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Quantum-noise limit on optical amplification by two-beam coupling in an atomic vapor
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We investigate theoretically the noise properties of the amplification of a weak probe beam in an

atomic vapor pumped by an intense nearly resonant pump field. For the case of gain via the three-

photon effect, we find that only in the limit in which collisional broadening is absent can the system

operate as an ideal quantum-noise limited optical amplifier for the probe wave. For the case of gain via

stimulated Rayleight scattering, we find that the minimum noise figure is four times that of an ideal opti-
cal amplifier, and that it occurs when the atomic system is predominantly collisionally broadened.

PACS number(s): 42.50.Lc, 42.65.Hw

It is well known that even an ideal linear optical
amplifier must introduce noise into the amplified field.
Louisell, Yariv, and Siegman [1] showed that for an opti-
cal parametric amplifier, the amplified field has an uncer-
tainty product that is twice that of the coherent-state in-

put field. Several workers [2] have shown in general that
any linear optical amplifier must introduce a minimum
amount of noise such that the signal-to-noise ratio of the
amplified field is twice that of the input field. Their re-
sults were based on the fundamental consideration that
the amplified field must satisfy the appropriate commuta-
tion relations. Hong, Friberg, and Mandel [3] showed
that all nonclassical features (e.g. , squeezing) of a field are
lost if the field is amplified by more than a factor of 2.
Collet and Walls [4] have also studied the effects of non-
linearity in a parametric amplifier as a result of pump de-
pletion.

Mollow [5] first showed theoretically that the spectrum
of a strongly driven two-level atomic system contained
two spectral features that could lead to gain for a weak
probe field. One of these features is at the Rabi sideband,
and the other feature is at frequency close to the strong
laser field and is known as stimulated Rayleigh scatter-
ing. This spectrum was observed by Wu et al. [6] using
an atomic beam. In an atomic vapor cell where high
number densities can be achieved, high amplification can
occur in a relatively short interaction length. Gruneisen,
MacDonald, and Boyd [7] realized as much as a 38-fold
increase in the intensity of the probe wave. Several work-
ers have used these gain features to construct dressed-
state lasers [8,9]. The effects of Doppler broadening [10]
as well as that of a strong probe wave have also been con-
sidered.

The theoretical treatments discussed in the preceding
paragraph treat the atomic-field interaction through use
of a semiclassical description. The interaction of a strong
classical pump field and two weak sidebands through a
forward four-wave-mixing process in an atomic vapor has
been treated quantum mechanically by several workers
[11,12]. A linear combination of the two sidebands was

is taken to be a classical quantity. The signal field is
represented by the quantum-mechanical field operator

E,(r, t}=P,e,& e * ' + H. c. , (2)

where & is the annihilation operator for the signal field, e,
is the signal-field unit vector, P, = i (2mfito, /V—)', and
V is the quantization volume. The interaction energy be-
tween the fields and the atomic system can be described
by the interaction Hamiltonian

8, = —I P(r) [E (r, t}+E,(r, t)]d r, (3)

shown to result in a field that exhibited strong squeezing
characteristics. The amplification of a weak probe wave
as a result of the three-photon effect has also been treated
quantum mechanically [13,14] in the context of a
dressed-state laser.

In this paper, we formulate a quantum theory of two-
beam coupling between a weak signal wave and a strong
classical pump wave in a homogeneously broadened two-
level system with the allowance of collisional broadening.
Under conditions in which the signal wave experiences
gain, we determine the amount of noise that is introduced
by the amplification process. We find that gain as a result
of the three-photon effect can have a noise level equal to
that of an ideal optical amplifier only in the absence of
collisions. The amplification process resulting from
stimulated Rayleigh scattering is generally an inherently
noisier process. We predict that the minimum noise level
that can be achieved is four times that of the ideal
amplifier, and unlike the three-photon case, it is achieved
when the atomic system is collisionally broadened.

