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Interaction of a two-level atom with a cavity mode in the bad-cavity limit
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The interaction of a two-level atom with a single mode of the radiation field is examined. The
cavity mode is damped by coupling to a reservoir in a squeezed state, and the atom is also driven

by an external laser Beld. A master equation for the atomic density operator in the bad-cavity limit
is derived. The effect of the squeezing in the stationary population inversion and in the resonance
spectrum of the light emitted by the atom into the background modes is studied. The results are
compared with the numerical solution of the full master equation for the atom-plus-cavity mode-
density operator.

PACS number(s): 42.50.Lc, 42.50.Dv, 42.50.Hz

I. INTRODUCTION

The behavior of atoms inside cavities has revealed in-
teresting features in their interaction with the radiation
field. It has been known for a long time that the dy-
namical behavior of an atom depends on the statistical
properties of the electromagnetic field in which it is em-
beded. Inside a cavity these properties are different than
in the free space, since the mode structure is difFerent.
This fact led Pourcel [1] to predict an enhancement in
the spontaneous-emission rate when an atom is situated
in a resonant cavity. Analogously, Kleppner [2] pointed
out the possibility of inhibiting the spontaneous-emission
process when atomic transitions are far from the cavity
resonance. These modifications in the atomic decay rates
have been demonstrated experimentally [3].

In the absence of dissipation the Jaynes-Cummings
model [4] describes the dynamical behavior of a single
two-level atom in a cavity. However, in most cases dissi-

pation must be taken into account, since the atom might
spontaneously emit in other modes (background modes)
than the privileged cavity mode, and the cavity mode
coupled to the atom also experiences losses via the cavity
mirrors. Hence, the interaction of an atom with the elec-
tromagnetic field in a cavity is mainly governed by three
parameters: the coupling constant between the atom
and the cavity mode g, the cavity-mode loss rate ~, and
the atomic spontaneous-decay rate into the background
modes p. The relative magnitude between these parame-
ters determines the dynamical and stationary behavior of
the atom in the cavity. For example, for g )& r. , p (good-
cavity limit [5]), the problem reduces to the damped
Jaynes-Cummings model [6, 7], where damping is consid-
ered as a small perturbation, and therefore characteristic
features of this model, such as collapses and revivals [8],
vacuum Rabi splitting [9],and other spectral features [10]
appear. In the opposite limit e )) g, p (bad-cavity limit),
the problem essentially reduces to the spontaneous emis-
sion in the free space, since the field in the cavity may be
regarded as a broadband electromagnetic reservoir. This
situation can change dramatically if an external coherent
field drives the atom simultaneously. In this case, the

laser field induces a frequency shift between the levels of
the combined atom-plus-laser field system (dressed lev-
els). This can lead to various effects, such as a positive
stationary population inversion [11,12], changes in the
atomic decay rates [13], photon antibunching, squeezing

[5, 14], etc. On the other hand, the modifications in the
atomic decay when an atom is damped by a broadband
squeezed reservoir inside a cavity have been studied re-
cently [15,16]. In the bad-cavity limit and for very strong
laser fields, the atom can be decoupled from the cavity,
when some phase condition between the squeezed and
the laser field is fulfilled. This is in contrast with what
occurs when the atom is damped by a squeezed reservoir
in the free space [17—20], where the decay of only one of
the two components of the atomic polarization can be
inhibited.

In this paper we derive a master equation for a two-
level atom interacting with a cavity mode and driven by
a laser field in the bad-cavity limit. The cavity mode is
assumed to be coupled to an ideal broadband squeezed
reservoir via the cavity mirrors and the spontaneous
emission from the atom into the background modes in
a broadband vacuum state is also considered. The con-
dition ~ &) g implies that the cavity-mode response to
the squeezed reservoir is much faster than to that pro-
duced by its interaction with the atom. Then, the atom
always "sees" the cavity mode in the state induced by
the squeezed reservoir, which permits one to adiabati-
cally eliminate the cavity-mode variables. This leads to a
master equation for the atomic variables only, which can
be exactly solved. In particular, we find that the station-
ary population inversion can be positive and it increases
with the squeezing when some phase relation is fulfilled,
reaching larger values than in the case in which the cav-

ity mode is coupled to the normal vacuum [ll]. We also
give an analytical expression for the fiuorescence spec-
trum emitted by the atom into the background modes,
which mirrors the modifications in the atomic decay pro-
duced by the squeezed reservoir. All these results are
illustrated with the numerical solution of the full master
equation for the atom-plus-cavity mode-density operator.

