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Quantization of the electromagnetic field in dielectrics
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We present a fully canonical quantization scheme for the electromagnetic field in dispersive and
lossy linear dielectrics. This scheme is based on a microscopic model, in which the medium is
represented by a collection of interacting matter fields. We calculate the exact eigenoperators for
the coupled system and express the electromagnetic field operators in terms of them. The dielectric
constant of the medium is explicitly derived and is shown to satisfy the Kramers-Kronig relations.
We apply these results to treat the propagation of light in dielectrics and obtain simple expressions
for the electromagnetic field in the medium in terms of space-dependent creation and annihilation
operators. These operators satisfy a set of equal-space commutation relations and obey spatial
Langevin equations of evolution. This justifies the use of such operators in phenomenological models
in quantum optics. We also obtain two interesting relationships between the group and the phase
velocity in dielectrics.

PACS number(s): 42.50.—p, 03.70.+k

I. INTRODUCTION

In classical electromagnetism, the analysis of the inter-
action of light with a continuous medium is performed in
two stages [1, 2]. In the first, an explicit model of the
medium is introduced and its response to an electromag-
netic field is calculated. At this stage, the emphasis is
put on the matter and the light field is considered as a
probe of the medium properties. For an insulating and
nonmagnetic medium, the properties relevant to the in-
teraction with light are embodied in the linear and non-
linear susceptibilities Xli&, X(z), . . . which can be calcu-
lated in terms of the parameters of the model. In the
second stage, these susceptibilities are used to obtain the
characteristics of the electromagnetic wave in the mat-
ter The emph. asis is now put on the light field and on
the way it is modified by the interaction with the mat-
ter. At this stage, the explicit model of the matter is
no longer needed. Indeed, in many cases in nonlinear
optics, calculation of the susceptibilities from the struc-
ture of the medium is not practical and they have to
be obtained as experimental parameters. A fundamental
requirement is that the dielectric constant should satisfy
the Kramers-Kronig relations [3].

The usual approach to quantum optics in dielectric me-
dia is to start from the second stage and introduce the
medium only by its linear or nonlinear susceptibilities. In
one procedure, the macroscopic fields are used to build an
efFective Lagrangian density [4—11]whose Euler-Lagrange
equations are identical to the macroscopic Mamvell equa-
tions in the dielectric:

V x E=—,V.D=0,B
Ot

together with the constitutive relation linking the dis-
placement field D to the electric field E: D = e E, where
e, the dielectric response operator, is in general an in-
tegral operator acting on E. This procedure has been
used extensively in dispersionless media. It was first de-
veloped in a homogeneous infinite linear medium [4] and
later extended to nonlinear ones [5—7]. More recently,
it was applied to inhomogeneous media as well [8] and
to paraxial propagation [9]. However, attempts to add
dispersion to this effective scheme have run into diffi-
culties [10, 11]. The reason for this is that inclusion of
dispersion leads to a temporally nonlocal relationship be-
tween the electric field E and the displacement field D [3].
The efFective Lagrangian, which includes both, is there-
fore also nonlocal in time and cannot be used directly in a
quantization scheme [5]. In an attempt to overcome this
problem, Watson and Jauch [10] have shown that, under
some restrictive assumptions on the refractive index of
the medium, it is still possible to quantize the field in the
reciprocal space. Indeed, in this space, the integral oper-
ators appearing in the theory are replaced by multiplica-
tive factors, thus making the Lagrangian density local in
reciprocal space. However, this approach relies on a one-
to-one correspondence between the frequency cu and the
wave vector k. Therefore it is restricted to indices of re-
fraction which are monotonic functions of the frequency,
which makes it inapplicable in many physical situations.
Much more recently, a similar type of approach has been
used by Drummond [11].In this approach, the total fields
are decomposed into a sum of fields with restricted band-
widths, which are taken as the fundamental variables of
the theory. As above, quantization is performed in the
reciprocal space and relies on the same one-to-one corre-
spondence between k and u within each frequency band.
As the field bandwidths can be chosen to be arbitrar-
ily small, this limitation is no longer very restrictive. A
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problem associated with this method is the appearance
in the theory of extra unphysical boson fields which have
eventually to be discarded. Very recently, we showed [12]
that, by introducing the medium explicitly in the theory,
one could overcome all these problems and quantize the
electromagnetic field in a dielectric in a completely stan-
dard fashion. However, as with the efFective methods,
our approach was limited to a nonabsorbing dielectric.
In this work, we shall lift this restriction and show how
our method can be extended to include lossy media.

Other, more phenomenological procedures which do
not rely on a Lagrangian formalism have been used
by other workers to treat the case of a nondisper-
sive but inhomogeneous medium [13] and to quantize
the field within the slowly varying envelope approxima-
tion [14]. In a popular approach [15—19], which closely
follows classical electromagnetism, the fields are decom-
posed into space-dependent monochromatic amplitudes
and Maxwell equations are used to obtain spatial evolu-
tion equations. Quantization of the field is performed by
replacing these amplitudes by operators and imposing a
set of equal-space commutation relations (ESCR). This
technique can be used in linear as well as nonlinear media
and its simplicity has led to its wide application to prop-
agation problems in quantum optics. However, it is not
derived from a Lagrangian and therefore has not been
justified in terms of a canonical scheme. As the main dif-
ference between the classical and the quantum case lies
in the commutation relations, which are responsible, for
example, for the vacuum fiuctuations, we believe it is of
great theoretical importance to justify the use of such
ESCR by deriving them from a canonical quantization
scheme. One of the aims of this work is to provide such
a derivation in the case of a linear dielectric.

Another problem related to all the above phenomeno-
logical approaches is the inclusion of losses into the sys-
tem. In classical electromagnetism, it is well known that
if we consider the full frequency spectrum, including the
absorbing regions always associated with a dispersive
medium, then the dielectric constant will be a complex
quantity, whose real and imaginary parts are related by
the Kramers-Kronig relations [3]. To our knowledge, this
fundamental identity between dispersion and losses has
never before been derived for a quantized electromag-
netic field. The reason why an effective theory cannot
accommodate losses is that, in contrast to the classical
case, losses in quantum mechanics imply a coupling to a
reservoir whose degrees of freedom have to be added to
the Hamiltonian. This suggests that, in order to quan-
tize the electromagnetic field in a dielectric in a way that
is consistent with the Kramers-Kronig relations, one has
to introduce the medium into the formalism explicitly.
This should be done in such a way that the interaction
between light and matter will generate both dispersion
and damping of the light field. Indeed it is widely agreed.hat a fully canonical theory, valid for all the frequency
spectrum including the regions close to the resonances
of the medium, has to be based on a microscopic model
[5, 11]. Very recently, we presented an outline of a one-
dimensional version of such a theory [20]. In this pa-
per, we shall expand the model to three dimensions, in-

elude the polarization of the electromagnetic field and
give more details of the calculations. A rigorous approach
to quantization in linear dielectrics has very recently ac-
quired experimental significance with the work of Stein-
berg, Kwiat, and Chiao [21] on the propagation of single
photons in dielectrics. Moreover, by solving the linear
case exactly, our work provides a step towards a com-
plete canonical theory, including dispersion, losses, and
nonlinearities.

The paper is organized as follows. In Sec. II, we present
our model of the dielectric, perform the canonical quanti-
zation, and obtain the Hamiltonian of the combined sys-
tem. We diagonalize this Hamiltonian exactly in Sec. III
and express the field operators in terms of its eigenopera-
tors and of the complex dielectric constant of the medium
in Sec. IV. In Sec. V we analyze the propagation of the
light in the dielectric, express the fields in terms of space-
dependent amplitudes, and obtain their spatial equations
of evolution. In Sec. VI, we derive two interesting rela
tionships between the group and phase velocity in the
dielectric. We discuss the main results and conclude in
Sec. VII. Finally, we present an outline of the somewhat
lengthy calculations in the Appendixes.

II. CANONICAL QUANTIZATION

A. Separation into transverse ance longitudinal parts

Following the standard approach in quantum electro-
dynamics [25], we start from a Lagrangian density in real
space [all the vectors are written in boldface characters
and, for notational simplicity, we do not write the (r, t)
dependence of the fields explicitly]:

~ = ~em + ~mat + ~res + ~int ~

where

(2 1)

2 2pp
(2.2)

Our microscopic model is based on the Hopfield model
of a dielectric [22], where the matter is represented by
a harmonic polarization field. This model was intro-
duced by Fano [23], who justified it in terms of an atomic
medium. However, to our knowledge, it was only applied
to solid-state physics [24], where the main interest is in
the properties of the medium and where the electromag-
netic field is introduced as a probe of these properties.
Here, we shall change the emphasis and use the model to
obtain the properties of the light field in the medium. We
also introduce an extra coupling between the polarization
field and other harmonic fields and show that this addi-
tional element is responsible for the absorption of light.

