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Wave-function shock waves
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When a Rydberg state is suddenly excited to an autoionizing Rydberg state by a short-pulse core-
electron excitation, a shock wave is created in the Rydberg electron s wave function. This shock wave
originates at small r, at the excited core, and propagates outward. This wave-function disturbance is
best illustrated by the Rydberg wave function in momentum space, where the autoionization process
can be seen as a filtering process that reduces the high-momentum, outgoing wave function.

PACS number(s): 32.80.Rm, 32.80.Dz

I. INTRODUCTION

Several groups have recently explored the boundary
between classical and quantum-mechanical physics by
considering the excitation of time-dependent, bound, Ry-
dberg wave-packet states. These are coherent excitations
of Rydberg states which evolve with a near-classical be-
havior The .standard preparation method uses a short
pulse to excite a ground-state electron to an excited-state
wave packet which begins near the origin, and then cycles
out to large r and returns [I—3]. Several characteristics of
these wave packets have been studied, including oscilla
tions in their photoionization cross sections (as the packet
approaches and then recedes from the small-r region)
[I, 2], dephasing of the packet (since the adjacent state
spacing is not constant), and nonclassical revival (since
only a countable number of Rydberg states are excited)
[4]. One work extended these ideas to bound Rydberg
states in atoms with two electrons [5]. In that case, the
Rydberg electron occasionally excites the other electron,
and loses most of its energy. Eventually, the process re-
verses, and the system returns to a one-electron Rydberg
wave packet; however, this configuration mixing modifies
the normal wave-packet time evolution.

In a recent article [6], we considered what would hap-
pen when a short pulse excited the core electron of a
two-electron atom in a bound Rydberg state, producing
an autoionizing Rydberg wave packet. By considering
only the core-electron dipole moment, we showed that it
decayed in a series of "stair steps, " similar to what one
would expect from classical autoionization. Here, we ex-
amine the time dependence of the Rydberg-electron wave
function itself, and show that it is essentially a "shock
wave" which originates at the excited core, and propa-
gates throughout the extent of the original Rydberg wave
function, much like the motion of a classical particle. In
this sense, this core excitation process creates a Rydberg
wave-packet state, much like the bound Rydberg wave
packets created in one-electron systems using photoexci-
tation [1—3]. However, there are major differences.

The most important experimental difference is that the
core excitation process is far more efBcient than pho-
toionization, so this process mill be far easier to study
experimentally. In fact, the laser intensity required to

saturate the core transition is two orders of magnitude
lower than that used in the unsaturated one-electron pho-
toionization experiments [6]. The most important the-
oretical difFerence is that the autoionizing shock wave
decays rapidly, as autoionization depletes the Rydberg
population. The perturbation introduced by exciting the
core remains even after the exciting laser pulse has dis-
appeared, and the continually evolving Rydberg wave is
not periodic. Consequently, it is imperative to use a con-
tinuum of Rydberg-state wave functions, rather than the
normal sum over discrete states. Here, we demonstrate
a variety of ways to construct such wave functions.

Finally, we show that wave packet states better illus-
trate their classical behavior in momentum space A.
bound wave function is composed of both signs of mo-
mentum at each position in space, however the time evo-
lution of those components is very different, since they
move in opposite directions. In momentum space, how-

ever, this degeneracy is unfolded, and the time evolution
is monotonic, showing that the wave packet retains its
essential structure, even when the spatial wave function
may obscure it.

In Sec. II, we describe three methods to construct the
continuum of bound Rydberg wave functions. These in-

clude explicit connection formulas for Wentzel-Kramers-
Brillouin (WKB) wave functions at arbitrary energies,
and a method of generating wave functions by a coordi-
nate translation. In this section, we also illustrate that
resonant core excitations generate a shock wave which
follows a near-classical trajectory by evaluating the prob-
ability density fiux and its local time derivative. In
Sec. III, we show that the coordinate translation method
of generating wave functions allows any sum over energy-
dependent Rydberg wave functions to be written as a
convolution, so that there is no need to construct a wave
function at more than one energy. This leads to a view of
the autoionization process: autoionization simply filters
the wave function in the momentum space. We summa-
rize our conclusions in Sec. IV.