The plan of this paper is as follows. In Sec. II the
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master equation for the atomic density operator is de-
rived and discussed in terms of the dressed states of the
atom-plus-laser field system. In Sec. III we analyze the
stationary population inversion. The spectrum of the
light emitted by the atom into the background modes is
studied in Sec. IV. Section V contains a summary of our
results. Finally, in the Appendix we present the method
we used to perform the numerical solution of the full
master equation for the atom-pluacavity mode-density
operator.

II. MASTER EQUATION
IN THE BAD-CAVITY LIMIT

A. Model

is fulfilled. In this case, in the absence of coupling with
the atom (g = 0) the cavity mode is only driven by the
squeezed reservoir and therefore it ends up in a squeezed
state with N being the mean photon number.

Now, let us express master equation (2.1) in a slightly
different form. To do this, we make the unitary transfor-
mation defined by

p= SpSt, (2.7)

where S is the usual squeeze operator [22] that transforms
the annihilation and creation operators as

SaSt = pa+ vat,
SatSt = v'a+ yat,

with p, = gN + 1 and v = ~Me'~. In the new picture,
we find

We consider a single two-level atom coupled to a cavity
mode and excited by an external laser field [21]. The
master equation for the atom-plus-cavity mode-density
operator p, in a frame rotating at the laser field frequency
~, is (5 = 1)

—= —i [H, p] + L,q p + L,p.P
t

dp i [Hri +—V, p] + L„„p+L p,

where now

V = g(8+a+ at8 )

gives the effective coupling atom-cavity mode, and

(2.8)

(2.9)

The Hamiltonian H contains the free atomic evolution
and the interaction of the atom with the cavity mode
and the laser field, and it is given by

H=Hg +V,
where

(2 2)

0 ~ 0'
Hri = —o, + —(o++cr )

—= —o (2.3)

V = g(o+a+ ato -). (2 4)

Here, o+ and o, are atomic spin-z operators, a and at
the creation and annihilation operators for the cavity
mode, g the atom-cavity mode coupling parameter, and
0' = (02 + dP) i~~ the generalized Rabi frequency of the
atom-laser interaction.

Dissipation from the atom via spontaneous-emission
into the background modes and from the cavity mode by
coupling to a broadband reservoir in a squeezed vacuum
state are included in (2.1) by the terms

L p = —(2o po+ —o+o p —po+o' ), (2.5)
='y

and

L,qp = r(N ~ 1)(2apat atap pata)

+eN(2at pa —aat p —paat)
~Me'~(2at pat —a"p —pat')

—zMe '~(2apa —a p —pa ), (2.6)

respectively. p is the atomic spontaneous-emission rate,
2K the cavity damping rate, and N and M characterize
the squeezing of the reservoir. The relative phase be-
tween the squeezed quadrature of the reservoir and the
laser field is given by Pj2, where P = 0 (P = qr) cor-
responds to a driving Beld in phase with the mmcimally
squeezed (unsqueezed) quadrature.

In the following we will concentrate in the case of an
ideal squeezing, where the relationship M = N(N+ 1)

L,p = ~(2apat —atap —pata) (2.10)

describes the cavity loss due to its coupling to an electro-
magnetic reservoir in a vacuum state. In (2.9), we have
defined the atomic operators 8+ and 8 as

z+ = po+ + v'0
CT = VCT + PP

(2.11a)
(2.11b)

Note that in this picture the cavity mode is damped
by the vacuum and the effect of the squeezed reservoir
is transferred to the atom-cavity mode coupling through
the replacement o+ ~ 8+. Hence, for g = 0 the final
state of the cavity mode is now the normal vacuum.

Master equation (2.8) can be solved numerically by
transforming it in an infinite hierarchy of ordinary dif-
ferential equations by using characteristic technics [23]
(see the Appendix) or, alternatively, by projecting it on
a particular set of basis states [24]. However, here we are
interested in an analytical expression in the bad-cavity
limit.

B. Bad-cavity limit

In order to obtain the master equation in the bad-
cavity limit we proceed now by transforming to a new
"dissipation picture" defined by [7]

P(~) = e ""~P(~).