The approach to canonical quantization that we use
in this section follows closely the one adopted by Cohen-
Tannoudji, Dupont-Roc, and Grynberg [25] and we refer
the reader to this book for a more complete derivation.
In order to emphasize a few significant difFerences and to
set the notation, we shall nevertheless repeat the main
points.
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2

(2.3)

is the electromagnetic part which can be expressed in
terms of the vector potential A and the scalar potential
U ( E = —A —VU and 8 = V x A);

/

d )t" (8 + 8 „+l:„,+ g.„,), (2.8)

where the prime means that the integration is restricted
to half the reciprocal space and the Lagrangian densities
in this space are defined by

OO 2

d
I

-PY.' —~ Y.' I)(2 2 j (2.4)

is the reservoir part, comprising a continuum of harmonic
oscillators, used to model the losses; and

is the polarization part, modeled by a harmonic oscillator
field X of frequency uo, r. =.o (IEI' —c'IBI')

t = pIXI —~o IXI

L... /A=(p(Y., )'-~'IY, I')

(2.9)

L;„~ = —tv (A X+ UV X) — Ckpv(tv)X Y
0

(2.5)

is the interaction part, which includes the interaction be-
tween the light and the polarization field, with coupling
constant n, and the interaction between the polarization
field and the other oscilllator fields used to model the
losses with coupling constant v(~). In this paper, we
shall restrict ourselves to a nonsingular, square-integrable
coupling. Moreover, we shall make the following assump-
tions: (i) the analytic continuation of Iv(w) I2 to negative
frequencies is an even function and (ii) v(u) g 0 for all
nonzero frequencies. The first assumption is needed in
order to extend the frequency integrals to the negative
real axis and use integration in the complex plane, while
the second one ensures that all the reservoir fields are
coupled to the system. As we are primarily interested
in the optical region, which means that v(u) is signifi-

cantly nonzero only far from the origin, the choice of an
even function is not really restrictive. The choice of a
particular X Y' coupling for the loss term is not essen-
tial (any linear coupling would also lead to a loss term),
but leads to some simplification in the calculations. For
future use, we also define the displacement field D(r, t),
which is given by the following combination of the electric
field and the material polarization:

l:;„,= —o. A' X+A X +ik (U'X —UX')

Avv(~) (X' Y.. +X Y )0

Following the standard approach to /ED for non-
relativistic phenomema, we choose the Coulomb gauge
k A(k, t) = 0, so that the vector potential A is a purely
transverse field and use the Euler-Lagrange equation for

U to eliminate U from the Lagrangian. We obtain

. o, (~ X(k, t)&l
eo ( k

(2.10)

where e is a unit vector in the direction of k. Next we

decompose the matter fields X and Y., into transverse
and longitudinal parts. For example X can be written

X(k, t) = X (k t) + Xll(k t) (2.11)

I

e'a (Z' + A'., + Z,'..+ r,'„,), .(2.12)

with a similar expression for Y' . The total Lagrangian
can then be written as the sum of two independent parts.
The transverse part, containing only transverse fields, is

given by

D(r, t) = eoE(r, t,) —o(X(r, t,) . (2.6) with

As U does not appear in the Lagrangian, U is not a
proper dynamical variable, but it can be written in terms
of the proper dynamical variables A, X, and Y, The
easiest way to do so is to go to the reciprocal space and
write all the fields in terms of their spatial Fourier trans-
forms. For example the electric field is written (to dif-

ferentiate between the fields in real and reciprocal space,
we shall underline the latter):

~Zm=e0 A —c k A

, = plX Iz —pcuolX

gT ~ py 2 ~2yT 2

(2.13)

E(r, &) =
s&z

d I(:E(k,t)e'"'.
2m. s)" (2.7)

OO

o.A X + d(dv(v)X ' Y + c.c.
0

The introduction of a complex field E(k, t) to represent
a real field E(r, t) implies that we double the number
of variables. However, as E'(k, t) = E(—k, t), we can
recover the correct number of variables by restricting the
k integration to a half space [25]. The total Lagrangian
is then obtained as

I

III d kill (2.14)

where

and the longitudinal part, containing only longitudinal

fields, is written
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~'=PIX
I

~clX»! + ccc (,X",
(

~cX~!,
) )p

Wc(tc) (X~~" Y +Xt~ Y., ),
0

(2.15)

E(k, t) —= E (k, t) + Ell(k, t)lt = —A(k t) +
6'p

where ul„ the longitudinal frequency, is defined by (dL, =
2

g~o2 + ~2 and ~2 =, . In contrast with the more stan-
dard approach [25], the decomposition of the matter field
into transverse and longitudinal parts allows a complete
separation between the transverse and the longitudinal
parts of the Lagrangian. The link between the two is
given by the total electric field, which is written

the displacement field, as the conjugate to A. Naturally,
these two possibilities lead to the same results and we
have used the second one in a recent work dealing with a
lossless medium [12]. We choose here the first possibility
in order to keep as close as possible to the classical theory,
where E is usually considered as the fundamental variable
and D is written in terms of E and the dielectric response
operator e.

Using the Lagrangian (2.12) defined in (2.13) and the
expression for the conjugate variables in (2.18), we obtain
the Hamiltonian for the transverse fields,

(2.19)

where

(2.16) = eolE['+ eoc'k'fA[' (2.20a)

B. Quantization of the transverse fields

We introduce unit polarization vectors ep(k), A = 1, 2,
which are orthogonal to m and to one another, and de-
compose the transverse fields along them to get

A(k, t) = ) A"(k, t)eq(k), (2.17)

with similar expressions for the other fields. 8 can now be
used to obtain the components of the conjugate variables
for the fields

Using (2.11), (2.16), and the definition of the displace-
ment field D given in (2.6), we recover the fact that, as
expected, D(r, t) is also a purely transverse field.

From (2.12)—(2.15), it is easy to see that the longitudi-
nal Lagrangian is similar to one component of the matter
part of the transverse Lagrangian (including the polar-
ization field, the reservoir and their interaction) with a
change of frequency from up to uL, . Its quantization can
thus be performed in exactly the same way as the quan-
tization of the transverse part, but without introducing
the vector potential A. In this work, we are mainly inter-
ested in the transverse fields representing the propagat-
ing photons in the dielectric and shall only present the
detailed quantization of the transverse part of the La-
grangian. Quantization of the longitudinal part follows
exactly the same lines, but we shall not do it here. In
all that follows, we shall therefore restrict ourselves to
transverse fields and omit the superscript T. Q;„, = —(A' P+c.c.)

p
(2.20c)

is the interaction energy between the electromagnetic
field and the polarization. We note that in this approach
the electromagnetic energy in (2.20a) already includes
part of the interaction energy with the matter, namely
—[A[ . In standard quantization schemes, this energy is

included in the interaction Hamiltonian. Here, as our aim
is to include the matter from the beginning and derive
its influence exactly, our decomposition is preferable.

The fields are quantized in a standard fashion [25) by
demanding equal-time commutation relations (ETCR)
between the variables and their conjugates. For the elec-
tromagnetic field components, we get

is the electromagnetic energy density, k being defined by
A, = Qk2 + Ib2 with I(:, —= ~ = Qo.2/pc2eo.

P 2

+p olxl'
p

[2
des + ~2/Y, [2

p P

+ (X' Q + c.c.), (2.20b)
P

is the energy density of the matter fields, including the in-
teraction between the polarization and the reservoir and

vo2
—= uo2 + Jo ~"i,) is the renormalized frequency of

P
the polarization field;

—~pE A BZ

BA
BE

~ A~

BZ

BY

~ A= epA,

= pX" —~A",

= pY —v((u)X" .

(2.18a)
A (k, t), E (k', t) = ——bye b(k —k'), (2.21a)

2.18b
and for the matter fields

(2.18c)
W

X (k, t), P (k', t) = iMgg 6(k —k'), (2.21b)

One important point is that with this particular type of
coupling between light and matter, the conjugate of A
is the transverse electric field —eoE. A change of gauge,
leading to an E X type of coupling, would give —D,

'Y.,(k, t), Q, (k', t) = ihbg), b(k —k') b((d —cu'),

(2.21c)
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a(A, k, t) = kcA (k, t) —iE (k, t), (2.22a)
2hkc .

b(A, k, t) = ~0K (k, t)+ -P (»t) (222b)
254JO

b (A, k, t) =
2

—iceY,,(k, t) + -Q (k, t)

(2.22c)

with all the other equal-time commutators between fields
within the half k space we are integrating over being zero.
From now on, we shall denote all quantized operators by
a caret.

To facilitate calculations, we introduce three sets of
annihilation operators:

From the ETCR for the fields (2.21), we obtain the
ETCR for the creation and annihilation operators:

a(A, k, t), a~(A', k', t) = 6pp 6(k —k'),

b(A, k, t), bi (A', k', t) = 6pp 6(k —k'),

b (A, k, t)b~, (A', k', t) = 6pp 6(cu —~')6(k —k') .

