;;
by a unitary transformation V.,

2
Yii = 3 Viyhy (VD) (5,5=1,2) (23)

r=1

with eigenvalues A, > 0, and defining

2
ay = \/-):,_Z aViy (r=12), (24)
i=1
we find
2 1 1
Ap= Z (a.,pafy - Ea:‘ya—,p - §pa];a7) . (25)
y=1

Explicitly, in the present case we have

1,1
A12=7 (N+ 7% 5\/1+4|M12> ,

(26)
cos§ ei®/2 —sin§ e~1¢/2
V =
sin§ e*#¢/2  cos § ei¢/?
with tand = 2|M| and M = —|M|e**. Off-diagonal

terms in Vj, are introduced by squeezing.

Special cases of the transformation (16), which gives
the prescription for quantum jumps in the simulations
according to Eq. (17), are as follows.

(i) Vacuum (N = M = 0): we find A\; =~ so that

ay ==cC. (27)

Thus spontaneous emission corresponds to downward
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transitions, while in view of A; = 0 there is no coupling
to the second channel.

(ii) Thermal field (N # 0,M = 0): we have \; =
Y(N + 1), A2 =N so that

a1=¢, az=cl, (28)

which corresponds to downward and upward quantum
jumps induced by ¢ and cf, respectively.

(iii) Pure state squeezed vacuum (N(N + 1) = |M|?):
we find A\; = 2y(N + %), Ao = 0 with

a; = (\/N-i— 1e7/2 ¢ 4 /N /2 c"/\/2N+1) ,
(29)

which is a phase sensitive superposition of a down and
up transition. Furthermore, we have again A\; = 0, so
that there is no coupling to the second decay channel.

C. Stochastic Schrédinger equation for vacuum,
thermal, and squeezed input fields

The master equation (20) can be derived from the
stochastic Schrédinger equation [3, 17]

1
dlp,t) = { —iHysdt — 5y (N +1)cte + Nect
—Mctet — M*ccdt
+/AdB! (e - VTIB)E e, (30

where dB and dB' should be interpreted as Wiener noise
increments with stochastic integration in the Ito sense
(i.e., pointing to the future) obeying the Ito rules

dt? = dB(t)dt = dtdB(t) = dB(t)dt = dtdB'(t) =0,
dB%(t) = Mdt,

dBt(t)? = M*dt, (31)
dB(t)dB!(t) = (N + 1)dt ,

dBf(t)dB(t) = Ndt.

The infinitesimal time-evolution operator correspond-
ing to the Schrédinger equation (30) is

Ut + dt,t) = exp [~iHsysdt + /7dB' (t)c — y/7dB(t)c']
=1 — iHgyedt — %’y[(N +1)cfe+ Nect
—Mctet — M*ccldt
+y7dB (t)c — \/7dB(t)c! .

Following the Ito rules it is straightforward to obtain
an equation for the density operator |p,t){(yp,t| which
upon tracing over the field modes reduces to (20). Details
of this procedure can be found in Ref. [3].

III. TWO-LEVEL SYSTEM COUPLED
TO VACUUM MODES

In this section we derive a simulation procedure for
the weak field absorption spectrum and spectrum of res-

onance fluorescence of a two-level system driven by a
strong pump field. Analytical expressions as well as a
discussion of the various physical features of these spec-
tra can be found, for example, in Refs. [8,11,12].

A. Optical Bloch equations

We consider a two-level system in the presence of a
strong classical electromagnetic field with amplitude £(t)
and frequency w. The Schrédinger equation for the wave
function |y, t) in the product Hilbert space of the atom
and the radiation field is, according to Ref. (3],

dlg,t) = —iHeg|p, t)dt + /7 dBT (t)o " |p,t),  (32)
with

Hop— (—A _ %m) oo~ 3 (ot +07),  (33)

which is a special case of the stochastic Schrodinger equa-
tion (30) with N = M = 0. Here Q = 2yu|&| is the
Rabi frequency with p the dipole moment of the atom,
A is the detuning of the laser, and 0% are Pauli ma-
trices. The Schrédinger equation is written in a frame
rotating at the laser frequency. The noise term propor-
tional to dB*(t) corresponds to the generation of pho-
tons by spontaneous emission (see [3]). Equation (32) as-
sumes a one-dimensional bath of radiation modes which
in the present context gives results identical to a three-
dimensional model.

The equation for the density matrix 4(t) = |¢,t) (e, t|
(in the product Hilbert space of the atom and the radia-
tion field) is given by

dp(t) = —i[Hea p(t) — p(t) Hlgldt
+AldB' (t)o~ 4(t) + b(t)o* dB(t)]
+~dB'(t)o~ p(t)otdB(t), (34)

from which we derive, using dB(t)dB' (t) = dt, the opti-
cal Bloch equations

d

d—f =—i(Heg p—p Hlg) +v0 pot (35)
for the reduced atomic density matrix p = Trp{g} (Trp
is the trace over the radiation field). Comparison of Eq.
(1) with Eq. (35) shows that in the present example we
have a single decay channel (corresponding to sponta-
neous emission). The decay is accompanied by a transi-
tion of the electron from the excited atomic state to the
ground level (v/Aya; = \/707).