In this picture, master equation (2.8) becomes

(2.12)

—= —ige "'(a[8' Pl+ [8 P]a')
dt

age"'([aP]8'+-o [a'P]) —i%~ P]+L-p
—:e "'L ip+ e"'Lgp —i[Hn. , p] + L~p, (2.13)

where we have used the following relations:
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L-(~p) =a(L .+ ~)(p)
(p ') = ((L ~ + ~)(p)]a'

L .([& p]) =(& (L —&)p]

L .([~' p])=(~' (L. —~)p].

We are interested in the atomic observables, which only
depend on the atomic density operator defined by tracing

P over field variables p~ = Trf P. Tracing also Eq. (2.13)
we have

pa 2 -+
dt ) &gI pa + pa&A') 0

—t[H(), p ]+I„p, (2.i7)

On the other hand, o'ti can be expressed in a simpler
form by taking into account that

e ' &' = cos (20'~) —i sin (-20'~) t7~, (2.18)

resulting

' = T, (L "'P ) '[H„—, p ]+L„p.,

where we have used

~f(L2P) = tg(~f([~ p])+ + + ~f([+

trri = A+tT++A o cr+o +tAs[rJ+, o„],
where

1 (A+= —
/

1+
2~ ( tt;2+0'2

(2.1O)

given that Trf(aP) = Try(Pa). Note that Trf(Lip) is not
zero, since the trace is only taken over the field states.

Equation (2.14) is not a master equation for p, since
in the first term it is the full density operator p which
appears. To eliminate this dependence, we first integrate
formally Eq. (2.13) to obtain

t
jg d7. e-+(t— )e H~i(t- ) [L-'p(7.)]eiH~i (t )-

0

In the bad-cavity limit (tt » g, p), after a short time
t & r. i, only the last term on the right-hand side of
this expression becomes significant and therefore we can
neglect the rest of them. The remainding term may also
be written as

d7. e "'e ' ""[LP(t —~)]et "'

The factors appearing in this integral give a nonvanish-

ing contribution only for v & r i; during this time the
interaction atom-cavity mode and the spontaneous emis-
sion into the background modes are negligibles due to
the smallness of the parameters g and p when compared
to r. Hence, during this time, only the atom-laser in-

teraction must be taken into account, i.e., we can make
the substitution p(t —7) e' &'~ p(t)e

' ti'~ We can.
also extend the upper limit of the integral to infinity,
given that we are interested in times t & tt i. These ap-
proximations amount to making the usual Born-Markov
approximations [25]. With all this, we have

e "'p —i g a, p erg + cr&~, a~, p

where

(2.i5)

e "P= e "'e ' "'p(0)e' "'+ e "'L,p
t

g
nt -d ~7. iH~i(t —r)(L--( )] iH~i(t r)-

Q

n'
2 ~2+ 0'2

Finally, note that in the free-space limit (tc ~ oo, keep-
ing g2/tt constant) A = As = 0, and it ean be shown
that the master equation (2.17) reduces to that found
when there is no cavity, provided p, = 2g /tt is identified
with the damping rate in the squeezed reservoir.

C. Discussion

with

]1)= sin 8]g) + eo»]e),
) = «selg) —»»Ie)

(2.20a)

(2.20b)

cot(28) = b, /0, (2.21)

and where ~g) and ~e) denote the ground and excited
atomic levels, respectively. For the sake of simplicity
we assume that the difference 0' between the energies
of these states is large compared to any other charac-
teristic decay rate (i.e., the difFerent emission lines are
weil separated) In this . case, we can neglect the non-
secular couplings between populations and coherences

[27] to find the evolution equation for the dressed lev-

els populations vri ——(1(p~~l) and vr2 ——(2~P~~2) and the
coherences o i2 = (1~p~(2), obtaining

In view of Eq. (2.17) it is clear that the first term on its
right-hand side describes the coupling between the atom
and the squeezed reservoir via the cavity mode. To get
a better insight into the physical meaning of this term,
let us take matrix elements in the basis of the atom-plus-
laser dressed states, defined by [26]

Hti ]1)= 2iA']1),

Hrt [2) = —2iA']2),

where

—~r —iHAI v -+ —ill (2.i6)