(2.23)

We emphasize that, in contrast to the previous ETCR
between the conjugate fields (2.21), which were correct
only in half k space, Eqs. (2.23) are valid in the whole
reciprocal space. Inverting (2.22) to express the field op-
erators in terms of the creation and annihilation oper-
ators, inserting these into the Hamiltonian (2.19), and
performing the integration, we obtain the normally or-
dered Hamiltonian for the transverse fields

where A' and us are defined in (2.20a) and (2.20b). The
difFerent definitions for b and b~ only amount to a change
of phase and have been chosen for future simplicity.

+ = +em + +mat + +int &

where

(2.24)

H, = ca~, , t a A, k, t
A=1,2

(2.25a)

OO

H t = c7)0, ,t, , t + A, ,t, k t
A=1,2- 0

OO

+— ~V (~) [bi (A, —k, t) + b(A, k, t)] [b~ (A, —k, t) + b (A, k, t)]
0

(2.25b)

H;„t ——i — a,—,t +a, ,t,—k, t — A, , t
%=1,2

(2.25c)

where V(w) —= [v(w)/p]gw/vre, A(h)—:giver/re//r eed
the k integration has been extended to the full recipro-
cal space. From the original assumptions (i) and (ii) on
v(u), we see that the analytic continuation of [V(id) [ to
negative frequencies is an odd function and is nonzero
everywhere except at the origin.

The above equations (2.24) and (2.25), together with
the commutation relations in (2.23), complete the quanti-
zation procedure of the transverse fields. It is interesting
to note that the explicit introduction of the matter in
our model has enabled us to perform the quantization in
a perfectly standard fashion and to avoid the problem of
nonlocality in time present in e8ective quantum schemes,
where the medium is only introduced by its response op-
erator e. The apparent drawback of our procedure is
that it is still purely formal. Indeed, it is easily shown
that the Heisenberg equations of evolution based on the
Hamiltonian (2.24) and the ETCR (2.23) are identical to
the Mm~ell-Lorentz equations for the coupled matter-
electromagnetic field system. In order to extract useful
information about the system, we need to solve these
equations. This is the aim of Sec. III, where we present
the exact diagonalization of the Hamiltonian (2.24).

III. DIAGONALIZATION
OF THE HAMILTONIAN

A. Diagonalization of H

Hm~t —— d k du)hu)B k)u) B k)~
0

(3.1)

where B~(k, u) and B(k, u) are the dressed matter field

creation and annihilation operator which satisfy the usual
ETCR

The polarization and reservoir part of the Hamiltonian
H ~|, (2.25b) can be diagonalized by a Fano type of tech-
nique (discrete mode coupled to a continuum) [26, 27]
to give a dressed matter field. An important point here
is that, as we are interested in the full frequency spec-
trum, we cannot make the rotating-wave approximation
but have to keep all the contributions. The calculations
leading to the diagonalization are lengthy and we outline
them in Appendix A. For notational simplicity, we shall

omit the polarization index A and the explicit time de-

pendence of the operators. The diagonalized expression
for Hmat is



46 QUANTIZATION OF THE ELECTROMAGNETIC FIELD IN. . . 4311

and similarly

b (k) = (ku'[ni(~', (u)B(k, (u')
0

Pi ((u', u—))B~( k, ~')] —. (3.5)

The consistency of the diagonalization procedure is

checked by verifying that the initial commutation rela-

tions between b(k) and bi(k) and between b (k) and

b~~(k) are conserved. Using (3.4), (3.5), and the com-

mutation relations for the B's (3.2), we obtain

[b(k), b~(k')] = b(k —k') ~[Ia'o(~)I —IPo(cu)I ]
0

(3.6)

B(k, (d), B~(k', ~') = b(k —k')b(ur —a') . (3.2)

They are expressed in terms of the initial creation and
annihilation operators by

B(k, cu) = ap(cu)b(k) + Pp(~)b~( —k)
OO

+ (ku' ai(u), ~')b (k)
0

+Pi (~, cu') b~, (—k), (3.3)

and all the coefficients o.p(u), pp(u), o(i(u, u'), and
Pi((d, (d') are defined in Appendix A. We emphasize that,
as the parameters ap and V(u) in the Hamiltonian H, q

(2.25b) do not depend on k, the above coefficients are
also independent of k.

It is also important to note that, in the above diag-
onalization, we have not proven that our set of eigen-
operators is complete. In particular, it is well known that
the coupling of even two harmonic oscillators can result
in eigenmodes with negative energies when the coupling
is too strong. Here, we have assumed that only positive
frequencies appear in the expression for the diagonalized
Hamiltonian (3.1). This assumption was needed in order
to avoid problems such as unboundedness that appear in
harmonic oscillators with negative energies. However, we
still have to check its validity. A consistency check, which
will in fact give us an upper limit for the coupling factor
V(~), can be found by inverting (3.3) to write the free

creation and annihilation operators b and b and their
conjugates in terms of the eigen- or dressed operators B
and Bt. If the set is complete, then it will be possible to
construct b and b as well as their commutators in terms
of the dressed operators. Using the commutators of b and

b~ with B and B~ together with (3.3), it is easily seen
that

OO w

b(k) = der o.o(~)B(k,u) —Po(u)B~(—k, ur)
0

(3 4)

d [I~o(~)I' —IPp(~)I'] =1
0

(3 8)

1(~,~') —= d~[~;(~, ~)~, (~, ~') —p, (~, ~)p;(~, ~')]
0

= b((u —~') . (3.9)

These integrals are calculated in Appendix B where it is
shown that the scheme is consistent: I = 1 and I(u, u') =
b(u —cu') if and only if IV(u) Iz satisfies the inequality:

v(~) I

p ld
(3.10)

Using the definition of up and of V(u) in terms of the
coupling v(~) given in (2.20b) and (2.25b), it is eas-
ily seen that (3.10) is indeed satisfied for any square-
integrable coupling v(~), provided that the frequency of
the polarization field (dp is not zero. This shows that
the above procedure is restricted to dielectric material in
which there are no free charges. The treatment of a con-
ducting medium would require an extension of the model
to account for the longitudinal component of D arising
from the free charges.

The main result of this section is that, subject to the
above restriction, the Hamiltonian H~, q is diagonaliz-
able for any square-integrable coupling v((d) satisfying
the original assumptions (i) and (ii). Moreover, the above
diagonalization procedure, which was performed here for
a one-resonance model of a dielectric, can be iterated
to treat any number of resonances. Indeed, the origi-
nal technique which forms the basis of our scheme has
already been extended to treat any number of discrete
modes coupled to one continuum [26, 27].

B. Diagonalization of H

The diagonalization of the total Hamiltonian H (2.24)
is formally very similar to the above diagonalization of
the matter part H,&. We write H, t, (2.25b) in diagonal

form (3.1) and use (3.4) to replace the b(k) operators in

the interaction part of the Hamiltonian Hi & (2.25b) by
their expression in terms of the dressed matter operators
B(k, (d) to give

V Ay V)4) A& P)4)
0

-pi(i' ~)pi(i', ~')] .
(3.7)

Equations (3.6) and (3.7) show that the commutation
relations are conserved by the transformation from the
free operators to the dressed ones if and only if the two
following conditions are satisfied:

H= d k hkca~ kak + LuB~ k, ~Bk, cu
0

OO

~—A(k) ttw(g(w)Bt(k, w)(tt(k) + ct(—k)) + Hc)),
0

(3.11)
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where g((d) = inp(u) + imp(cu). It will prove useful to define a dimensionless coupling constant ((ur) = ~irpg(u) T. he
Harnihonian is then written as

H= k ca~ kak + B~ k~Bku)
0

+ — =' W(((a)B~(k, w) c(k) +ac(—k) + Hc)) .
kc p

(3.12)

Direct comparison between the above Hamiltonian (3.12)
and the expression for H « in (2.25b) shows that the
two have the same structure. Moreover, we show in Ap-
pendix C that the coupling ((u), which corresponds to
V(u) in (2.25b), satisfies the same condition as V(u),
namely that the analytic continuation of l((ru) l~ to neg-
ative frequencies is an odd function, nonzero everywhere
on the axis, except at u = Q. We also derive the following
normalization condition:

(3.13)

The diagonalization procedure of H follows the one
given in Sec. III A and in Appendix A, with the relevant
changes in the parameters. The final expression for H is

(3.17)

Finally, following the results of Sec. IIIA, we find
the upper bound on the coupling (((d), corresponding
to (3.10) in Sec. III A, which reads

(3.is)

The definition of k, k c = k c + u, (2.20a), together
with (3.13), ensures that (3.18) is indeed satisfied for all
nonzero k's [28]. Therefore, subject only to the initial
assumptions on v(u), the above procedure is exact; the
total Hamiltonian is diagonalizable and its eigenopera
tors are given by (3.15). Moreover, the above consistency
check leads to the following equality:

H = )4P )4J
0

(3.14)
(3.i9)

[C(k, u), C~ (k', u')] = 6(k —k') 6((u —u'), (3.16)

and, being operators for eigenmodes, they have a har-

monic time dependence

where Ci and C are the creation and annihilation oper-
ators for the eigenmodes of the system, the excitations
of which are known as polaritons. They are defined in
terms of the a(k) and B(k,u) operators and their Her-
mitian conjugates by

C(k, ~) = crp(k, (d)a(k) + Pp(k, ~)ai(—k)

+ (hr'[ag(k, (u, ~')B(k, (u')
0

(3.i5)

where the coefficients c)p(k, cu), Pp(k, ~), nq (k, u, u'), and

Pq (k, u, u') are given in Appendix D. The C(k, u) and
C'i(k, w) also satisfy the usual commutation relations

(CR)

which corresponds to (3.8) in Sec. III A and is satisfied
for all k g 0. We shall show in Sec. VI that (3.19) leads
to two interesting relationships between the group and
the phase velocities in the dielectric. We shall use our
results to derive expressions for the electromagnetic fiel
operators in the dielectric in terms of the eigenoperators.