For the present case the Monte Carlo procedure of Sec.
II A agrees with the formalism discussed in detail in one
of our previous papers [2] where the simulation results
are compared with the exact solution of the optical Bloch
equations for the two-level system. Our simulations are
based on determining the next emission time from the
delay function p(t). In Fig. 1 we show a comparison of
a histogram distribution of decay times in a typical sim-
ulation run and the analytical result for p(t) (solid line)
for A = 0 and © = 3v. The time evolution of p(t) shows
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FIG. 1. Comparison of a histogram distribution of decay
times in a typical simulation run and the analytical result for
the delay function p(t) (solid line) for A = 0 and Q = 3.

damped Rabi oscillations. Furthermore, as part of our
simulations we obtain information on the photon statis-
tics of the emitted light. In Fig. 2 we plot as an exam-
ple the simulation results and the analytical expressions
(solid line) for the Mandel @ parameter as a function of
detuning A (Q = v). The Mandel parameter is defined
as

M=1+Q, (36)

with n the number of emitted photons. Q is a measure
of the deviation from Poisson statistics, with Q < 0 and
@ > 0 corresponding to sub-top and super-Poissonian
statistics, respectively [10].

B. Absorption spectrum

We now apply a small probe field to the two-level sys-
tem. The corresponding effective Hamiltonian is

0.2 : : : .
0.1 ] ) ]
or
0.1+
0.2
0.3}
0.4}
05+
0.6}

0.7
4 3 2

o 1 2 3 4
AVAS
FIG. 2. Mandel Q parameter as a function of detuning

for Q = «; crosses indicate simulation results, solid lines cor-
respond to the analytical solution for Q.
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3 6Q . ]
Heff(t) = Heg — _2_ (O’+ e—z(ut+n) +o e'“(VH'fI)) ’
(37)

where 6Q = 2u|6€| and n are the Rabi frequency and
phase of the probe field, respectively; v is the detuning
between the probe and pump field frequencies. With the
ansatz

60 »
lp,t) = |@o,t) + > (e 1(ut+n)lﬂi1t)

+ e+i(ut+"l) Iﬁi,t)) +0 (5Q2)
(38)
we derive from Eq. (32) for |p,t) the equations
dlwo, t) = —iHest |¢o,t)dt + /7 dB(t)o ™ |po,t) ,
(39)
d|B%,t) = —i(Her F v)|BL, t)dt + /7 dB' (t)o |64, ¢)
+’idi|(p0, t)dt .

An analogous expansion for the total atom plus field den-
sity matrix 4(t) = |p,t){p, t| is
~ o 6Q . s
p(E) = po(t) + 5[ (t) e 47
+p-(t) e M 10 (502) |, (40)
with
po(t) = o, t){pot| ,
(41)
P (t) =16, t) (o, t| + |0, t) (B, t].
This leads to the following equation for the first-order
perturbed density matrices pi:
dps = ~i (Henps — puHlg 7 v ) dt
+y7 [dB'(t)o~ px + p+ o dB(2)]
+vdB'(t)o~ px ot dB(t) +1i [0F, po| dt, (42)
while the equation for the zeroth-order term gy is identi-
cal to Eq. (34). By tracing over the radiation field and
using dB(t)dB' (t) = dt, we obtain
Po=—1 (Heﬁ Po — Po H:ff) +v0" poo™,
(43)
pr =—1 (Heff P+ — P+ ng F VP:!:)
+y0" px ot +i [oi, po] .
The rate of absorption from the probe beam is given
by ([8,11])
—i6Q2

W)= 1

Tra {o" p_(t)} +cc. (t—o00),
(44)

or in terms of |8Y4,t) and |po, t)
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W(v) = ({0, tlo™ 182, t) + (B, tlo |0, t))

+c.c. (t— o0), (45)

where the first and second terms correspond to induced
emission and absorption, respectively. In deriving (44)
and (45) we have averaged over the phase 1 of the probe
laser [11]. For completness we mention that the above
expression for W(v) can be rewritten in the form

2 t ,
W) = g?— /0 dt’ em (=) ([aF(t), 07 (t')]) + c.c.

(t = 00), (46)
which is the Fourier transform of the two-time correlation
function for o*(t). Equation (46) follows from Eq. (44)
with the help of the quantum fluctuation regression the-
orem. Analytical expressions for W(v) can be found in
Ref. [11].

From the above considerations we derive the following
simulation:

69

|#,8) = |60, ) + - < |BY, ty e=it+m)

+|BY, t) e+"<"t+">>; (47)

we get for the zeroth- and first-order contributions

d|o, t .
Iq;(; i = —iHes |0, t), (48)
14
d‘Bd;:,t) = —i(Heg ¥ v) |BL,t) + ioc* |po,t).  (49)

The absorption spectrum is given in terms of these Monte
Carlo wave functions by

W(v)

4 lldo, )12
+c.c.

_ —i60? << (g0, tlo*|BY, ) + (BY, tlo|go, ) >>

(t = 00). (50)

The absorption spectrum W(v) , Eq. (50), is accurate
to second order in the probe field; it is therefore suffi-
cient to determine the jump times in the simulations to
zeroth order in the probe field from Eq. (48) for |¢g,t).
Furthermore, the simulation wave functions in Eq. (50)
must be normalized with respect to |@,t); in view of
I, t)1% = lldo,t)|? + O(6Q) it is sufficient to normal-
ize with respect to the zeroth-order wave function |¢y, t).
The condition for the quantum jumps

|,¢%) =07 |6,t7) /o™ |g,t7)] (51)
leads to the jump conditions in each order
|90, %) =7 |@o,t7)/lo™ |0, t ™),
(52)

|BY,t%) =07 |BL,t7)/lo™ |0, t 7).
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To summarize, the absorption spectrum can be simulated
by propagating the set of first-order equations for |BY, t)
driven by the zeroth-order wave function |¢g,t), which
dictates the quantum jump.