Substituting (2.15) in the term Try(Lie "'P) of Eq.
(2.14) and after some lengthy algebra we find the follow-

ing master equation for p:

2+1 + ~2

&2 — ~2 1&2 + ~1 2&1

tT12 ——(tA + I oh) tT12,

where

(2.22a)

(2.22b)

(2.22c)
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and

~ oh = ~12 ~12

(2.23a)

(2.23b)

(2.23c)

(2.23d)

(2.24)

j1,n)

)2, n)

with

I12= (I1 1+I2 2+Ii 2+I2 1)1

It» =~.(11~'l1)"(2I~'12)

p(a) = f dr([a(r), ai(0)])e'"'. (2.25)

For the case under study ([a(r), at(0)]) = e &' +"&, and
therefore the results (2.23) are found. Hence, we conclude
that master equation (2.17) can be understood in terms
of transitions between the states li, n).

Here, I';
~ is the transition rate from li) to

Ij), while K12
is related to a radiative transfer of coherence. This re-
sult may be understood in the following way: We choose
for the whole system atom-plus-cavity mode the basis

(Ii, n) = li) (3) In);i = 1, 2;n = 0, 1, 2, . . .), where Ii)
stands for the dressed levels defined in (2.20) and ln) de-
notes the Fock state of the cavity mode subspace with n
photons. Note that this choice differs from that usually
utilized in the Jaynes-Cummings model [10, 23], where
the dressed states of the atom-plus-cavity mode are taken
instead. The reason of our choice is based on the fact
that the frequency shift due to the coupling of the atom
to the cavity mode (which is of the order of g(n)1~2) is
much smaller than that due to the coupling to the laser
field (equal to 0') in the limit considered here. For g = 0
the subspaces li, n) with a given n remain decoupled in
the course of time. However, for g g 0 transitions be-
tween different subspaces are likely to occur due to the
coupling given by V [see Eq. (2.9)]. Figure 1 shows the
energy levels diagram and transitions between the states
li, n). From this figure it can be deduced that transitions

li, n) ~ li, n —1) occur at the cavity-mode frequency ur,

while transition ll, n) -+ I2, n —1) (I2, n) -+ Il, n —1))
does at u+ 0'(cu —0'). The transition rate I';

~ can
be easily determined by using Fermi's golden rule, and
therefore it is given by the product of the matrix element

l(ilgo+I j) I by the density of modes function p(v) of the
cavity at the corresponding transition frequency. This
function is given by

~(n —1) + —2'0'

~(n —1) —-'0'

FIG. 1. Energy-level diagram of the states li, n). Transi-
tions between these states are represented by arrows.

III. STEADY-STATE POPULATION INVERSION

(0'z) zz = COS(28) (Z'", —7r2'), (3 1)

since (o12)~ vanishes as a consequence of the secular ap-
proximation made in the derivation of Eqs. (2.22) (the
subscript ss stands for the value taken in the steady
state). On resonance cos(28) = 0 and this expression pre-
dicts saturation to (0,)„=0. So, it does not account for
the small deviations from this value due to the presence
of the cavity, which are the final cause of the population
inversion. Hence, in order to study the case (o,)„)0
we need to include the nonsecular terms neglected in Eqs.
(2.22), i.e., to take the whole master equation (2.17).

From Eq. (2.17), the equations of motion for the ex-
pectation values of the atomic operators can be found to
be

In a recent work, Savage [11] has predicted that the
atomic population inversion can be positive, when a two-
level atom interacts with a quantized cavity field damped
by the vacuum. As discussed there, steady-state inver-
sion is essentially a quantum-mechanical effect, and it
is found for parameter ranges where the spontaneous-
emission rate in the background modes, as well as the
additional decay rate via the cavity mode, are small in
comparison with the Rabi frequency of the external field.
These conditions can be written as p, g « lc, 0', which
agree with the regime of validity of the master equation
deduced in the previous section. In the present section,
starting from this master equation, we analyze how the
population inversion is affected by the presence of an
ideal squeezed reservoir.