II. VIVE-FUNCTION CONSTRUCTION

The basic idea of core excitation of a Rydberg state
has been used for more than a decade to study the spec-
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gsinh(2z'p)/2 sin[z (v —v')]
sin[z(v+ b+ ip/2)] n(W„—W„) ' (2)

where v represents the efFective quantum number of the
final 6psgznt autoionizing state, b is the quantum de-
fect of the 6psyznl series, p is the scaled autoionization
»newidth of the 6ps~znl series, and v' represents the ef-
fective quantum number of the initial bound state. The
binding energy of a state, W, is related to the efFective
quantum number of the state by

1

2v

Since autoionizing states decay so quickly, the uncer-
tainty principle spreads the wave function over a large
energy band, and the efFective quantum number v be-
comes a continuous variable (and thus the preference over
the more conventional notation, n') This con. tinuous v
also represents the phase of the radial wave function in
multichannel-quantum-defect theory (MQDT) analyses
[8]. The wave function is largest where v+ 6 is an in-
teger, and the first factor in the transition moment of
Eq. (2) is thus a resonant denominator which represents
the amount of autoionizing state character in an energy
region. Each peak has a full width at half maximum
of p (for small p) when plotted versus v. Since the en-
ergy spacing between Rydberg states is I/vs, a specific
v state will have an autoionization rate of p/vs. This
v dependence can be eliminated by multiplying the rate
times the classical Rydberg orbit period (2+v ), to iden-
tify 2vrp as the probability of autoionization per Rydberg
orbit. This is the same for all n values, since autoioniza-
tion only occurs when the Rydberg electron passes near
the core electron, and this happens only once per orbit,
regardless of the n state.

This transition moment assumes a two-channel MQDT
approximation, so that the Rydberg series is not per-
turbed, other than through its coupling to a single con-
tinuum. Thus each Rydberg state has the same resonant
value for v, and the same probability of autoionization

troscopy of autoionizing states [7]. An isolated core exci-
tation (ICE) in barium, for example, might start from a
6sn't bound Rydberg state, which has been excited using
standard techniques, and long-pulse (5-ns) lasers. Next,
a 455-nm laser would excite the 6s core electron to a
6@3/2 state:

6sn l+ ru4J 6p / nl.

These transitions are very efficient, since the 6s -+ 6p
transition has approximately unit oscillator strength.
Consequently, it is natural to extend the ICE method
by using a short pulse for the core excitation step. The
only important change from the normal long-pulse ICE
is that the autoionizing state will not autoionize into ions
and electrons until well after the excitation pulse has dis-
appeared.

The transition moment for this excitation of the core
electron has been shown to be well described [7,8] by the
product of two factors:

per Rydbery orbit. The wave function at each energy will
then have two parts: (1) a product wave function with
an excited core and a bound Rydberg electron, and (2) a
deexcited core with a continuum electron. Here, we will
only be concerned with the excited-core bound-Rydberg
con6guration, so that the continuum electron will never
appear in our time-dependent wave functions. Moreover,
we will factor out the core wave function and the angular
portion of the Rydberg wave function, to construct wave
functions which involve only the Rydberg radial depen-
dence. These radial wave functions can be written as

gsinh (2z p)/2
sin[z (v + b —ip/2)]

(4)

Here the first factor shows that the bound character in-
creases resonantly when v+ b is an integer. This factor
arises from the two-channel MQDT expression which dis-
tributes the bound character over a band of energies by
coupling it to the continuum channel. The second fac-
tor is the bound Coulomb radial wave function. This
function can be defined at any energy, although it will
not satisfy the hydrogenic boundary conditions unless v
is an integer. Since the two-electron atom has the addi-
tional interactions between the two electrons, the bound-
ary condition at small r can require any phase, depend-
ing on how strongly two configurations interact in that
region. The radial wave functions in this MQDT expres-
sion are normalized per unit energy, so that

(5)

xR„,(r)e ' "'~"dW. (6)

Here the integration is over energy (W), which implicitly
includes an integration over v.