Figures 3(a) and 3(b) show a comparison of analytical
and numerical simulation results of the absorption spec-
trum W(v) for various parameters. Analytical results
[11] are represented by solid lines, while simulations are
plotted as crosses. The parameters are @ = 4 v, A =
0 [Fig. 3(a)], and A = « [Fig. 3(b)]. Positive values of
W (v) indicate absorption, while regions with W < 0 cor-
respond to gain. We have simulated a finite-resolution
spectrum by adding a small bandwidth € = 5 to the
probe laser. We thereby avoid problems due to the co-
herent contribution to the emission and absorption parts
of the spectrum (a é function at v = 0 which cancels in
the total absorption spectrum). As shown in Appendix
A, finite resolution amounts to substituting +v — v —ie
in Eqgs. (49) provided the absorption spectrum is calcu-
lated according to Eq. (45). Explicit subtraction of the
coherent components of spectra is discussed in Appendix
B. The simulation results of Fig. 3 were obtained by prop-
agating the zeroth-order wave function |@o,t) to the sta-
tionary (long-time) limit and integrating the set of equa-
tions for |BY,t) for a vector of frequencies v in parallel.
Instead of an ensemble average, we have computed a time
average of a single realization.

We made an error analysis to determine the rate of
convergence of our simulation procedure for the absorp-
tion spectrum. We determined for fixed 2, A, and «y the
standard deviation o (scaled to the maximum of W as a
function of v) according to

M
my S W) - W w)2/M

i=1 a
g = N ——
mg.le(l/)[ N
01+ @
W(v )Or
0.1+
2 - — -U.
© 3L (@
L.5F 1
S(v )1t 17
0.5+ 4 1r
0% 0 B O%s 0 5
v/y v/yY

FIG. 3. Absorption (a) and (b) and fluorescence (c) and
(d) spectra as a function of v/« for 2 = 4 v and A=0 and 4,
respectively. The solid lines are analytical results, while the
crosses correspond to our simulations for 10* (a) and (c) and
10° samples (b) and (d). W (v) is plotted in units of 622 /~.
The resolution bandwidth is € = -1137. The fluorescence spec-
trum contains both the coherent and incoherent part.
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with Wi(N) the ith simulation value for a given number
of realizations N. For A = 4 and Q = v, 2v, 4y we found
o =~ 0.36,0.45,0.74, while for A = 0 and Q = v, 2,4y,
we obtained a ~ 0.75,1.05,1.89. Thus to achieve an
accuracy of roughly 1%, roughly 10% realizations were
necessary. Figures 3(a) and 3(b) were calculated using
10% and 10* realizations, respectively.

The formalism of the present section is based on prob-
ing the atom with a monochromatic probe field. A spec-
trum is obtained by simulating a set of first-order wave
functions corresponding to a vector of frequencies v. Al-
ternatively, we can probe the system by a white-noise
probe field to provide us with system time-correlation
functions. In this method only a single first-order equa-
tion (and not a set of equations) has to be integrated
at the expense of simulating a white-noise driving field
in addition to quantum jumps (for details see Appendix
C). A method of simulating system correlation functions
based on “kicking” the system with é-function pulses
is outline in Appendix D. A simulation procedure for
atomic correlation functions has also been given by Dal-
ibard, Castin, and Mglmer [4].

C. The resonance fluorescence spectrum

We treat the fluorescence spectrum separately, al-
though this simply corresponds to the emission part of
the absorption spectrum computed using the algorithm
described above. The spectrum of resonance fluorescence
of a two-level system is given by (see Ref. [3])

1
S() = et (nt)r(mt)lp,t)  (t—o00),  (54)
with the operator r(v,t) given by

r(v,t) = /ot e~ (t=9dB(s). (55)

Thus the calculation of the spectrum amounts to deter-
mining the norm of the vector |8%,t) = r(v,t)|p,t), ie.,
S(v) = 1 (B“,t|#",t) (t — o). In the stationary limit
this is identical to

S0 = 3 (818", 1) (o). (56)
The equation for |8Y,t) is

d|BY,t) = —i(Heg + v)|B", t)dt + \/7dB' (t)o~ |8, 1)

+Vo7 e, thdt, (57)
(where we used dB(t)|p,t) = 0). Thus
S) = —iv7 ((p, tlot]B”,t) +cc.)  (t—o0).  (58)

The equation for |3Y,t) is, apart from a different factor
in the inhomogeneous term, identical to the equation for
|BY,t) [see Eq. (39)], and the spectrum of resonance flu-
orescence is, apart from an overall factor, identical to the
emission term in expression (45) for the absorption spec-
trum. Note that the spectrum is the Fourier transform
of the atomic two-time correlation function
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t

SWv) = 'y/ eVt dt’ (o*(t)o™ () + c.c. (59)
0

The formalism outlined above is a stochastic Schrédinger

equation version of the Mollow’s treatment of the spec-

trum of resonance fluorescence (8].

The resulting simulation algorithm is analogous to the
one derived in Sec. III B (the fluorescence spectrum is
just the emission part of the absorption spectrum). We
propagate the system wave function |¢,t) and the first-
order wave function |BY,t) according to

d___lZ;t> = —1 eﬂ',¢y t))
(60)

The random decay time is determined from the norm of
|@,t), and the condition for the quantum jump is

lg,tT)y=0"1¢,t7) /o |o,t )l
(61)
|BY,t*) =07 |B*,t7)/|lo”|$,t 7).