IV. EXPRESSION FOR THE
ELECTROMAGNETIC FIELD OPERATORS

In order to obtain the electromagnetic field operators
in terms of the polariton creation and annihilation oper-
ators Ci and C, we first use the results of Sec. II and in

particular (2.22a) to express them in terms of the pho-
ton creation and annihilation operators a (A, k, t) and

a(A, k, t). The vector potential operator A(r, t) is given

by (note that we now write the explicit polarization and
time dependence)

1
A(r, t)= ( d k

h ) ep(k) a(A, k, t)e'"'+ai(A, k, t)e '"'] .
2E'0kC A=1 2

(4.1)

Following the method used in (3.4) to derive the polarization field operators b and b~ in terms of the dressed matter

operators 8 and Bi, we invert (3.15) to write the photon creation and annihilation operators a~ and a in terms of
the polariton operators C and C~ to give

OO

a(A, k, t) = eke 6p(k, u)C(A, k, u)e ' ' —Pp(k, ur)Ci(A, —k, u)e
0

(4.2)
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where we have included the time dependence of C and its conjugate explicitly. Using (4.1), (4.2), and the expres-
sion for the coefficients ap and Pp derived in Appendix D, we obtain the vector potential operator in terms of the
eigenoperators:

C(k, ~)e '( ' "'&+H.c.
~2~(4t) —k'c' (4.3)

where s(cu), which we shall interpret as the complex dielectric constant of the medium, is defined by

~2 OO ( ~l
s(u) = 1+ ' P ~', + n((ur)

2Nd ~ Cd —Cd
(4.4)

with ((u):—~( 1 for positive frequencies and its analytic continuation for negative frequencies. The full justification
of this interpretation shall be given later in this section and in Sec. V. It is shown in Appendix E that e(~) has the
usual properties of a dielectric constant [3], namely it is an analytic function in the upper half of the complex plane
and it tends to one as u tends to infinity and to a number larger than one when u tends to zero. Most importantly,
we show that it satisfies the Kramers-Kronig relations.

We can also calculate the transverse electric field (E = —A)

C(k ~)e '( ' "'1 —Hc
cd s(4l) —k c (4 5)

and the magnetic field (B = V x A)

2 OO

(2z. 2~2 2sp „,-, p 4J th) —k
(4.6)

The remaining important Beld appearing in the Mmavell equations (1.1) is the displacement field D, defined in (2.6).
The calculation of D(r, t) is straightforward but lengthy, as we need first to express the polarization field X(r, t) in

terms of the C's and then to insert the resulting expression in (2.6). After some algebra, we find

2 OO

D(r, t) =
&2

d k ' ) eq(k) der spa(4t) 2 2 C(k, ~)e '("' "'1
(2z )2~2 2ep

)C( )
—i( t-t ) (4.7)

The Brst term of (4.7) is equivalent to the classical result,
where the link between D and E is given by the dielectric
susceptibility. This justifies the interpretation of e(~) as
the dielectric constant of the medium. The second term,
which has no classical equivalent, represents a Langevin
Buctuation term as we shall show in Sec. V.

The set of equations (4.3), (4.5), (4.6), and (4.7) form a
complete solution to the the problem of quantization in
the dielectric. The electromagnetic Qeld operators are
written in terms of the eigenoperators of the system,
with a known spatial and temporal dependence. An in-
teresting point is that by coupling the light to an infi-
nite number of oscillator fields, in the form of a dressed
medium polarization, we lose the relationship between u
and k. Each of them has to be considered as an inde-
pendent real variable. This is the natural limit to the
phenomenon leading to difFerent branches in the u —k
dispersion curve in the undamped Hopfield model [12,22,
24]. There, the coupling between the field and a single-
frequency harmonic polarization leads to two real values
of ur for each real k. In our model, the coupling between
the field and a material polarization with a continuous

spectrum of frequencies leads to a continuum of allowed
real values of u for each k, that is, independent real val-
ues for u and k. Another interesting point is that the
only parameters in the model are the coupling frequency
u„which characterizes the strength of the coupling be-
tween the electromagnetic Beld and the dressed matter
field, and the dimensionless coupling ((u) which char-
acterizes the frequency dependence of the coupling and
is normalized by (3.13). This shows that the model is
not restricte to u singLe rmsoriance of the medium. In-
deed, as the electromagnetic field is coupled to an infi-
nite number of matter fields by a very general coupling
constant ((u), the Hamiltonian (3.12) can represent the
interaction of the electromagnetic field with any linear
medium. The restrictions on the coupling ((u), namely
that the analytic continuation of ]g(cu) ~2 to negative fre-
quencies has to be an odd function, nonzero everywhere
except at the origin, are in fact necessary to get a di-
electric constant e(u) which satisfies causality require-
ment as expressed in the Kramers-Kronig relations. In
this work, we decided to start from a Lagrangian den-
sity for a one-resonance model of the dielectric and to



4314 BRUNO HUTTNER AND STEPHEN M. BARNETT 46

perform explicitly a fully canonical quantization scheme.
Our aim is to emphasize that this procedure is possible
and that the difficulties associated with previous meth-
ods were only due to the use of efFective schemes, which
did not introduce the matter degrees of freedom. It is
clear that the introduction of many resonances of the
medium would lead to exactly the same type of Hamil-
tonian as (3.12), but the calculation of the coupling con-
stant ((u) in terms of the parameters of the Lagrangian
would be quite complicated and we believe unnecessary.
For practical applications, it is now possible to follow the
approach of classical electromagnetism, where the sus-
ceptibility of the medium is obtained as an experimen-
tal parameter, and to start from the Hamiltonian (3.12),
with coupling constant u, and ((ur) chosen to match the
dielectric function e(u). Very recently, we used this ap-
proach to calculate the spontaneous-emission rate of an
excited atom embedded in a dielectric [29]. The set of
equations (4.3)—(4.7) can also be used as a basis for treat-
ing various types of polariton-mediated interactions be-
tween embedded atoms or molecules [30].

V. PROPAGATION IN THE DIELECTRIC

Having solved the problem of quantization in the di-
electric, we now apply our results to treat the propaga-
tion of a beam of light in the dielectric. The fundamental
difficulty related to the propagation of a quantized elec-
tromagnetic field is that the usual decomposition of the
field into spatial modes whose time evolution is given
by Heisenberg equation of motion is not well adapted
to this problem. In propagation, the significant prop-
erty is frequency rather than wavelength. For example,
at an interface, we impose boundary conditions on com-
ponents with the same frequency. The natural quan-
tities to use are therefore space and frequency depen-
dent amplitudes or, in quantum optics, operators. This
is the reason why, in most of the recent literature, au-
thors have used an approach based on decomposing the
field into temporal modes whose spatial evolution has to
be calculated [15—19]. This approach closely follows clas-

sical electromagnetism, where the fields are decomposed
into monochromatic amplitudes whose spatial evolution
is obtained from Maxwell equations. However, quantiza-
tion of these space-dependent amplitudes has been only
phenGmenological rather than derived from a canonical
scheme. In this section, we shall show how this approach
can indeed be justified in terms of the canonical scheme
that was developed in the preceding sections. As a first
step, we shall begin by restricting ourselves to a one-
dimensional case.

A. Reduction to a one-dimensional model

To perform the reduction from a three-dimensional to
a one-dimensional model, we follow the approach given
by Blow et at. [31]. We consider the propagation in the
z direction of plane waves polarized in the y direction.
Excitations of this type will have k„= k, = 0 and a
cross-sectional area 8 [32]. We have chosen this partic-
ular model for its simplicity and to facilitate compari-
son with earlier results [20]. However, it is worth noting
that our expressions for the fields in three dimensions are
complete and that we can extract components for prop-
agation in a single direction with any transverse mode
pattern. Such a reduction is suitable for modeling prop-
agation in a monomode optical fiber [33]. For our plane
wave model, the required conversions are [31]

b(k —k') ~ b(k —k'),
(2m)z

pl/2
C(k, ~),C(A, k, ~) ~

(5.1)

where k is in the x direction. The above set of equations
(5.1) gives us the one-dimensional form of the system and
can be used to write any of the previous operators. For
example, the vector potential (4.3) becomes

00 OO Pe/

A(, t) = ~ dk d ( ( ) C(k )
-i(ut —kz) + H.c.