In order to construct the wave-front packet, we need
a continuum of bound Rydberg states. The active 6p
core electron causes autoionization in a relatively short
time, so the boundary conditions at small-r values are
relaxed. There is still a preferred phase for the vl radial
wave function at sma11 r with a 6p ion core; however,
since this conlguration is mixed with continuum wave

functions having a different core state, any phase can be
accommodated. The magnitude of 6pnl character merely
decreases as the phase deviates from the preferred value.

We have used three methods to calculate this con-

The second factor of Eq. (2) arises from the projection
of the initial Rydberg wave function onto the final Ryd-
berg wave function. The two wave functions see different
core potentials, so they will generally have two difFerent

phase shifts arising from their core interactions. When
the core is excited, the Rydberg electron must readjust,
and consequently it can change its principal quantum
number.

We can now construct the time-dependent Rydberg
radial wave function from the transition moment and the
energy-dependent radial wave function,

sinh (2vrp) sin [7r(v —v')]
@(r,t) =

[sin[a.(v+ 6+ ip/2)][z 2z'(W~ —W~ )





4350 XIAO WANG AND W. E. COOKE 46

where cosh(z = u/v. These two wave functions can be
matched together in a small matching region near the
classical turning point, ~u —v~ ( &v ~s. In this con-
necting region, the wave function can be expanded in a
power series about the turning point, in terms of yet an-
other new variable y = u/v —1. If one retains only the
linear term in the potential expansion, then the two in-
dependent solutions each contain only every third order
of y, so that

1 s ( ay'lX„=—1+a.y'
I 1+

c, I, 5 p

—vciy 1+
I
1+o,ys ( o,ysl

(15)

Here n = 16vz/3 and ci ——s + 25/vz. The two terms
are independent solutions near the turning point. The
relative composition of the two terms closely matches
our integrated functions over the range 10 & v ( 50,
while retaining a simple form. Figure 1(b) shows ex-
cellent agreement between the integrated wave function
and the WKB composition. Typically these WKB wave
functions have a normalization which is 5% too high. In
Fig. (1)b, we have renormalized the WKB wave function
to the correct value.

The WKB wave functions are not restricted to integer
values of v, so that all of these equations remain valid
for intermediate and large u for all values of the effective
quantum number (including noninteger values). Never-
theless, they are not ideal for calculating wave packets.
In order to integrate the transition moment over all en-

ergy ranges using WKB wave functions, it is necessary to
divide the integral into three difFerent ranges, with the
boundary between ranges changing with energy.

The final method is the least accurate, but perhaps
the most instructive, and certainly the easiest calcula-
tionally. Here, we have used one correct wave function
(obtained using either of the two previous methods), and
then constructed new wave functions at different ener-
gies by using a coordinate translation. Near the turning
point, the functional form of the wave function changes
slowly as energy shifts through a change b,v, except that
the classical turning point moves. At small u, where the
wave function is approximately a cosine function, such
an energy shift only introduces a phase shift, equivalent
to shifting the coordinate u by b,u = (vr/4)hv. Thus,
one expects that the change in the wave function with
energy can be written as

u' = u+ Av f(u),

X (u) =X (u'),
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extended to values of u ) v, by deriving an equation for

f(u) from an expansion about the turning point. Note
that

X."(u') = 9 +»f'(u)l'X."(u') +»f"X.'(u'). (»)
One can choose f(u) so that y„~ satisfies an equivalent
equation, given that y„already satisfies Eq. (11). If we
force f(u) to satisfy the boundary conditions, f(0) = vr/4

and f(v) = 1, and require that f"(v) = 0 to minimize
errors at the turning point, then we obtain the following
simple polynomial expansion for f(u):

f(u) = 1+ (
——i) (1 —u/v)
4

(2+
~

———
! (u/v) (1 —u/v)(2 —u/v), (19)

(3 4p

where the coefficients are independent of v. This repre-
sentation produces even better results than the trigono-
metric version derived from the WKB wave function, be-
cause this polynomial corrects for the slight phase shift-
ing created by the variation of the amplitude of the wave
function.