Again, |BY,t) is propagated in parallel with |@, t) by solv-
ing the above equation with the |@,t)-dependent inho-
mogenity. The spectrum is given by averaging over these
realizations

1 Btle*1B ) _
S@) =iy << 60T +>> (8= co)
(62)

In Figs. 3(c) and 3(d) we show a comparison of our
simulations (crosses) with analytical results [8] (solid
lines) for the Mollow spectrum [12]. The parameters are
the same as for the absorption spectrum. These spectra
contain the coherent part which has been smoothed out
due to our assumption of a finite resolution detector with
width € = & (see Appendix A). An explicit subtraction
of the coherent part is discussed in Appendix B. Again we
find that to get the same accuracy we need more realiza-
tions in the on-resonance case than in the off-resonance
case (we chose 10* realizations for the off-resonance case,

while on-resonance we chose 10%) (see error analysis in
Sec. IIIB).

IV. TWO-LEVEL ATOM COUPLED
TO A SQUEEZED VACUUM

In recent years a body of work has been produced on
the interaction of squeezed light with atoms, following
largely from the initial work of Gardiner [13] in which it
was shown that squeezed light may inhibit the decay of
one of the polarization quadratures of the atom and thus
give rise to a subnatural linewidth in the fluorescence
spectrum.

The non-Hermitian effective Hamiltonian and the
jump operator required for a Monte Carlo simulation
of the master equation for a system interacting with a
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squeezed vacuum have already been detailed in Sec. II.
For a two-level atom interacting with a squeezed vacuum
we have

1
Heg = —Aoto™ — Ei’Y(N +1)oto™ - %ivNa‘a*’,
(63)
and for the jump operator

a1 = (VN T 1e %5~ + VNe#/ %) [VIN ¥,
(64)

where we have transformed to the rotating frame, and
A is the detuning between the atomic transition fre-
quency and the carrier frequency of the squeezed field.
As noted in Sec. II B, this jump operator is a phase-
sensitive superposition of raising and lowering operators,
and hence a quantum jump will in general project the
atom into a phase-sensitive superposition of ground and
excited states. This has very interesting consequences
if one considers a single trajectory of the Bloch vector,
as described by the three components (o) = (c* +07),
(oy) = —i{(ct—07)), and (0;) = (6t0~ —0~0™*). Such
a trajectory is shown in Fig. 4. The phase has been
chosen so that the (o) component is aligned with the
reduced-noise quadrature of the squeezed field, while (o)

1.0 1.0
05f ] O.SM
/\l‘
o 0.0f i 0.0
v
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-1.0 -1.0
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A
o 0.0 oor
v
-0.5 -0.5F j
-1.0 -1.0 N " "
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1.0 T 1.0
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-0.5F -0.5F :
~-1.0 \ u “L L -1.0 A . .
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FIG. 4. Time evolution of the Bloch vector components
for a two-level atom in a squeezed vacuum, with N = 1,
¢ =0, and A = 0: (a) single trajectory, (b) average of 10000
trajectories (solid circles) with theoretical results (solid lines).
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is aligned with the increased-noise quadrature. One ob-
serves that the behavior of (¢,) with each quantum jump
is very different from that of (o) and (o,). In contrast
to the relatively small interruptions experienced by (o),
(oy), and (o) reverse sign with each quantum jump, and
ultimately (o) behaves simply as it would with a thermal
field, jumping between —1 and +1 as the atom absorbs
and emits photons. The difference in the behavior of the
Bloch vector components with each quantum jump leads
to a dramatic difference in the averaged behavior of the
components, as shown also in Fig. 4 where the average
of 10000 trajectories has been taken. The decay rate of
(0z) is significantly slower than in an ordinary vacuum,
while that of (o) and (o,) is significantly enhanced. In
these plots the simulation is compared with theory and
again the agreement is very good.

In the fluorescence spectrum, the inhibition of the de-
cay of (o) results in a subnatural linewidth. Again, our
simulation procedure for computing spectra is able to
reproduce all of the analytical results, including those
which incorporate a coherent driving field in addition to
the squeezed field [18].

V. TWO-LEVEL ATOM STRONGLY COUPLED
TO A CAVITY DRIVEN BY A THERMAL FIELD

The system consisting of a single two-level atom
strongly coupled to a high-finesse cavity is presently of
considerable theoretical and experimental interest. Mul-
tiple exchanges of photons between the atom and the
quantized cavity mode can yield interesting quantum dy-
namical processes. Notable predictions for this system
include steady-state atomic population inversion [19],
squeezing and antibunching [20], and optical bistability
[21]. In recent (optical) experiments, vacuum Rabi split-
ting has been observed [14].

From a theoretical point of view, this configuration in
the strong-coupling regime represents a somewhat chal-
lenging problem. The relative magnitude and importance
of quantum fluctuations at the single-atom level means
that semiclassical approaches, based, for example, on the
derivation of a Fokker-Planck equation from the quantum
master equation, can no longer be applied. In addition,
the problem of high dimensionality arises since the de-
scription of the cavity mode entails use of the infinite
Fock state basis. Truncation at a modest level can still
lead to an extremely large problem if one attempts to
solve the master equation directly.

The Monte Carlo simulation procedure described in
this paper is well suited to this problem since (i) it oper-
ates at the quantum level, without semiclassical approx-
imations, and (ii) it deals with wave functions, thereby
reducing the dimensionality considerably from that asso-
ciated with a density-matrix approach. In this section,
we will describe our simulation procedure for the atom-
cavity configuration, concentrating on parameter regimes
of some relevance to current experiments.

We will consider a cavity mode driven by a broadband
thermal light field. Recent theoretical work by Cirac,
Ritsch, and Zoller [15] has yielded analytical results for
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quantities of interest with which we can compare our sim-
ulations. Our model is easily generalized to include a
coherent driving field, but for the purposes of describ-
ing our procedure a thermal field suffices. We note that
some work on wave function simulations of the coupled
atom-cavity system with a coherent driving field has been
presented by Carmichael [5].