47Me8 ~ td e(Ld) —k c (5 2)

with similar expressions for the other fields. The ETCR
for the polariton creation and annihilation operators C~
and C (3.16) is transformed into

tromagnetic field [20] and we shall use them to calculate
the one-dimensional propagation of a beam of light in the
dielectric.

[C(k, ~), Ct(k', (u')] = b(k —k')6(~ —u)'), (5.3) B. Propagation of the fields

and the Hamiltonian (3.14) becomes

H = dk Cku hu)Ct(k, (u)C(k, ~) .
—oo 0

(5 4)

These equations are similar to the ones derived in our
previous work on quantization of a one-dimensional elec-

In order to decompose the fields into space-dependent
amplitudes, we use the fact that each eigenvalue of H
(5.4) is infinitely degenerate. This allows us to perform
the k integration in (5.2) while keeping the same har-
monic time dependence. The vector potential operator
is thus decomposed into
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OO

A(x, t) = ~A(u)) c(x, ur)e ' '+H.c.
/2z p

where

(5.5)

D(x, t) = — ~A(~)~ ape(~)c(x, ~)e ' —H.c.
v'2z p

+ ~/2h~pe, ((u) f(x, ~)e ™~1 n(~)
2K p n 4p

( hg(~)
(~pS~ln(~) l')

n(u) = rl(a) + ie(u) is the complex refractive index, de-
fined as the square root of the dielectric constant ~(u)
with a positive real part q(u). Some of the properties of
n(ur) are discussed in Appendix E. The space-dependent
operators c(x, w) are defined in terms of the C(k, ~) by

(u2mln(~) ls
C X, 4P

('(~)
4) t(ld) —k C

x C(k, (u)e'"* . (5.6)

The form of this operator is chosen to lead to the ESCR
for c(x,u):

c(x, (u), ct(x, (u') = b(ur —~') . (5 7)

From the one-dimensional reduction of (4.5) and (4.7), it
is straightforward to obtain the electric field

OO

E(x, t) = ckuA(~)~ c(x, ar)e ' —H.c.
+2z p

(5.8)

and the displacement field

(5.9)+H.c.

where s,{u) is the imaginary part of the dielectric con-
stant defined in (4.4), f(x, ~) is defined by

OO

f(x, ~) = e'~~ dk C(k, ur)e'"*, (5.10)
/2s

B(x, t) = der g(~)~ d(x, u)e ' —H.c.
~n(ld

+2s p c

(5.12)

where the operators d(x, u) are defined by

and the phase factor e'&~"& = ~ " is chosen forle(~) l ~(~)
future convenience. The coefficients are again chosen in
order to give simple commutation relations

f(x, ~), f~(x', ~') = b(x —x')b(~ —~') . (5.11)

This type of CR is characteristic of a Langevin noise op-
erator which is consistent with the way they are intro-
duced in the system in (4.7). It is easily verified that any
average of one of these operators is zero for nonsingular
excitations [i.e., when the quantum average of C(k, u)
is a nonsingular function]. We can use (4.6) to give the
magnetic field operator

d( )
c I (~)l' dkl&

l

('( ) C(k ),.a.
2rl(~) (n(~)~) ur's(~) —k'c2 (5.13)

and, as in (5.5), the coefBcients are chosen to give the
ESCR

[d(x ~) d'(x, ~')] = b(~-~') . (5.14)

«reover, from (5 6) and (5.13), we can verify that the
c and ct operators commute with the d and dt opera-
tors. Let us emphasize that, because of the extra k fac-
tor in the integration, the magnetic-Beld operator can-
not be expressed in terms of the same operators c(x, cu)
used in (5.5), (5.8), and (5.9). However, using the defi-

nition of B [in this one-dimensional restriction, it reads

B(x,t) = 8 A(x, t)], (5.5) and (5.12), we can obtain the
relationship between c(x, ur) and d{x,~)

Bd(x, a)) = &K(~)c(»~) + 2V'K'(~) f(x, ~) . (5.16)

The coupled system of equations (5.15) and (5.16) can
be solved by introducing the linear combinations

1
(x, ~) = [c(x,~) + d(x, id)]],

2
(5.17)

which clearly satisfy the same ESCR as the Cs and d's
(5.7) and (5.14):

(1.1), we obtain from (5.9) and (5.12) the propagation
eqUa, tlOQ

Bc(x,u)) = i K(~)d(x, ~), (5.15) [cy(x, ~), c~t(x, ~')] = b(cu —cu'),

where K(u) is the complex wave vector defined by
K(~) = n(~)~/c. From the properties of n(u) given
in Appendix E, we see that both the real part of K(cu),
K„(cu), and the imaginary one, K,(~), are positive. Us-

ing Mmcwell's equation for the displacement Beld D(x, t)

[~(x,a)), ct (x, (u')] = 0.
(5.18)

Using (5.6), (5.13), and (5.17), we write them in terms
of the eigenoperators of the system:



4316 BRUNO HUTTNER AND STEPHEN M. BARNETT 46

cp(x, (u) = K,((u),~(„) C(k, ~)e'"*
7r K((u) p k

' (5.19)

Bcy(x, ~) = +iK(~)cy(x, ~) 6 y 2K;(~)f(x, ~) .

(5.20)

This equation is the equivalent to the classical equation
for the forward- and backward-propagating fields am-

plitudes. In addition to the classically expected part,

where e'~( ~ is the phase factor defined in (5.10). From
(5.15) and (5.16), we find their spatial equation of evo-

lution

given by the wave vector K(ur), we have an added
Langevin noise operator corresponding to the absorp-
tion of the electromagnetic field. Using (5.10) and
(5.19) it is easily seen that c+(x, w) commutes with all

the Langevin operators f(x', u') and f~(x', w') for all
x' ) x, while c (x, ur) commutes with all the Langevin
operators f(x', u') and f~(x', u') for all x' ( x. This
again is consistent with the interpretation of these oper-
ators as the creation-annihilation operators for forward-
and backward-propagating waves. The operator for a
forward-propagating wave at a given point will commute
with Langevin noise operators corresponding to positions
ahead of the point at which the operator is calculated.

Finally, we write the expression of the various fields in
terms of the cy operators to get

OO

A(x, t) = da~ A(cu) c+(x, ur) e ' ' + c (x, a)e ' ' + H.c.
4x p

i
E(x)t) = ~A(~)~ c~(x, ~)e ' '+c (x, cu)e ' ' —H.c. ,

4vr p

2 n 4) n Ld

&(x, t) = ~A(~)~ c+(x, ur)e ' ' — c (x, ~)e ' ' —H.c.
/4vr p

D(*,t) = — ~A(~)~~p e(~)c+(x, ~)e ' '+ e(~)c (x, ~)e '~' —H.c.
4m p

+ rid/2hepe, (cu) f(x, ~)e ' '+ H, c.
1 n(cu)

27l p nu

(5.21)

where A(ur) is defined in (5.5). These expressions are sim-
ilar to the ones used in the phenomenological approach to
quantization in a continuous medium in the lossless case
(rl = n and e; = 0) [19,31]. In this work, they emerge di-

rectly from a canonical quantization scheme and include
the Langevin operators needed in order to treat the ab-
sorption. Let us emphasize that, for the case of a linear
dielectric, the ESCR for the cy (5.18) have been derived
from the canonical quantization scheme and that they
are fully consistent with the usual ETCR for the con-
jugate fields A and —epE. However, as this derivation
relies on the explicit diagonalization of the total Hamilto-
nian (2.24), the extension to nonlinear media, where such
a diagonalization is not always possible, is still problem-
atic. The agreement between experiments and theories
based on the ESCR [15,16, 18, 34] seems to indicate that
they are at least a good approximation, but further work
is needed in order to understand their domain of validity
in the nonlinear case [35].

VI. TWO INTERESTING RELATIONSHIPS

The principal aim of this paper is to provide a rigor-
ous quantization of the electromagnetic field in a dielec-
tric medium and to apply the results to the problem of
propagation. In this section, we shall use one of the re-

sults arising from our quantization scheme to find two

interesting relationships between the group velocity and
the phase velocity in the dielectric. These relationships
hold for both quantum and classical models. They can be

I

derived by using well-known properties of the dielectric
constant.