The theory of two-beam coupling in an atomic system
can be developed through use of the general quantum-
mechanical theory of multiwave mixing [12]. The
geometry we treat is shown in Fig. 1, in which the pump
field

E (r t)= A e'"' "+ c.c.s
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FIG. 1. Geometry for the two-beam coupling interaction.
and

C+ (r)= lim [[(P,+(t+r)P, (t))

—(P,'(t +r) ) (P, (t) ) ]

—[(P, (t r—)P,+(t))

(9a)

[Pop +AOF+8i p]+Egp

where Po„and 80F are the unperturbed Hamiltonians
for the atoms and the field, respectively, and where
[A,k]=AB —kA denotes the commutator of any
operators A and B. The relaxation Liouville operator E„
includes the contributions from both spontaneous emis-
sion and atomic collisions. In the limit in which the fre-
quencies of the pump and signal fields are close to the
atomic resonance frequency, we can make the rotating-
wave approximation, in which case the expression (3) for
the interaction Hamiltonian becomes

I,= —f P (r) [E+(r,t)+E,+(r, t)]d r+ H. c. ,

where the superscript + (
—) denotes the positive-

(negative-) frequency parts of the field. We next calculate
the equation of motion for the density operator for the
field p, by tracing the complete density operator p over
the atomic variables and by using projection-operator
techniques [15]. The signal field is assumed to be weak in
comparison with the pump field, so that only terms up to
second order in the signal field operator 8 are retained.
The details of the derivation are discussed in Ref. [12],
and we give only the result for the master equation for p, :

Bp

at

N
(C+ (iv, )[a, [a,p, ]]

2A

+Q (i v)[8, [&, p]]) +H. c. , (7)

where N is the number of atoms in the interaction region,
v, =co—~, is the detuning of the signal field from the
pump field, and [ A, Bj = Ak+BA denotes the anticom-

+mutator of operators A and 8. The quantities C and

Q are given by

where P(r) is the polarization operator which is related
to dipole moment operator d" of an atom at position R"
through the sum

P(r) = g 5(r —R")d" . (4)
1

The equation of motion for the density operator p for
the coupled atom-field system is given by

Q+ (r)= lim [[(P,+(t+r)P, (t))

C+ (t5, )= —p T2(2U243 U34, ), (loa)

Q (l5, ) = —
tu [2U, +f—U2(1 —24,4z)+2U3 p]4 3]

(lob)

where p= ~p~ is the transition dipole matrix element and
T2 is the dipole dephasing time and where

O' T2(5 —i)

2P (0)

2 1

(1+5 )

2P (0)
Q T)T2
2P(5, )

2(y, 25, i)(5, 5 i)——
~Q~

—T, T2

2P(5, )

QT, (5, 5 i)——
P(5, )

(1 la)

(1 lb)

(1 lc)

(1 ld)

(1 le)

—(P,+(t+r))(P, (t))]
+ [(P, (t —r)P,+(t) )

—(P, (t —r))(P,+(t)) ]], (9b)

+ +where P,+ =P,+.e,' and P, =P, e, are the operators as-
sociated with polarization that drives the signal field, and
where it is understood that the expectation value of
operators in (9) are all evaluated at the same point r in-
side the medium. The polarization correlation function
C+ corresponds to the susceptibility that is calculated
from a semiclassical theory; the function Q+ cannot be
described semiclassically and corresponds to quantum
fluctuations of the atomic system. The polarization
correlation functions are calculated by solving the optical
Bloch equations in steady state for an atom with a reso-
nance frequency co0 located at R". The resulting expres-
sions for C+ and Q+ [Eqs. (8)] are