An attempt to describe the inversion consists of using
the dressed-state picture discussed above. The stationary
population inversion ((r,)„can be written in terms of the
dressed populations as

K 02
(e+) = —[—+—,]

(2N+1+2Me 'e)+ (2N+1) 1 —i—
]

—i4)(e+)

+P, 2,2 I
2(2N+1+2Me ' )+2Me ' 1+i

I
(o ) ——i—(o,)+ —'.0 p, A(6+ if~)

) 2
' 4 rc2+0'2 ' (3.2a)



4358 J. I. CIRAC 46

(~,) = —in
~
1+—'(

2 pp+nlz (2N + 1 —2Me'~) + i—(2N + 1 + 2Me' ) ~

(o' )
K

+in~ 1+—' (2N + 1 —2Me '
) —i—(2N + 1 + 2Me '

) ~

(o' )2 tc2+ n K r
n~ ~~ + n~/2

[2N + 1 + 2M cos(Q)] + (2N + 1)
~

(cr, )
—p —p,

K +n 2K ) ' ' ~z+nlz ' (3.2b)

where we have omitted that of (cr ) = (0+)'. The sta-
tionary solution of these equations can be obtained an-
alytically, though the final expression becomes very in-
volved. Instead, we have numerically verified that op-
timum values of the inversion correspond to the choice
6 = 0, which notably simplifies the algebra. Besides,
two limits characterize the effect of the squeezing on the
atomic dynamics, namely P = O, vr. Defining, as usual,
cr+ = zi(cr, gaia„) Eqs. (3.2) become

(~*)= -~*(~*)
(oy) = —n(o, ) —p„(ay) + np,

(~.) = ni(~w) ~.(~.)——»

(3.3a)
(3.3b)
(3.3c)

where we have defined

p, = —+ —'
z [2N+ 1 —2cos(P)M],

2 K2+ g2

p„= —+ —'[2N + 1 + 2 cos(P)M],

Qz Qx + Py)

n =n "'/',
~z+ nz'

W

ni =n 1+ ' [2N+1 —cos(p)M]~2+ nz

k'+ A'/2
'7& 7+ k

(
npni —p„pi
~~i+p p.

Thus, inversion occurs if

ApO ) gyp'.

(3 4)

(3.5)

and now cos(P) can take on the values 1 or —1.
These equations mainly depart from the usual Bloch

equations in the squeezed vacuum [18] in two aspects. (i)
The decay constant p, depends on the Rabi frequency n,
which is a sign of the non-Markovian coupling between
the atom and the cavity mode. As a consequence of this,
the inhibition of the atomic decay has been predicted
[15] when n is larger than r and, at the same time, the
squeezed field inhibits the decay of (cr„). (ii) The equa-
tion of this last component of the Bloch vector is inhomo-
geneous, contrary to what happens in the free-space case.
As we show below, this will lead to a positive population
inversion.

The population inversion in the steady state is easily
found to be

00 g~"-'n =
~ nK + (3.6)

which is very small in the limit of validity of Eq. (2.17),
that is, for g « r In vie. w of (3.6) maximum values
of (o,)» are expected for strong atom-cavity mode cou-
plings, where a solution of the exact master equation
(2.8) is requiered. We have solved this equation numer-
ically (see the Appendix) obtaining, for example, that
for N = 1 the maximum value is (o,)» ——0.104 when
g = 1.15', n = 2.7z, and p = 0. This value is larger
than the maximum value of 0.07 given in Ref. [12] for
the case N = 0. We have also verified that for large
values of N the population inversion is saturated to zero.

To illustrate the validity of master equation (2.17), de-
rived under the Born-Markov approximation, we have
plotted in Fig. 2 the population inversion in the station-
ary state given by (3.4) (dashed lines) and the numer-
ical solution of the exact master equation (2.8) (solid
lines). The values of the paramaters are g = 1, p = O. l,
N = 1, n = 5 [Fig. 2(a)] and n = 2 [Fig. 2(b)). As ex-
pected, for low K, the analytic approximation (3.4) and
the exact solution give different results. However, as K
increases (+ 10) the population inversion tends to the
values predicted by the master equation derived in the
bad-cavity limit. In this figure, it is also shown that for
cos(P) = —1 [curve (1)] the inversion is always larger

than for cos(P) = 1 [curve (2)], in agreement with the
above discussion. On the other hand, it is for small val-
ues of r. ( g) when (cr~)» reaches its maximum value,
being also larger when 0 = 2 than for 0 = 5, since as 0

From this result, we make the following observations.
(i) Inversion is only possible when np g 0. So, for ex-

ample, in the free-space limit Ao vanishes, and therefore,
as expected, (cr, )» is always negative. Moreover, in Eqs.
(2.22) np has been discarded as a consequence of the sec-
ular approximation. Hence, with these equations it is not
possible to predict inversion, as mentioned above.