Our derivation is based on the consistency check for
the quantization procedure presented in Sec. III. This
consistency check led to the equality (3.19), which we
rewrite here for clarity:

f d~[l~p(k ~)l' —IA(k, ~)l'] =1
0

(6 1)

&i

lcu2e(cu) —k~cz l2

where e;(cu) is the imaginary part of e(u). We emphasize
that the derivation of this equality only relies on the an-

alyticity of c(ur) in the upper half plane and on the fact
that the solutions of the dispersion equation

Ld t(ld) —k C = 0 (6.3)

are all in the lower half plane. These two properties were

derived in Appendix E for our model of a dielectric. How-

ever, as is well known from classical electromagnetism [3],
they are satisfied by any dielectric constant which is con-
sistent with causality requirements. For this reason, (6.2)
is indeed correct in any linear dielectric. Let us empha-
size that here k is a rea/ parameter and that the zeros

We use the results of Appendix D [(D3)—(D5)] and of
Appendix E [(E2)] to write it in terms of the dielectric
constant e(u)
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will be at complex frequencies. This is in contrast to
Sec. V, where we used a complex wave vector and a real
frequency. As shown in Sec. IV, the electromagnetic field
operators are given as double integrals over both real &e-
quencies and wave vectors. It is only when performing
one of the integrals that we obtain either a real frequency
and a complex wave vector (as in Sec. IV) or a real wave
vector and a complex frequency. The first possibility is
preferable in order to treat the problem of propagation
in the medium in a way that is similar to the classical
analysis. However, here we need to use the second one.
We denote the zeros of un(u) —kc at a given k by O~,
j = 1, . . . , m (for notational simplicity, we will not write
the k dependence explicitly). From the results of Ap-
pendix E, we find that the real part of O~ is positive and
its imaginary part negative. The zeros of ~ur2e(ur) —k2c2~2

are then O~, —O~, O~, —O', j = 1, . . . , m. We define the
complex group velocity at frequency O~ by

V~ =
Bk

and the complex phase velocity

(6.4)

(6.5)

These two quantities reduce to the usual definitions when
the imaginary part is negligible. We note that using a real
wave vector and a complex frequency enables us to define
the group velocity in a lossy dielectric in a straightfor-
ward manner. However, its physical interpretation is still
unclear. Indeed, the definition of the group and phase ve-
locity in a lossy dielectric has been the subject of some
difficulties [36] and we shall not discuss these problems
in detail, but rather use our approach to present some in-
teresting new results. The interpretation and discussion
of these results will be left for future work.

To obtain the first relation, we decompose (6.2) into
partial fractions in the following way:

1 4) 4J

2z i u2s'(u) —k2cz u2e(u) —kzc2

(6.6)

We close the integration contour in the lower half plane
(contour C ), so that the first term in the integral does
not contribute and decompose the second term into par-
tial fractions again to get

1 0 1 1

2+i ~ 2kc On(O) —kc On(O) + kc

1 co~(~)
27!'i c- (d s((af) —k c (6.9)

This equation can be proven by the same techniques used
in Appendix B2 and is verified in any linear dielectric.
We again use integration in the complex plane to calcu-
late the integral in terms of the residues at O~ and —O'
and obtain the second relation

) Re (6.10)

We emphasize that these two relations (6.8) and (6.10)
apply in any linear dielectric. The only requirements on
the dielectric constant s are similar to the ones used in
deriving the Kramers-Kronig relations and are equivalent
to demanding that causality should be satisfied in the
dielectric. Further work is needed in order to find a good
physical interpretation of these relations.

It is interesting to note that a truly elementary deriva-
tion of these results can be given for a lossless dielec-
tric. In this case, the dielectric constant is real and the
Kramers-Kronig relations do not apply. Causality is pre-
served by the appearance of forbidden band gaps in the
polariton dispersion spectrum [12,22]. Here, we shall dis-
cuss only a simple one-resonance model of the dielectric,
but the extension to more complicated media is straight-
forward. The dielectric constant of the medium is given
by

4P
e(~) =1+

~o
(6.11)

where uo is the resonance frequency and cu, is the cou-
pling constant. The dispersion equation is thus

4+( 2 +k2c2) 2 k2 2 2 0 {6.12)

= ——(cu2 +~ ) = c (6.13)
2kdk +

where ul = us + u, is the longitudinal resonance fre-
quency. There are two solutions uy for each value of k
one in each of the two branches of the polariton spectrum.
The forbidden band gap corresponds to frequencies be-
tween ~0 and uL, . We do not need to calculate ~ and
co+ explicitly, but shall only use their properties (sum
and product of their squares) obtained from the disper-
sion equation (6.12). The equivalent to (6.8) is here

Vs(~-) V~(~-) + Vs(~+)V~(~+)

(6 7) and the equivalent to (6.10) is

Using integration in the complex plane to calculate the
integral in terms of the residues at Aj, we obtain the first
relation

V~(cu ) V~(~+) d
)+ ( )

——k—„„(inn u+) =1. (6.14)

) R V~V~
g p. (6.8)

where Re means the real part.
To prove our second relation, we use the following

equation:

To our knowledge, the first equation (6.13) has not been
derived before, while the second one (6.14) was derived
by us very recently [12]. They can be easily generalized to
a lossless medium with any number of resonances. More-
over, we now know that the same type of relations also
hold for any linear lossy medium.
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VII. CONCLUSION

To conclude this work, we shall summarize our main
results. By using a microscopic model for the medium,
we performed a fully canonical quantization scheme for
the electromagnetic field in a dispersive and lossy dielec-
tric. We explicitly derived the dielectric constant of the
medium in terms of the parameters of the model and
showed that it satisfies the Kramers-Kronig relations. In
this work, we treated the case of a dielectric with a single
resonance, but showed that this can be easily extended to
more complicated media. In fact, it is possible to use the
Hamiltonian of the coupled system in (3.12) as a starting
point and choose the coupling constant ((~) to give any
dielectric constant e(cu) which is consistent with causality.
We calculated the eigenoperators of the coupled matter-
field system and expressed the electromagnetic field op-
erators in terms of them. The most significant result ob-
tained by this approach is the loss of the one-to-one cor-
respondence between the wave vector and the frequency

of the field in the dielectric. In a lossy dielectric medium,
the fields have to be expressed as double integrals, over
both the frequency and the wave vector, of the polari-
ton creation-annihilation operators C(k, ur), as shown in

Eqs. (4.3)—(4.7). It is, however, possible to perform the
integration on the wave vector, to obtain the electromag-
netic field operators in terms of monochromatic space-
dependent amplitudes, which satisfy a set of equal-space
commutation relations. We showed that the spatial equa-
tions of evolution of these amplitudes are very similar to
the ones obtained in the classical case, with a frequency-
dependent complex wave vector and an extra Langevin
operator needed to accommodate the losses. This justi-
fies the use of such operators to treat propagation prob-
lems in quantum optics at least in the case of a linear,
dispersive, and lossy medium.

Finally, we derived two interesting relations between
the group velocity and the phase velocity in a lossy di-

electric. Further work is still needed to clarify the inter-

pretation of these relations. We are currently working on
extending our model to treat boundary conditions and to
include nonlinearities perturbatively.

+Pi(cu, ~')bt, (—k)], (A2)

where the coefficients are chosen so that the operators
satisfy the eigenoperator equation [27]

[B(k,(u)) H~,i] = hurB(k, ~) . (A3)

This equation, together with the expansion of the Hamil-

tonian (Al) and the definition of B(k, u)) in (A2), leads
to a set of linear equations between the coefficients:

a (u)~ = ao(~)ip + — der'[a (u, ur')V(ur')
2 p

—Pi (~, ~') V'(u)')],

(A4a)

Po(~)~ = —Po(~)~0 + — ~'[ al(~~ ~')V(~')
2 p

-Pi (~,~') V'(~')1
(A4b)

OO

H~@g = d k hCupb~ k 5 k + du)hu)b~ k b~ k
0

OO

+ — WV(~) [bt(—k) + b(k)]
2 p

x [b~~(—k) + b (k)], (A1)

where, following the convention of Sec. III, we do not
write the explicit polarization and time dependence of
the operators. The only assumption we make on V(ur)
is that the analytic continuation of ~V(u)~~ to negative
frequencies, which we denote by V(u), should be an odd
function and be nonzero except at the origin. The di-
agonalization of H, q is performed by introducing the
operators B(k,~) defined by

B(k~~) = ao(~)b(k) + Po(u)bt( —k)

+ ch)'[ai(u), ~')b (k)
0
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APPENDIX A: FANO DIAGONALIZATION

(~,~')~ = —[™o(u)—Po(ur)] V'(u )+ai(u, u )u,
2

(A4c)

(A4d)

This set of equations can easily be solved to obtain Po(~),
ai(w, u'), and Pi(w, u') in terms of ao(u). Subtracting

(A4a) from (A4b) we obtain

In this appendix, we perform the diagonalization of
H, i, defined in (2.25b). The same calculation can be
used with only minor changes to the diagonalization
of the total Hamiltonian H (2.24). The starting point
is (2.25b), which we reproduce here for clarity

Po(~) = 'ao(~) .
4J + GJp

(A5a)

We now use (A5a) to replace Po in (A4c) and (A4d) to
give
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a&(~, ~') = P ~, ~+y(~)b(~ —~')(

x V'(u') ~p(u),
4J + 4)0

(A5b)

The expansion of the dressed matter field annihilation
operators B(k, td) in terms of the initial creation and an-
nihilation operators given in Eqs. (A8)—(A12) completes
the diagonalization of H, (3.3).