C+ (iv, )= f dre ' C+ (r)
0

(8a)
P(5, )=(1+iy,~5, )[(1+i5,) +5 ) +(1 i+ 5)~Q~ T, T2,

(1 lg)
and

Q+ (iv, )= f dre ' Q+ (r), (8b)
0

where C and Q+ can be expressed in terms of the
correlation functions of the polarization field as

where 5 = (coo co) T2 is the relative —detuning of the pump
field from the atomic resonance, 5, =v, T2 is the pump-
probe detuning, 0=2@.A /fi is the Rabi frequency asso-
ciated with the pump field, T& is the population relaxa-
tion time, and y, 2= Tj /T2.
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In order to make the comparison of our theory of
amplification in a two-level atomic system with the phe-
nomenological theories of quantum amplifiers [2], we
convert the dynamical equation (7) for the density opera-
tor p, for the signal field into the following Langevin
equation for the annihilation operator 8,

d& = —a&+f(z),
dz

where

a0C+

2lpl'Tz

(12a)

(12b)

is the absorption for the probe that is calculated from the
semiclassical theory [7]. Here a0=4nNp tonTz/Vc is the
unsaturated line-center absorption coefficient, and we set
t =nz/c, where c/n is the phase velocity of the signal
wave. The first- and second-order correlation functions
of the Langevin noise operator that appears in Eq. (12a}
are given by

(f(z)&=(f (z)&=0, (13a)

&f'( )f( ')&= R [Q+ ('5, )
211 I'T2

—C+ (i 5, ) ]5(z —z')

=2D+ 5(z —z'), (13b)

(f(z)f (z')&= Re[Q (i5, )
2IJ I'T2

+C+ (i 5, ) ]5(z —z')

=2D +5(z —z') . (13c)

Q+ (iv, ) = —C+ (i v, ) = T, Ipl /(1+i5, ) . (14)

Thus for the ideal standard quantum amplifier, the
diffusion coefficients D+ and D + become

u+-
@ Tz(1+5, )

D +=0. (15)

For the case in which the atoms are not perfectly invert-
ed, the diffusion coefficient D +%0, which leads to the
standard amplifier imparting additional noise onto the
amplified field. We will show that in certain cases the
diffusion coefficient D + does vanish for a two-beam
coupling amplifier which corresponds to the ideal
amplifier limit.

where 2D+ and 2D + are elements of the diffusive ma-
trix [12]. Since f is Gaussian in nature, all higher-order
correlation functions can be determined from the first-
and second-order correlation functions.

The Langevin equation (12a) should be compared with
the ideal standard amplifier in which the probe field is
propagating through a system of perfectly inverted atoms
with no external coherent pump field acting on the sys-
tem. One obtains Eqs. (12) and (13) but with the
coefficients C and Q+ given by

Equation (12a) is integrated form z =0 to z =L, and
the solution can be written in the form

&(L)=g&(0)+P, (16a)

The noise factor in (17) is equal to unity only in the
ideal-amplifier limit as described above in Eq. (14), and it
depends only on the ratio of the polarization correlation
function Q+ to the semiclassical susceptibility function
C+ . This ratio can be interpreted as the amount of
quantum noise introduced by atomic fluctuations relative
to the efficiency the amplification process.

The expectation value for the number of photons in the
transmitted signal field is given by

&R(L) &
= Igl'&R(0) &+Nf(lgl' —1) . (18)

As seen by the above expression, the number of "noise"
photons that are added to the output signal field is equal
to the product of the noise factor Nf and lgl

—l.
Through the use of Eqs. (16) and (18), the signal-to-noise
ratio of the photon number of the output field in the
high-gain limit ( lgl » 1) is calculated to be

2
S (&(z) &'

& ~R'(z) &

(R(0) &'+2Nf(R(0) &+Nf
(AR'(0) &+(2Nf 1)(R(0)&+Nf—

(19)

For the case in which the input field is in a coherent state
[i.e., (b,R (0) & = (R(0) &], the output signal-to-noise ra-
tio becomes

2 [(R'(0) &+Nf ]

N, „, Nf [2(R'(0) & +Nf ]
(20)

In the limit in which Nf =1 and (R'(0) »)1, we reach
the result that the square of the signal-to-noise ratio of
the output field is half that of the input field.