A. Simulation procedure

The Ito stochastic Schrédinger equation for a two-level
atom coupled to a cavity mode (annihilation operator a)
driven by broadband thermal light can be written as

dlg,t) = —iHeg|p,t) + /7 dBi(t)a " |p, t)
+V2k dG' (t)alp, t) + V2k dG(t)at|p,t) , (65)

where

A
Heg = —Ea*'a_ +ig(ato™ —ao™)

—ik(N + 1)ata — ikNaa! - i%0+0_ , (66)

and dB(t) and dG(t) represent the vacuum modes into
which the atom decays and the thermal field entering
the cavity, respectively. That is, dB(t) and dG(t) are
independent Wiener processes satisfying

dBdB! =dt , dB'dB = dB? = dB!* =0,

(67)
dGdG! = (N +1)dt , dG1dG = Ndt , dG? = dG'* =0,
with N the mean photon number of the thermal field. In
the above, A = w,—w, is the detuning of the cavity mode
from the atomic transition frequency, g is the atom-field
coupling constant, 7 is the spontaneous emission rate of
the atom into modes outside the cavity, and & is the
decay rate of the cavity field. Using Ito calculus, the
corresponding master equation for this system can be
derived in the familiar form

d A -
2L = iZfos 0l +glalo —act,
+% (207 pot —oto"p—potoT)

+&(N +1)(2apa’ —atap — pata)
+&kN(2afpa — aa'p — paat) . (68)

Rewriting this master equation in the form (2) we identify
the three possible decay channels as

Bip=r0"po™,
Bap=2k(N + 1)apal, (69)
Bsp= 2/5Nafpa,

with corresponding jump operators

Via = Ao,
VAzaz = /26N + 1)a, (70)
\/Eag =+v2xkNa'.
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The jump operator a; corresponds to the emission of a
fluorescence photon out the sides of the cavity. The oper-
ators ag and a3 correspond, respectively, to the loss of a
photon through the cavity mirrors and to the absorption
of a photon from the thermal light field.

The basis set for this system is of course infinite, so for
practical purposes we must introduce a truncated basis
set, the size of which will be determined by the degree
of excitation (i.e., by the intensity of the driving field) in
the system. We truncate the Fock basis set at a partic-
ular number state |s), and define the cavity annihilation
operator to be

a=Y"Valn-1)nl. (71)
n=1

States of the system are denoted by |g)|n) = |g,n)
and |e)|n) = |e,n) where |e) and |g) are the excited and
ground states of the two-level atom, respectively, and we
represent the wave function for the system in the form

s—1
|6,8) = cB(t)lg, 0)+_ {5 (t)le,n) + chya(B)lg,n+1)} -
n=0

(72)

This particular representation is chosen because in
solving the equation i9;|¢,t) = Heg|@,t) with Heg given
by (66), one derives a set of equations for c¢(¢) in which
c¢(t) couples only to c¢j,,(t). This coupling, together
with the possible quantum jumps between the states, is
depicted schematically in Fig. 5. We note that the addi-
tion of a coherent driving field complicates this picture
somewhat, but the representation for |¢,t) is easily gen-
eralized to this situation.

Our procedure for simulating the master equation for
the atom-cavity system follows that described in the pre-
vious section. Using i8;|¢,t) = Heg|®,t), we propagate
the wave function |¢,t) from some initial time to (at
which (@,t0|@,t0) = 1) until the time tp at which the
norm of |@,t) has decayed to the value of the random
number r € (0,1) chosen from a uniform distribution.
Having determined the time at which the transition takes
place, we must then decide which of the three possible
jumps actually occurs. To do this, we use a second uni-
formly distributed random number to choose between the
three jumps to which we assign the conditional densities

s—1
p(t, 1) =llailg, )* =¥ len (),

n=0

p(t,2) = llazlé, t)|®
s—1

= 25(N + 1){2 nle;, ()2

n=1

+2_j(n+1>1c1+1<t>|2}, (73)

n=0

p(t, 3) = I|(13|¢, t) “2

s—2 s—1
=2nw{z<n+ Dles(®)2 + 3 (n+ l)lcﬁ(t)lz}-
n=0 n=0
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FIG. 5. Schematic of the coupled atom-cavity system
showing possible transitions between basis states.

Once the nature of the jump has been established, the
new (normalized) wave function is formed using (17).
The entire procedure is repeated many times to construct
a single trajectory, and a solution for the density matrix
is generated by averaging over many such trajectories.

B. Numerical results

1. Atomic inversion and cavity photon number

For the purpose of illustrating the simulation proce-
dure in this multilevel quantum system, it is worthwhile
following a single trajectory of the cavity photon number
(afa) and the atomic inversion (o), as we have done in
Fig. 6. The system is initially in its ground state |g, 0)
before the absorption of a photon from the thermal field
raises it to the first excited state |g,1). An oscillatory
exchange of excitation between the cavity mode and the
atom (i.e., an oscillation of the population between the
pair of states |g,1) and |e, 0)) then follows, until the ab-
sorption of a second thermal photon raises the system to
the next pair of excited states {|g,2), |e,1)}. After a short
time in these states, two successive one-photon emissions
return the system to the ground state at vt ~ 1.2. An-
other such sequence of excitations and emissions com-
mences at y¢ ~ 2.5. In this second sequence, we note
the difference between the oscillation frequencies (which
vary approximately as g+/n + 1) corresponding to differ-
ent pairs of states {|g,n + 1),|e,n)}. In Fig. 6 we have
also shown the time development of the norm of the wave
function ({¢|¢)) for this particular trajectory. This serves
to illustrate how the decay rate of the norm depends upon
which states are currently populated. The higher the ex-
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cited state, the faster the decay of the norm.