Py(Cd, 4J') =, V(ld') Qp(ld),4)+4) 4P+4PO
(A5c)

B(k, td), Bt(k', u)') = b(k —k')b(~ —~') .

where P means principal part. The function y(a) is ob-
tained by replacing the expressions for np and P& in (A5b)
and (A5c) into (A4a). After some algebra, we get

2(~z —~oz) 1,V(ur')

( )~2 ~V(

where we used the assumption that V(u), defined in (Al),
is an odd function to extend the integral in the negative
frequency region. In order to calculate np(~), we impose
the standard commutation relations for B(k,a):

APPENDIX B: A CONSISTENCY CHECK

In this appendix, we calculate the two integrals I and
I(ur, cu') defined in (3.8) and (3.9). The main idea in this
calculation is to extend the integrals to negative frequen-
cies and use contour integration in the complex plane.
As can be expected from the definition of the expansion
coefficients o;p, Pp, aq, and P~ given in (AS)—(A12), the
zeros of u~ —~oz(u), corresponding to poles of np, Pp,
aq, and Pq, will play an important role in this calculation.
Therefore we shall begin this appendix by analyzing their
position.

1. Zeros of ~2 —c3osz(~)

We define

Z((u) =—~z —~pz(ur), (Bl)

Using the expression for B(ur) given by (A2) and the
set of equations defining all the coefficients in terms of
ap (ASa), the above equation (A6) defines np(u) up to a
phase factor. We choose this phase factor to give after a
somewhat lengthy but straightforward calculation:

( )
(d+tdp 1

(GpV'(u)) y(u)) —im
' (A7)

Using the expression for y(u) derived in (A5d), this equa-
tion can be written in a final form

(~+ ~p ) V(~)
2 J ~z ~o2z(~)

'

where z(ur) is defined by

z(&u) = 1 — du)'1, V(ur')

24)0 ~ Cd —4) + M

(A8)

(A9)

with s ~ 0+. As V(u) is an analytic function on the
real axis, it is easily seen that z(u) is also an analytic
function on the real axis. The final expression for Pp is
now readily derived from (A5a):

z(—Q') = z'(Q), (B2)

and that z(Q) is an analytic function in the lower half
plane (ImQ & 0) and can be written

for ImQ & 0 .

(B3)

In the rest of the Appendix B1 we shall restrict ourselves
to the lower half plane. Writing Q = Q„—iQ; (Q, &

0) and using (B3), we can now calculate the real and
imaginary part of Z(Q) and show that the imaginary
part is zero on the imaginary axis only. Therefore, in
order to find the zeros of Z(u), we only need to calculate
it on the imaginary axis. After some algebra, we get

where z(m) is given in (A9), and look for a condition on
V(u) such that all the zeros of Z are in the upper half
plane. We already know that z(u) is an analytic function
on the real axis. As V(u) is an odd function, z(u) satisfies
the condition z(—u) = z'(~). Extending the definition
of z(u) to complex frequencies (which we shall denote by
Q), it is easily seen that

(Alo)

Finally, we use (A7) to obtain y in terms of crp and replace
in (A5b) to give

Z(—ip) = —(u +~o)+~o ~IV(~) I'

o ~'+ (~+ s)'
(B4)

ag(~, ~') = b(~ —(u')+
~

—
~ ~

(sip& t' V ((u')

V(ur)
X

(uz —cuo z(~)
(All)

for y, ) 0. Equation (B4) shows that Z( —ip) is a strictly
decreasing function of p, which tends to —oo as p tends
to oo. Its maximum value is therefore reached at p = 0
and is

and similarly for P&, Z(0) = ~p + ~p —der
IV(~) I'

0 Cd
(B5)

(( 2 ) (~+ (u') cu' —uo'z(~)
' It is now clear that Z(Q) has no zeros in the lower half

plane when
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~ IV(~) I'
4P

(B6)

and that it has one and only one zero (which is on the
imaginary axis) when (B6) is not satisfied. In the rest
of this section, we assume that (B6) is satisfied so that
Z(u) has no zeros in the lower half plane.

2. Calculation of I
From the expressions for np(u) and J9p(u) derived in

Appendix A, (A8) and (A10), we obtain

lv(~) I'

p
'l~' —~pz(~) I' (B7)

We decompose I into partial fractions and use the as-
sumption that both z(u) and V(u), the analytic contin-
uation of IV(u) Iz to negative frequencies, are odd func-
tions. This allows us to write I in a way that is suitable
for integration in the complex plane:

I = —.
vari u)2 —~pzz(u))

'

From Appendix B 1, we know that the integrand has no

pole in the lower half of the complex plane, so that the
integral on the contour based on the real axis and closing
in the lower half plane is zero. The integral on the real
axis is therefore equal to the opposite of the integral along
the closing circle C:

I dn2 2
vari ~ 02 —Gp2z(A)

(B9)

Writing the variable 0 = Re ', where e varies from zero
to z, and letting R tend to oo gives

I =1. (Blo)

It is also straightforward to check that if (B6) is not sat-
isfied, which means that Z(Q) has one pole in the lower
half plane, I g 1, and the diagonalization scheme is not
consistent.

3. Calculation of I(u, u')

The calculation of I(u, ~') follows the same lines as
the previous one. Using the expression of o;i and Pi from
(All) and (A12), and the fact that V(u) and z(u) are
odd functions, we get

I(ur, ~') = b(u) —~') + V(cu) V'(~') 1 1

~ —(u' —is (u2 —urpzz(ur) ur'z —~(~) z'(ur')

+—V((u) V'((u') dv
2 Ivz —u)pzz(v) I2 (v —(u —is)(v —cu' —is) ' (Bll)

I(~, u)') = b(u) —~') . (B12)

To conclude this appendix, we emphasize its main re-
sult. When (3.10) is satisfied, the diagonalization scheme
is consistent and the two equations (B10) and (B12) are
also satisfied. We use this result in the diagonalization
of the total Hamiltonian in Sec. IIIB.

APPENDIX C: PROPERTIES OF THE
COUPLING CONSTANT ((u)

The coupling constant ((ur) was defined in (3.12) as
((ur) = i ~urp [ap(cd) + Pp(u)]. Using the expressions of
np and Pp derived in Appendix A, in (A8) and (A10), we
write

t,'(~) =i@(3p
(uV(ur)

4) —Q)()Z 4J
(Cl)

where z(u) is defined in (A9). As the analytic continu-
ation of IV(u) Iz to negative frequencies is an odd func-

tion, nonzero for all nonzero frequencies, and A)2 —rGpz(u)

where s -+ 0+. The calculation of the integral on the
right-hand side of the equation presents no difficulties.
We again use integration in the complex plane and the
results of Appendix B 1 to obtain

I

is nonzero for all real frequencies (as derived in Ap-
pendix B1), the analytic continuation of I((~) Iz to neg-
ative frequencies is also an odd function, nonzero for
all frequencies except at the origin, and analytic on the
real axis. Moreover, using the integral derived in Ap-
pendix B2, it is easy to see that ((~) satisfies the follow-

ing normalization condition:

l((~)l'
p 4J

(C2)

~'Iv(~) I'
p2 lu)z —~zz(~)lz ' (C3)

where p is the original polarization field density, defined
in (2.3) and v(u) is the coupling between this field and
the reservoir fields defined in (2.5). As the analytic con-
tinuation of Iv(u)l to negative frequencies is an even

function, nonzero everywhere except possibly at the ori-

gin, ((~) is clearly an even function, analytic on the real
axis and strictly positive except at u = 0. From Eq. (C2),
it is also normalized. Finally, (C3) can be used to show

We define the function ((cu) by ((u) = for posi-
tive frequencies and its analytic continuation for negative
frequencies. From the above expression for ((ur) (Cl) and
the definition of V(u) in (2.25a), we obtain the expres-
sion of ((u) for positive frequencies
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that ~~",l is an analytic function on the real axis and that
it tends to a finite limit when u tends to zero. The above
results will be needed in the diagonalization of the total
Hamiltonian in Sec. III B and in deriving some properties
of the dielectric function in Appendix E.

e(u) as the dielectric constant of the medium.
It is now straightforward to obtain all the other ex-

pansion coefficients by comparison with (A10), (All),
and (A12):

APPENDIX D: EXPANSION COEFFICIENTS
OP THE C'S

~ —kct t,'(u))

kc ( 2 ) s'((u)co~ —k2c2 ' (D5)

~ + kc) (((u)
kc ( 2 ) u)2 —kzc~z(k, ~)