In Fig. 2 we plot of the gain lgl experienced by the
signal field as a function of pump-signal detuning for the
case QT2 =5, 6= —5, a0L =300, and T2/2T~ =0.3 ~ The
two gain mechanisms are known as the three-photon (TP}
effect and stimulated Rayleigh (SR) scattering. We will
study the quantum-noise properties of each one separate-
ly.

where g =exp( —aL) is the gain (or loss) experienced by
the signal field and

P= f dz'f(z')e a(L——z') (16b)
0

is the noise operator for amplification in a strongly driven
two-level atomic system. Note that F satisfies the com-
mutation relation [P,P ]=1—lgl, thus preserving the
commutator for 8.

We define the following noise factor Nf to characterize
the arnplification process:

Nf= „„t =— 1 —
+ &1 for Igl&1.(P P& 1 Re(Q+ ) )

([F,F ]& 2 Re(C )

(17)
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FIG. 2. The gain for the probe field as a function of the
pump-probe detuning 5, for the case QT2 =5, 5 = —5,
aoL. =300, and T, /2T, =0.3. The resulting gain features are
known as the three-photon (TP) effect and stimulated Rayleigh
(SR) scattering.
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We first consider amplification as result of the three-
photon effect. In all the ensuing analysis for the TP
feature, we choose the pump-probe detuning to be at the
peak of the gain curve which occurs at the generalized
Rabi frequency such that 5, =5[1+(QT2/5) J'~ . We
show the effect that collisions have on the TP gain feature
by plotting the gain ~g~ [Fig. 3(a)] and the noise factor
Nf [Fig. 3(b)] as functions of the ratio Tz/2T, for vari-
ous values of the pump detuning for the case QT2 =100
and aoL =200. For a particular value of 5, the highest
gain always occurs in the radiatively broadened limit at
T2/2T, =1. In general, we find that the highest gain for
all ratios of Tz/2T, occurs approximately at a pump de-

tuning of 5=QT2/3. In addition, the noise factor is a1-

ways minimized in the radiatively broadened limit [see
Fig. 3(b)], and in this limit the amplification process is
close to that of the ideal amplifier for larger pump detun-
ings.

The increase in the noise factor for the TP feature as

the atomic system becomes collisionally broadened is pri-
marily a result of a decrease in the efficiency of the gain
process as Tz/2T, decreases rather than a result of the
collisions introducing noise to the field through atomic
fluctuations. This point is illustrated in Fig. 4, where we
plot as a function of T2/2T, the quantities C+, which
is a measure of how efficient the gain process is, and

Q, which represents the contribution from the atomic
fluctuations to the noise in the signal field for the curves
in Fig. 3 that corresponds to 5=30. We see that the
quantity Q+ is relatively constant, whereas the value of
C+ drops by nearly two orders of magnitude as the
effect of collisions are increased. This decrease in C
accounts for the corresponding increase in the noise fac-
tor in Fig. 3(b). Thus, increasing both Rabi frequency
and the pump detuning increases the eSciency of the
amplification process, and correspondingly lowers the
noise factor.

We next consider amplification through use of stimu-
lated Rayleigh scattering. The peak value of the gain
occurs at a value of the pump-probe detuning v, between