The time development of the averages of quantities
such as the cavity photon number and the atomic in-
version are computed by averaging over many such tra-
jectories. For steady-state averages we can follow a single
trajectory, taking samples at intervals such that consec-
utive samples are independent of each other. The results
of such a procedure are given in Fig. 7, where we plot
the steady-state values of (afa)/N and (o,) as a func-
tion of the coupling parameter g. The simulation results
were obtained from averages of 10000 samples, and the
basis set was truncated at s = 10 (i.e., a total of 21 basis
states). The solid lines in Fig. 7 are the analytical re-
sults computed using the approach of Cirac, Ritsch, and
Zoller [15]. The agreement between the two approaches
is generally at the level of a few percent or better with
this number of samples. We have estimated the standard
deviation in our results for several data points and have
plotted error bars accordingly. This standard deviation
decreases with further sampling and would appear to ex-
hibit a linear dependence on the inverse square root of
the number of samples.
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FIG. 6. Single trajectory of the cavity photon number

(a'a), atomic inversion (o), and the norm (¢|@), for N = 1,
g = 57, and k = 0.25~.
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FIG. 7. Steady-state cavity photon number and atomic
inversion as a function of the coupling parameter g/ for N =
0.5, K = 0.5y. The simulation results are computed from
10000 samples and solid line is computed from the theory of
Cirac, Ritsch, and Zoller [15].
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FIG. 8. Fluorescence spectrum emitted by the atom out
the sides of the cavity for N = 1, k = 0.14, g = 6. The
simulation results are computed from 50 000 samples and the
solid line is computed from the theory of Cirac, Ritsch, and
Zoller [15].

2. Fluorescence spectrum

The methods described in Secs. IIIB and IIIC for the
computation of spectra are straightforwardly modified to
the coupled atom-cavity system. As an example, we have
computed by simulation the spectrum of resonance fluo-
rescence emitted by the atom out the sides of the cavity,

(o o]

Sw)=limRe [ dre (ot (t+T)o"(1).  (74)
- 0

Our results are shown in Fig. 8, again compared with the
theory of Cirac, Ritsch, and Zoller. Error bars at several
points again represent estimates of the standard devia-
tion of our results for this particular number of samples.
The peak that one associates with the vacuum Rabi split-
ting is the dominant feature at the frequency v = w + g.
For this particular parameter set, one also sees additional
sidebands. These are discussed in detail by Cirac, Ritsch,
and Zoller, and correspond to transitions between differ-
ent dressed states of the coupled system.

VI. CONCLUSIONS

In this paper we have considered a variety of examples
from quantum optics to demonstrate the application and
implementation of wave-function simulation techniques
to solve the quantum master equation. The examples
considered include (i) the calculation of the absorption
and emission spectrum of a two-level system coupled to
vacuum modes of the radiation field, (ii) the dynamics of
a two-level system interacting with a broadband squeezed
vacuum, and (iii) a strongly coupled atom-cavity system
with the atom coupled to a reservoir of vacuum modes
and the cavity driven by a broadband thermal field. The
choice of these particular examples was motivated by the
availability of exact solutions which allowed us to evalu-
ate and confirm the success and applicability of the sim-
ulation method in the context of quantum optics. We
have generalized and adapted the simulation procedures
of the present paper to the solution of the quantum mas-
ter equation of complex quantum optical systems, such
as calculation of atomic spectra for laser cooling in the
quantum limit (for multilevel atoms in one-dimensional
configurations [22,23]), and cavity QED problems involv-
ing coherent driving fields and coupling to a squeezed
vacuum.

Note added. We have recently received a copy of un-
published work from K. Mglmer, Y. Castin, and J. Dal-
ibard which also describes applications of the Monte
Carlo wave-function approach to problems in quantum
optics, but with emphasis on mechanical light effects.
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APPENDIX A: SIMULATION
OF FINITE-RESOLUTION SPECTRA

In this appendix we generalize the simulation pro-
cedure of Sec. III for the absorption spectrum W (v)
and spectrum of resonance fluorescence S(v) to compute
finite-resolution spectra, i.e., spectra which are averaged
over a finite resolution bandwidth €. In part, we were
motivated to do this in order to circumvent numerical
problems arising from the coherent part of the spectrum
(6-function components corresponding to elastic scatter-
ing). Explicit subtraction of the coherent part of the
spectrum is discussed in Appendix B.

Absorption spectrum of a two-level system. We assume
a probe laser with finite bandwidth e. In particular the
phase 7(t) in Eq. (37) is taken to obey the phase diffu-
sion equation dn(t) = v/2edW (t) where W (t) is a Wiener
process [1]. This corresponds to a Lorentzian probe laser
spectrum with full width at half maximum 2e. For the
stochastically averaged absorption rate (45) we find

—i6Q22

W= 1

({0, tlo™|B%,t)
+(B%,tlo* |0, t)))eD + C.C.y

(A1)

where {( ))pp indicates averaging over the phase diffusion
noise. As only the |5{,t) depend on the probe phase 7,
the averaging in (A1) can be pulled through (yo,t| and
ot. Thus we need to consider only the stochastically av-
eraged evolution equations for { |8%, t)})PD. A stochastic
phase 7(t) leads to a fluctuating frequency [v + 7(t)] in
Eq. (39). The resulting equation has to be interpreted
in the Stratonovich sense [1]. It is easily converted, how-
ever, to the Ito form

dlﬂiv” = _i(Heﬁ FvV-— Ze) |:6:li/:’t)dt
+/7 dBT (t)o~|B%, t)
+iv/2e dW (t)|6Y.,t) + i0F |00, t).