(Dl)

where z(k, u) is defined by

withe' -+ 0+. We use the

definitionof�,

k = k2+k„and
the normalization condition on ((it)) (3.13) to rewrite:

(k ) = ' (D3)
kc ( 2 ) E (it))& —k c

The expression of the total Hamiltonian of the cou-
pled system (3.12) in terms of the electromagnetic and
dressed matter operators has the same form as the ex-
pression of the matter part of the Hamiltonian (2.25b) in
terms of the initial creation and annihilation operators,
when the parameters of the model in (2.25b): u0 and

tr(er) are replaced by hc and )) ere/kct, '(er) and the initial
~ea

matter and reservoir operators 5 and t) are replaced by
the photons and dressed matter operators a and B(ur) .
Moreover, from the results of Appendix C, the coupling
t,'(~) satisfies the same conditions as V(~). The calcula-
tion of the expansion coefficients of the polariton creation
and annihilation operators is therefore similar to the one
performed in Appendix A. The only noticeable differ-
ence is that, as the parameters in the Hamiltonian (3.12)
are explicitly k dependent, the expansion coefficients of
the polariton operators also become functions of k. Of
course, as the medium is isotropic, there is no angular
dependence. Thus we can use the expressions for a0, PQ,

ni, and Pi derived in (A8), (A10), (All), and (A12) to
obtain the new coefFicients na, P0, cii, and Pi directly.
However, for future use, we write these expressions in a
slightly modified form. We obtain n0(k, ~) as the analog
of (A8):

p (k y)
~c

~~ ( (~)
~~

((~)
2 ((u —u)' —ic) t"(~)~~ —k~c2

'

(D7)

APPENDIX E: SOME PROPERTIES
OF THE DIELECTRIC CONSTANT t.(u)

In this appendix, we shall derive some properties of the
dielectric constant e(u) that was defined in Appendix D
(D4). We use the fact that ((u) is an even function to
rewrite s(cu) as

(El)

where s —p 0+. Equation (El), together with the prop-
erties of ((ur) derived in Appendix C, ensures that the
extension of s to complex frequencies is an analytic func-
tion in the upper half plane. This shows that e satisfies
the Kramers-Kronig relations. From Appendix C, we

know that ~~, l is positive and finite on the real axis, so
that ~(u) tends to a limit larger than one when ~ tends
to zero. Moreover, as ((u) is normalized, e(u) tends to
one when u tends to infinity. Using a method similar to
the one presented in Appendix B1, we can also use the
expression of e(u) in (El) to show that the dispersion
equation e(~)~~ —k2c2 has no zeros in the upper half
plane. This last result is used in Sec. VI in order to de-
rive the two relations between the group and the phase
velocity.

For real frequencies, we separate the dielectric constant
into real and imaginary parts e(u) =—t.,(w)+is;(u), where

where e(u) is defined by

(D4) 7Ad 4)

2 4J

(E2)

with s —h 0+ and ((cu) is defined in Appendix C. This
expression is similar to (4.4) in Sec. IV. The advantage of
(D3) with respect to the initial expression (Dl) is that,
in contrast to the function z(k, ~) defined in (D2), the
function e(u) in (D3) is independent of k. We interpret

We introduce the index of refraction n(~) as the square
root of t.(~) with a positive real part and separate it into
real and imaginary parts by

n(~) = g(~) + inc(~),



BRUNO HUTTNER AND STEPHEN M. BARNETT

where ri and m are two real functions, given by the fol-

lowing set of equations:

ri (Ca/)
—K (Cd) = tr(4P),

2ri((u)~(~) = e, ((u) . (E4l

As, from (E2), e; is an odd function, positive for positive
frequencies, and as we have chosen ri to be positive, (E4)
shows that ~(~) is positive for positive frequencies and
negative for negative frequencies.

[1] N. Bloembergen, Nonlinear Optics (Benjamin, New York,
1965).

[2] Y.R. Shen, The Principles of Nonlinear Optics (Wiley,
New York, 1984).

[3) L.D. Landau and E.M. LiShitz, Electrodynamics of Con-
tinuous Media (Pergamon, Oxford, 1977).

[4] J.M. Jauch and K.M. Watson, Phys. Rev. 74, 950 (1948).
[5] M. Hillery and L.D. Mlodinow, Phys. Rev. A 30, 1860

(1984).
[6] P.D. Drummond and S.J. Carter, J. Opt. Soc. Am. B 4,

1565 (1987).
[7] I. Abram and E. Cohen, Phys. Rev. A 44, 500 (1991).
[8] R.J. Glauber and M. Lewenstein, Phys. Rev. A 43, 467

(1991).
[9) I.H. Deutsch and J.C. Garrison, Phys. Rev. A 43, 2498

(1991).
[10] K.M. Watson and J.M. Jauch, Phys. Rev. 75, 1249

(1949).
[11] P.D. Drummond, Phys. Rev. A 42, 6845 (1990).
[12] B.Huttner, J.J. Baumberg, and S.M. Barnett, Europhys.

Lett. 16, 177 (1991).
[13] L. Knoll, W. Vogel, and D.G. Welsch, Phys. Rev. A 36,

3803 (1987); H. Khosravi and R. Loudon, Proc. R. Soc.
London Ser. A 433, 337 (1991);436, 373 (1992).

[14] T.A.B. Kennedy and E.M. Wright, Phys. Rev. A 38, 212
(1988).

[15] M.D. Levenson, R.M. Shelby, A. Aspect, M. Reid, and
D.F. Walls, Phys. Rev. A 32, 1550 (1985); R.M. Shelby,
M.D. Levenson, S.H. Perlutter, R.G. DeVoe, and D.F.
Walls, Phys. Rev. Lett. 57, 691 (1986); M.D. Levenson,
R.M. Shelby, M. Reid, and D.F. Walls, ibid. 57, 2473
(1986).

[16) B. Yurke, P. Grangier, R.E. Slusher, and M.J. Potssek,
Phys. Rev. A 35, 3586 (1987); M.J. Potssek and B.
Yurke, ibid. 35, 3974 (1987); R.E. Slusher, P. Grang-

ier, A. LaPorta, B.Yurke, and M.J. Potasek, Phys. Rev.
Lett. 59, 2566 (1987).

[17] C.M. Caves and D.D. Crouch, J. Opt. Soc. Am. B 4, 1535
(1987); D.D. Crouch, Phys. Rev. A 38, 508 (1988).

[18] Y. Lai and H.A. Haus, Phys. Rev. A 40, 844 (1989);
M. Shirasaki and H.A. Haus, J. Opt. Soc. Am. B 7, 30

(1990); K. Bergman and H.A. Haus, Opt. Lett. 16, 663
(1991).

[19] B. Huttner, S. Serulnik, and Y. Ben-Aryeh, Phys. Rev.
A 42, 5594 (1990).

[20] B. Huttner and S.M. Barnett, Europhys. Lett. 18, 487
(1992).

[21] A.M. Steinberg, P.G. Kwiat, and R.Y. Chiao, Phys. Rev.
Lett. 20, 2421 (1992).

[22] J.J. Hopfield, Phys. Rev. 112, 1555 (1958).
[23] U. Fano, Phys. Rev. 103, 1202 (1956).
[24] C. Kittel, Quantum Theory of Solids, 2nd ed. (Wiley,

New York, 1987).
[25] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg,

Photons and Atoms (Wiley, New York, 1989).
[26] U. Fano, Phys. Rev. 124, 1866 (1961).
[27] S.M. Barnett and P.M. Radmore, Opt. Commun. 68, 364

(1988).
[28] Strictly speaking, Eq. (3.18) is not satisfied for h = 0.

However, it can be shown that the integral remains Gnite
and difFerent from zero in this limit. This is su%cient for
the commutation relations between the photon creation
and annihilation operators to hold and the scheme is still
consistent.

[29] S.M. Barnett, B. Huttner, and R. Loudon, Phys. Rev.
Lett. 68, 3698 (1992).

[30] J. Knoester and S. Mukamel, Phys. Rev. A 40, 7065
(1989).

[31] K.J. Blow, R. Loudon, S.J.D. Phoenix, and T.J. Shep-
herd, Phys. Rev. A 42, 4102 (1990).

[32] For a real plane wave, the cross-sectional area 8 will be
formally in6nite. However, for a sufBciently large area,
k~ and k, will become very small and the corresponding
wave front will, to a good approximation, be planar.

[33] K.J. Blow, R. Loudon, and S.J.D. Phoenix, J. Opt. Soc.
Am. B 8, 1750 (1991).

[34] S.J. Carter, P.D. Drummond, M.D. Reid, and R.M.
Shelby, Phys. Rev. Lett. 58, 1841 (1987); M. Rosenbluh
and R.M. Shelby, ibid. 66, 153 (1991).

[35] I.H. Deutsch and J.C. Garrison, Opt. Commun. 86, 311
(1989).

[36] R. Loudon, J. Phys. A 3, 233 (1970).