1/T, and I /Tz, ' the exact value depends on the Rabi fre-

quency, on the pump detuning, and on the ratio T2/2T&.
In all our ensuing analysis of gain at the SR feature, we

adjust the pump-probe frequency such that the gain is al-

ways maximized. The gain ~g~ and the noise factor Nf
are plotted for various values of the pump detuning as a
function of T2/2T, in Figs. S(a) and S(b), respectively,
for the case Q T, T2 =50 and aoL =300. We choose to
keep the intensity I =0 T& T2 constant (as opposed to
QT2 for the TP effect) as T2/2T, is varied, since the gain
from SR scattering is a result of population oscillations
that occur due to incoherent population transfer. We
find that as the amount of collisiona1 broadening in-

creases, the gain [Fig. S(a)] for the signal wave increases
[7]. In addition, Fig. S(b) shows that collisional broaden-

ing actually reduces the noise factor Nf. The maximum

gain is achieved for a 5=3, whereas the lowest value of
Nf occurs for a 5=10. We find in general that for a par-
ticular value of the pump intensity I, the most efficient

amplification occurs at a pump detuning of 5 =I~ /4, and

the least amount of noise with a relatively high
amplification efficiency occurs at a pump detuning of
5 =I . We have not found, for any values of the parame-
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FIG. 3. (a) Gain ~g~ experienced by probe field for the
three-photon feature as a function of the ratio T2/2Tl for three
different values of the pump-field detuning 6. The presence of
collisions (i.e., T2/2Tl &1) always leads to a reduced value of
the gain. (b} The corresponding noise factor Xf for each of the
cases in (a). Only in the absence of collisions (i.e., T2/2Tl =1)
does the amount of noise in the amplified field approach the
value for the ideal quantum amplifier.

lo g (T~/2Ti)

FIG. 4. The real part of the polarization correlation func-
tions 0 and C for the three-photon feature are plotted as
a function of the ratio T2/2T& for the curves in Fig. 3 that cor-
respond to 5=30.
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ters for the pump field and the atomic system, a regime in
which arnplification as a result of SR scattering can
operate at the ideal amplifier limit. The minimum value
of the noise factor that can be reached is Nf =4.

The decrease in the noise factor as the amount of col-
lisional broadening is increased is a result of the increase
in the efficiency of the SR gain. This effect is even more
pronounced for SR gain than for TP gain, since the col-
lisions increase the amount of noise into the signal field
due to atomic fluctuations. We illustrate this point by
plotting (Fig. 6) the quantities C+ and Q+ as a func-
tion of T2 l2T, for the curves in Fig. 5 that correspond to
5=7. Although Q+ increases with the level of col-
lisional broadening, C+ increases by a greater amount,
which leads to a corresponding decrease in the noise fac-
tor Nf.

We have also studied the dependence of the noise fac-

-1 0

lo g (T2/2Ty)

FIG. 5. (a) Gain ~gi experienced by probe field for the stimu-

lated Rayleigh feature as a function of ratio T2/2T, for three
different values of the pump-field detuning 5. The presence of
collisions (i.e., T&!2T& (1) leads to an increase in the value of
the gain. (b) The corresponding noise factor Xf for each of the
cases in (a). The amount of noise in the amplified field is mini-

mized only in the limit in which the atoms are collisionally
broadened (i.e., T2/2T& «1).

FIG. 6. The real part of the polarization correlation func-
tions Q and C for the stimulated Rayleigh feature are
plotted as a function of the ratio T2/2T, for the curves in Fig. 5
that correspond to 5=7.

tor Nf as a function of pump-probe detuning for both the
TP and the SR features. We find that the noise factor is
minimized at pump-probe detunings that correspond to
the maximum gain in all cases. As in the cases discussed
above, this behavior can be easily understood from the
fact that the efficiency of the gain process relative to the
amount of quantum noise present is maximum at these
detunings.

In conclusion, we have determined the quantum-noise
limits on amplification by two-beam coupling in an atom-
ic vapor. Amplification via the three-photon effect can
lead to a noise level that is equal to that of an ideal opti-
cal amplifier only in the limit in which the atoms are ra-
diatively broadened. We find that stimulated Rayleigh
scattering is an inherently noisier gain process, and the
lowest noise level that can be achieved is predicted to be
four times the ideal amplifier limit. Surprisingly, this
noise level is minimized only under conditions of strong
collisional broadening.
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