Averaging gives

d<< Iﬂ:ut?t>>>pD = _i(Heff Fv - 7:6) << ‘ﬂ;at>>>PDdt
+v7 dBY (t)o™{ 1B5,) Ypp
+i0i|(p0,t) )

(A2)

(A3)

where we have used (dW (t) - - -)pp = 0. Thus we see that
averaging over the probe laser spectrum amounts to the
substitution

+v— v —ie. (A4)

For the simulation functions |Bi,t) (47) analogous
arguments can be made with the result that a finite-
resolution spectrum can be simulated by making the
J
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substitution (A4) in Eq. (48) provided the absorption
spectrum is calculated from (50) (which is linear in
( IB%,t))pp)-

Resonance fluorescence. For the Mollow spectrum we
assume a radiation detector with finite-resolution de-
scribed by a Lorentzian filter function

€ 1

bW =7 mra

(A5)
The spectrum that one actually measures is S.(v) =
S(v — ie). Again going back to the evolution equations
for the system wave functions | B, t) we use the stochasti-
cally averaged equations for |B,t) which amounts to the
replacement +iv — iv — e. Again we emphasize that

this is valid only because the spectrum (50) is linear in
| B, t).

APPENDIX B: SUBTRACTION
OF THE COHERENT PART
OF THE FLUORESCENCE SPECTRUM

As shown in Sec. III, the spectrum is related to the two-
time correlation function for the atomic operators [Eq.
(59)]. The coherent part (which leads to the é§ function
in the spectrum) is given by

Seon(V) = /t e~ (t=t) (et (@) o~ (t'))+cc. (¢t — 00).
0
(B1)

In terms of the wave function simulation

San®) = ({ [ 7 (=) 60, tlo* I ')

(t = 00). (B2)
We define
|B,t) = |B,t) ~ fo L ewet) (o= (t")dt'|go,t),  (B3)
so the incoherent part of the spectrum is given by
S(v) = Scon(¥) = ((¢0, tlo¥|B, 1)) + c.c. (B4)

|B,t) obeys the equation

i%lﬁ, t) = (Heg +v) (B, t) +ir [o'_ — (a‘(t))] o, £),

(BS5)

where the value of (¢~ (¢))(t — oco) must be taken from
a previous simulation of the stationary values of p. So
subtraction of the coherent part amounts to replacing o*
by 0% — (0%). This is consistent with the relation

Sinc(¥) + Seon(v) = /0 eVt ([o*(t') — (a* ()] [0 () — (e~ (¥))])

+ / t e~ =) (s ) o~ () + c.c. = S(¥) (t — ).
0

(B6)
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Thus the coherent part of the spectrum is subtracted by
simulating Eq. (B5) with a modified source term corre-
sponding to a subtraction of the mean value of the dipole
operator in the driving term.

APPENDIX C: CALCULATING TWO-TIME
ATOMIC CORRELATION FUNCTIONS
BY PROBING WITH WHITE NOISE

The purpose of this appendix is to give an outline of a
formalism to calculate system two-time correlation func-
tions by probing a system with white noise. To be spe-
cific, we restrict our discussion to a two-level system.

Absorption spectrum. In Sec. III we have calculated
the atomic absorption and emission spectrum by probing
the atom with a (weak) monochromatic field of frequency
v. These spectra are Fourier transforms of stationary
two-time atomic correlations functions [see Egs. (46) and
(59)]. Here we probe the atom with a (complex) white-
noise field and obtain the atomic two-time correlation
functions directly by cross correlating the time-delayed
white noise with the first-order response of the atom. To
first order we write

69 2

p(t) = po(t) + —-p1(t) + O(6%) (C1)

(6€2 is a measure of the strength of the probe field). po(t)

is the density matrix of the two-level system in the pres-

ence of the pump field only, and p;(t) is the first-order

correction due to the probe field, obeying the equation
of motion,

po(t) = Lopo(t),
p1(t) = Lop1(t) + L1(t)po(t).

The first of these equations is the optical Bloch equation
(35), and

L1(t)p =ilo™n(t) + ot n*(t), p] -

This corresponds to adding a time-dependent Hamilto-
nian —36Q[n(t)o~+ H.c.] to the Hamiltonian (33), where
n(t) is a complex white noise with

(C2)
(C3)

(C4)

|

<[0+(T)’U—(O)]> =—1 « "7*(t - T) ((,B,t|0’+l(,00,t> + <(P0,t|0'+l,3, t))»WN (t — 00, T > 0)
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(n*(@En))wn =8(t —t'),

(n(t)n("))wn =0, (C5)
(n(t))wn =0.
The first-order reponse of the atom is
¢
pt) = [ ateEo L@ )p(e), (06)
0
which gives for 7 > 0
t]irgo« —in"(t = 7)Tra {o"p1(t)} ) wn (€7)

=Try {U+ec°T [U_a ps]} = <[U+(7-)’ o (O)D? (C8)

where we have used the quantum fluctuation regression
theorem (p; is the stationary solution for the density ma-
trix of the atom). According to Eq. (46) this correlation
function gives the absorption spectrum.

From the stochastic wave function |p,t), we get by
means of the ansatz

60
le,t) = |po,t) + 7'5’ t) (C9)
the equations
dlo, t) = —iHegt |0, t)dt + /7 dB'(t)o ™ |po,1) ,
(C10)

d|B,t) = —iHeg|B,t)dt + /7 dB'(t)o~ |, 1)
+i[n(t)o~ + H.c.]|po, t)dt .