(ii) Inversion can occur for N = 0, since np does not
depend on the mean number of squeezed photons N. In
fact, for N = 0 Eq. (3.4) reduces to Eq. (4.9) of Ref. [12],
where a detailed study of the case of a vacuum reservoir is
given. However, for cos(P) = —1, (o,)„is an increasing
function of N. This can be seen by difFerentiating (3.4)
with respect to N, and checking that the result is posi-
tive. Then, we conclude that by increasing the squeezing
one could obtain a larger inversion.

(iii) The population inversion cannot be raised arbi-
trarily by varying the parameter ¹ It is bounded from
above
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FIG. 3. Steady-state population inversion as a function of

N for g = 1, ~ = 10, p = 0.1, cos(P) = —1, and 0: 2 (solid
line), 3 (dashed line), and 4 (dotted line).

0.05—

0.00

is precisely for small values of 0 where the effect of the
squeezing of the field becomes more important. So, for
0 = 2, by squeezing the electromagnetic reservoir one can
change the population inversion in the stationary state
from negative to positive.

—0.05

—0.10 I I I I I I

10
I I I [ I I I I

I
I I I

20 30
I I I I 1 I

50

FIG. 2. (a) Steady-state population inversion as a func-
tion of the cavity loss rate ~, for 0 = 5, g = 1, p = 0.1,
N = 1, and cos(P): —1 (1) and 1 (2). The solid line gives
the numerical solution of the exact mater equation and the
dashed line, the result given by the analytic approximation.
(b) Same as (a) for 0 = 2.

increases the laser photons tend to saturate the atomic
transition.

Figure 3 displays the dependence on the mean number
of squeezed photons N, obtained by solving numerically
Eq. (2.S) for g = 1, p = 0.1, e = 10, cos(P) = —1,
and 0 = 2 (solid line), 0 = 3 (dashed line), and 0 = 4
(dotted line). The figure shows that (o,)» increases with
N, reaching a maximum value, in agreement with Eq.
(3.4). Note that the maximum slope of the curves occurs
for N = 0, which implies that a little amount of squeezing
would increase the inversion notably. Note also that it

IV. RESONANCE FLUORESCENCE SPECTRUM

In this section we study the spectrum of the light radi-
ated by the atom into the background modes, which are
in the normal vacuum state. Starting from master equs
tion (2.17) we derive an analytical expression, which per-
mits us to study the efFect produced by the cavity in the
spectrum. In particular, we find that all three peaks in
the Mollow triplet can be narrowed at the same time by
increasing the laser intensity and for certain phase rela-
tion between the laser field and the ideal squeezed reser-
voir This e.fFect has been already predicted by Parkins
[15] and Cirac and Sanchez-Soto [16] in the interaction
of a two-level atom with a continuum-of-cavity modes
in a squeezed state, and occurs as a consequence of the
dynamical inhibition of the atomic decay.

The spectrum can be calculated as

S(v) = — d7 e '&" l (o+(7.)o (0))„, (4.1)2'
where cr+ and 0 are defined in a rotating frame at fre-
quency u. With this definition, the integral of S(v) over
all frequencies equals the population of the excited state
T (le) (el~.)

Here, we are concerned with the case in which the spec-
trum consists of three well-separated lines ("Mollow's
triplet" ), that is, when 0' is large compared to all the
atomic decay rates. In this situation, the dressed-state
formalism provides a good approach and a simple expla-
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nation [28]. Hence, let us express the two-time correla-
tion function appearing in (4.1) in terms of the dressed
operators, defined as

~ = I2)(2[ —I»(1[
~&2 = [2) &1 [,

~» = I1)(2[

(4.2a)

(4.2b)

(4.2c)

d
(& (&)& (o))-= —I' (7r (&)& (o))-

where [1) and ]2) are the dressed states introduced in

(2.20). The result is

(o~(~)o (0))„=sin(8) cos(8)(m (r)cr (0))„
+ cos (8)(ozg(~)o (0))„
—sin (8)(o ~z(~)cr (0))„. (4.3)