In Fig. 1(c), we also show a comparison between an in-

where f(u) is a function which varies slowly from x/4 at
u = 0 to 1 at u = v. One can obtain an approximation
for f by forcing the phase of the oscillating WKB wave
function to be constant for changes where du = f (u)dv,

5—
j~ILIEEEI„E, EII 1

0 I i/I' II I I lI II
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f(u) = —
! . +cos( I,

1( (
2 &sin(

(17)

where again cos( = u/v. This can be improved and

FIG. 2. The probability density (!g! ) of the Rydberg
electron at t = 0.05 (a), t = 0.2 (b), and t = 0.& (c) after
the core has been excited. The times are measured in frac-
tions of the classical Rydberg orbit period.
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form as R, and so the wave function is unchanged. How-
ever, as t increases, T(p+ t) shifts to the left, and de-
creases the high, outgoing momentum values. This is be-
cause only outgoing waves have already autoionized; in-
going waves do not yet know that the core is excited. As
time progresses, more and more momentum components
are reduced, as T(p+ t) shifts farther. Physically, this is
because the reduced-amplitude, high-momenta outgoing
waves are slowing down in the potential, producing re-
duced amplitude in the lower-momenta outgoing waves.
Eventually the outgoing waves arrive at their turning
point, reverse, and the reduction of the wave function
spreads to the ingoing waves. This is shown schemati-
cally in Fig. 6(c), where the Fourier transform of a wave
function at t = 0.25 Rydberg periods clearly shows the
reduced momenta components.

Eventually, the shock wave front returns to the core re-
gion and has yet another chance to autoionize. However,
since the autoionization reduces all incoming waves by a
constant fraction of their amplitude, the shock wave will
persist —albeit at a reduced amplitude. Thus the wave
function maintains an imbalance in momenta. It always
has a net flux inward.

This itself can produce unusual atomic characteristics.
For example, since the incoming and outgoing momenta
components are unbalanced, the radiative couplings of
this packet may be substantially difFerent from those of
a normal state. A Cooper minimum [9] occurs when the
radiative transition moment passes through a zero as it
changes sign. Such a zero can be thought of as a can-
cellation of the transition moment due to ingoing waves
with that of outgoing waves. If the outgoing waves are
reduced, then the fiuorescence rate could increase as the
cancellation is disturbed. This would be an example of
an atomic system which emits, but does not absorb, ra-
diation, in apparent violation of the normal relationship

between Einstein A and B coefficients [10]. However,
since this system is necessarily transient, such violations
are allowed. This is similar to "lasing without inversion"
schemes [ll] where a cancellation between bound-bound
and bound-continuum transitions is disturbed when no
continuum is present; however, this case requires no cou-
pling to the continuum at all since the cancellation oc-
curs between the two opposite sign momentum parts of
the bound wave function itself.

IV. CONCLUSION

By using a sudden core excitation to initiate autoion-
ization in a Rydberg state, autoionization can be studied
as a time-dependent process. Here we have shown that
autoionization proceeds as a momentum filter, reduc-
ing outgoing high-momentum components, which then
evolve throughout the entire wave function. This pro-
cess creates a shock uraee in the Rydberg wave function,
which propagates as a classical particle. This shock wave
presents numerous possibilities for further exploration.
For example, when the shock wave returns to the core
region, it will scatter from the core showing all the ef-
fects of configuration interactions —as time-dependent
intemctions.

Perhaps the most interesting use for shock waves will
occur if they are transferred back to the bound spectra
by using a second short pulse core deexcitation. This
should produce interesting, dynamic structure in the
bound atom.
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