These equations could have been derived immediately
from Eq. (39) by defining

18,t) =D e™™n,|8%,t) + e |82, t),
(C11)
n(t) =y me ™

(with 1, complex coefficients). The two-time correlation
function of Eq. (C7) is given by

(C12)

The corresponding simulation procedure of the Monte Carlo wave function follows by expanding the Monte Carlo

system wave function |¢,t) = |¢o,t) + %|B,t), which gives

d .
E‘d’o» t) = _ZHeﬁl¢07 t)y

21B,1) = —iHealB,1) + iln(t)o™ + 7 (©)]|60.1).

(C13)

(C14)

The conditions for quantum jumps follow from Eq. (51). In simulating Eq. (C13) two stochastic elements: quantum
jumps (quantum noise) and a (classical) additive noise term which can be integrated by standard techniques [1]. The

two-time correlation functions are

([oF (), 0= (0)]) — Z« << (B, tin*(t — T)o*|do, t) + (o, t|n"(t — T)o¥|B, 1) >>WN> (t = 00,7 >0). (CL5)

ligo, t)]?



Resonance fluorescence. The correlation functions rel-
evant for calculating the resonance fluorescence spectrum
could be obtained from Eq. (57) by an expansion similar
to Eq. (C11)

18,t) = Z e+iutnu|,3-l:.7 t),

n(t) =Y _ me”t +cec.
v

(where it is sufficient to take 7, as real coefficients). The
resulting equations are
dlpo, t) = —iHegt |0, t)dt + /7 dB'(t)o~ |0, 1) ,
(C18)

(C16)

(C17)

d|B,t) = —iHea|B,t)dt + 7 dB'(t)o™|B,1)
+in(t)o~ |po, t)dt .
According to Eqgs. (58) and (59),

t

~ilpo,tla*18,0) = [ n(t) @B~ @®).  (C19)
Therefore the two-time correlation functions are given by
—i{{ n(t = 7){po, tloT |8, ) Mwn = (¢ (1)o7 (0))

(t = 00,7>0). (C20)

The resulting simulation procedure is analogous to that
described for the absorption spectrum.

APPENDIX D: TWO-TIME ATOMIC
CORRELATION FUNCTIONS BY
PROBING WITH 6§ KICKS

In this appendix we show that system correlation func-
tions can be calculated by probing the system with short
pulses (assumed to be § functions). System spectra can
then be found from the Fourier transfrom of these corre-
lation functions. To be specific we restrict our discussion
again to the absorption and emission spectrum of a two-
level system [see Eqs. (46) and (59)].

Absorption spectrum. We add time dependent Hamil-
tonian —16Q[6(t —to)(c~ +0 )] to the Hamiltonian (33)
(to is the time when the kick occurs), and write to first
order

(t) = polt) + S 1o (8) + p—(1)] + O(652%)

(692 is the strength of the delta kick). Here po(t) is the
stationary density matrix of the two-level system in the
presence of the pump field, and p4(t) are the first-order
corrections. The equation for po(t) is the optical Bloch
equation (35), in shorthand po(t) = Lopo(t), while the
equations for p4 (t) have the form

(D1)

px(t) = Lop1(t) + Lx(t)po(t), (D2)
with
Li(t)p =16(t — to)[o™, o] . (D3)

Thus the first-order response of the atom is for times
t >t
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px(t) = ie“ot=0)[oE, py(to)] (D4)
which gives for the stationary correlation function

tl_lngl Tra {o;pi(t)} = ([a*(t),a*(to)]). (D5)

In the deriving this equation we used the quantum fluc-
tuation regression theorem.

The same arguments can be repeated on the level of
the wave functions. From the stochastic wave function
|, t), we get by means of the ansatz

6Q
lo,t) = lpo, t) + - (18-, ) +1B+,2)) (D6)
the equations
d|o,t) = —iHeg |0, t)dt + /7 dBT(t)o ™ |po,t) ,
(D7)
d|fs,t) = —iHeg|Bs, t)dt + /7 dB' (t)0 ™| B, )
+i6(t — to)oT |, t)dt .
The two-time correlation funqtions are given by
([o*(2), 07 (t0)]) = —i({0, tlo"|B-, 1)
+(B+,tlo™|po, 1))
(t = oo,t > tp). (D8)

The simulation procedure for the Monte Carlo wave

function follows by expanding |@,t) = |¢o,t) +
(B4, t) + |B_,t)), which gives
2 \go,t) = ~iHaldo, 1
dt 0,l) = eff [P0y 0/
(D9)

d . .
EIB:k5t> = —zHeffIB:lnt) + Zé(t - t0)0i|¢0’t>'

Due to the 6 function in the inhomogenity the equa-
tions for the |By,t) are easily integrated with the result
that the | B4, t) obey the same homogeneous equation as
|0, t) but with initial condition

|B:l:1t = to) = ioi|¢0yt0>'

The quantum jumps follow from Eq. (51). The simu-
lation approximation for two-time correlation functions
is

([e* (), 07 (t)])

(D10)

o g

(t —> o0,t > tp). (D11)

In this equation averaging over randomly distributed ¢
is implied so that the correlation function becomes sta-
tionary in time, i.e., is a function of ¢ — ¢o.
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Resonance fluorescence. The above arguments can be
repeated to calculated and simulate the correlation func-
tions for resonance fluorescence. The relevant correlation
function corresponds to the first term in Eq. (D11)
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(oF(t)o~(to)) = "<< %ﬁ»

(t = 00,t > to). (D12)
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