The first term gives rise to the central band of the spec-
trum, while the other two yield the sidebands. The cor-
relation functions appearing in (4.3) can be evaluated by
using the quantum-regression theorem [29], valid when
the response time of the cavity mode (of the order of

~) is much smaller than that of the atom (of the order
of I', ) [30]. This condition coincides with that assumed
in the derivation of master equation (2.17), and therefore,
in the limit under study is always fulfilled. Then, from
Eqs. (2.22) we have

The widths appearing in (4.5) can be calculated from
(2.23) giving

Kr =
Q1 7c 2+ g(2

x((2N+ 1) —sin (28) [N+ 2 + M cos(P)]),
(4.12)

(4.13)I', h = -I' + p, sin (28)[N + - + M cos(P)].

tan 8 = g(N + 1)/N (4.14a)

or

The incoherent part of the spectrum is then composed
of a central band of width I' and height Ip/I' and
two sidebands, symmetrically situated around the cen-
tral one, of width I'„h and heights I+/I'„h and I /I'„h,
respectively.

As what occurs in the free-space hmit, the sidebands
are different when b, g 0, since I+ g I . One of them
can even disappear when either I'q 2 or I'2 q are zero,
that is, when dressed-population trapping occurs [31]. In
this case, also the central band disappears, since one of
the dressed populations in the stationary state vanishes.
The condition for this to occur is either (1~8'+~2) = 0 or
(2~8+~1) = 0, that can also be expressed in a different
form as

(4.4a) tan 8 = y N/(N+1). (4.14b)

where I' = I'p 2+I'z ~. By solving these equations and
Fourier transforming, one obtains the well-known result
[26]

S(v) = I ib(v —ld) + IpL(v —Ld, I' )

+I+.L(v —~ —A', I'„h)
+I L(v —co+ A', 1'„h),

where

(4.5)

1 I'
(4.6)

is a Lorentzian function of width I' centered at v', and

I,( =
4 sin (28)(nP —vrz'), (4.7)

Ip = sin (28)sr~"vr2', (4.8)

Ig =
~ [1 + cos(28)]~erg~, (4 9)

are the intensities emitted in the elastic component of
the spectrum, in the central band and in the sidebands,
respectively. vrz' and vrz' stand for the population in the
steady state, which can be derived from the detailed bal-
ance condition (7rz'I'q q

——vrz'I'q q), resulting in

r, ,
7l g ~~-2 + I'2-a

X2 =
~1 2+I2 1

(4.10)

(4.11)

(+&2(~)~ (o))- = -(iA'+ ~-h)(&»(&)& (0))-
(4.4b)

—,(~»(~)~ (0))- = (~A'- I'-h)(~»(~)~ (0))-
(4.4c)

Note that these conditions only depend on the squeezing
parameter N and the ratio 6/A.

In the following, we concentrate on the modifications
on the spectrum due to the presence of the cavity. For
the sake of simplicity we will consider the resonant case
(6 = 0), where ms&' ——m2S

——2. In this case, the height of
the central peak becomes 1/(4I' ), and that of the side-
bands 1/(8I'„h), which are now symmetric. For A (( K

the same results than in the absence of cavity [18] are
found. First, for cos(P) = 1, I'„g )) I', i.e. , the cen-
tral peak is very narrow and high, a consequence of the
inhibition of the dressed-population decay. Contrarily,
for cos(P) = —1, I', g I' /2, and the sidebands have
double the width and the same height as the central one.
It is for A & r where additional results appear. In this
case, for cos(P) = 1, I' becomes smaller than in the free-

space case, i.e., the central peak is narrower than before,
while the sidebands remain practically unchanged. When
cos(P) = —1, increasing the Rabi frequency A, I' /2 be-
comes as small as we please. I', h also decreases, but the
inequality I', h ) I' is fulfilled. Then, in this case all the
peaks of the spectrum are narrower than in the free-space
case, being the central one higher than the sidebands.

In Fig. 4 we have plotted the right part of the spec-
trum obtained by numerically solving master equation
(2.8) for cos(P) = —1 [Fig. 4(a)] and cos(P) = 1 [Fig.
4(b)], and r. = 5, 10, 100 (solid, dashed, and dotted lines,
respectively), with p, = 2g2/z = 0.2, p = O. l, N = 2,
and 0 = 10. When the driving field is in quadrature with
the squeezed reservoir [Fig. 4(a)], the sideband and the
central band become narrower and higher with decreas-
ing K. The height of the central band increases more
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(a)
depends on the phase difference between the laser field
and the squeezed reservoir, and it is determined by the
width of the population distribution of the atom-plus-
cavity mode-dressed states.

V. CONCLUSIONS
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(b) :

In this paper we have studied the problem of a two-
level atom interacting with a cavity mode and driven by
an external laser field in the bad-cavity limit. The cavity
mode is damped by coupling to a reservoir in an ideal
squeezed state, and the spontaneous emission from the
atom to other modes (background modes) than the priv-
iliged cavity mode is also considered. We have derived
a master equation for the atomic density operator, valid
in the bad-cavity limit, which can be easily interpreted
in terms of transitions between coupled states formed by
the dressed states of the atom-plus-laser system and the
Fock states of the cavity mode. In steady state, positive
population inversion is found in the absence of squeez-
ing, in agreement with previous results. When the driv-
ing field is in quadrature with the maximally squeezed
quadrature of the damping reservoir, the population in-
version increases with the mean number of squeezed pho-
tons. However, inversion cannot be increased arbitrarily
by raising the squeezing of the reservoir. We have found,
for instance, that the maximum value of the population
inversion for N = 1 is (a',)„=0.1. Finally, the spec-
trum of resonance fluorescence has been calculated. As
rc decreases and for intense laser field the central band
and the sidebands of the Mollow's triplet get narrower,
when again, the driving field and the squeezed field are
in quadrature. This is a direct effect of the atom-cavity
decoupling predicted earlier.
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FIG. 4. (a) Right part of the spectrum emitted by the
atom into the background modes for cos(P) = —1, p = 0.1,
0 = 10, N = 2, and rr, : 5 (solid line), 10 (dashed line), 100
(dotted line). (b) Same as in (a) but with cos(P) = l. In all
three curves p, = 2g /rc = D.l.

than that of the sidebands. In the opposite case [Fig.
4(b)] the sideband remains practically unaltered when K

is decreased.
Finally, it is worth mentioning that the resonance spec-

trum in the good-cavity limit has been studied recently
[32]. It has been found that the sideband width strongly

I

APPENDIX

u(cr', Ai, Ag, t) = Tr e'"" e'""cr'j(t) (Al)

where (a'&, j = 0, 1,2, 3}= (I, cr~, cr+, cr }. The evolu-
tion equation for these characteristic functions can be
found with the help of Eq. (2.8). The result is

In this appendix we transform the exact master equa-
tion (2.8) into a infinite hierarchy of ordinary differential
equations, which we have solved numerically to produce
the figures. Following Refs. [20, 23], we define the char-
acteristic functions by

—u(a') = gu([cr', cr ])+-u([a', a. ])+Aiu(8 a') —Agu(o' cr )
d . 8

~ ~ 8 -+
d& BAq

'
BAi

—i—u([a', cr„])—~ Ai +Ay u(a')+ —u([cr, a' ]cr +a [a', a ]).
.0 t9 0

2 '
BAi OAq 2

(A2)
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Expanding in Taylor's series

u(os, Ai, A2) = ) AiA2 us

n, m=0

we have
~ 0
~n, m

~ 1
~n, rn

g(—pu i + v u i —vu i —lju i) —K(n + m)u
2 3 2 3

g(&un-i, m + i' un i,m-—»n, m —i &un, m-i)
—2g[(rn+ I)(eu', +i —~'u', +i) + (&+ I)(»'+i, —&u'+i, )l
—iA(u2 —us ) —[p + ~(n + m)]u„' —pu„
—

2
[&'(un i,m —un i,m) + v(un, m-i + un, m-i) l

-g[(~+I) 'u.',m~i+ (n+ I)~un+i, ml
—' —"', — —+ "("+

2[~(u'. ,m i —u.',m i) -V(u'. -i, +un i,m)l

+g[(~+ )&' n, +i+( + ) '+i, l+ —"',

id u„

ib, us

(A4a)

(A4b)

(A4c)

(A4d)

To obtain the population inversion in the steady state we have solved these equations with u„, = 0 by assuming
u„„=0 for n ) no and checking that the result did not change when no was increased. We have also used this
method, together with the quantum regression theorem, to find the stationary spectrum numerically.
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