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Preferential instability in arrays of coupled lasers
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We consider an array of N coupled class-8 lasers in a ring geometry. We analyze the stability of the
steady-state solutions for small values of the coupling strength and small damping. The problem is
motivated by recent studies of laser-diode arrays, but analytical results on the possible instabilities
remain limited to the case N =2. We consider N arbitrary and use the coupling strength as the bifurca-
tion parameter. As this parameter increases from zero, we show that the first instability leads to a pref-
erential mode of oscillations. For N even, we study this bifurcation to a time-periodic standing-wave
solution and determine the direction of bifurcation. We discuss the bifurcation possibilities in terms of
the parameter a, known as the linewidth-enhancement factor, in semiconductor lasers. Increasing a des-
tabilizes phase locking between adjacent lasers but leads to a smooth bifurcation to periodic solutions.
Inversely, decreasing a stabilizes the laser array, but the first bifurcation leads to a hard transition to
time-dependent solutions. The predictions of our analysis are in agreement with the results of a numeri-
cal study of the laser equations.

PACS number(s): 42.50.—p

I. INTRODUCTION

Arrays of semiconductor diode lasers can operate with
high output powers and are promising devices for appli-
cations that require high optical power from a laser
source (high-speed optical recording, high-speed printing,
free-space communications, pumping of solid-state lasers)
[1]. For all these applications, it is necessary that the ar-
ray operates in phase so as to produce a single and nar-
row beam. This has motivated the recent theoretical in-
terest for models predicting the response of coupled diode
lasers (called phase-locked arrays). Early studies of
phase-locked arrays were able to interpret the experi-
ments [2] but failed to predict the possible oscillating
modes of an array of coupled emitters. Later Otsuka [3]
and Butler, Ackley, and Botez [4] developed a coupled-
mode theory and have shown that an array of N coupled
lasers has X normal modes (called array modes). The re-
sults of their analysis have been confirmed by many ex-
perimental observations [5]. The coupled-mode theory
describes the possible modes of a laser array but ignores
their stability. Experiments have shown that the popula-
tion of coupled lasers has a tendency to operate in the
180'-phase shift mode (called out-of-phase mode: the
phase difference for the electrical field of two successive
coupled lasers is tr). Recently, Winful and co-workers
[6—8] and Otsuka [9] studied simple models of coupled
lasers and have found a rich variety of spatiotemporal
responses. Analytical work is limited to the case of two
coupled lasers [6—8, 10,11] and the case of phase-locked
solutions in very large arrays [12].

In this paper, we consider N arbitrary and determine
the stability properties of the laser system in the limit of
small coupling and small damping. Our analytical results

are valid for all class-B lasers which involve semiconduc-
tor lasers as well as other lasers of practical interest [13].
Furthermore, we propose a first-bifurcation analysis of
the leading instability. This analysis is difficult but leads
to a simple expression for the direction of bifurcation. In
particular, it reveals a key nonlinear effect of the parame-
ter e defined as the linewidth-enhancement factor in
semiconductor lasers. It can range in magnitude from 4
to 6 in semiconductor lasers and couples amplitude and
phase across the array. For other laser systems such as
detuned gas lasers, a is smaller than 1 or even zero in res-
onant conditions. We show that increasing 0. destabilizes
the basic steady-state solution but leads to a smooth tran-
sition to small-amplitude oscillations. Inversely, decreas-
ing a stabilizes the basic steady-state solution but may
lead to a hard transition to large-amplitude oscillations
(a) 1.2). The first case applies to semiconductor lasers
while the second case is appropriate for detuned systems.

Coupled nonlinear oscillators are used as models in
different areas of physics [14] and are studied by first
deriving a phase equation in the limit of weak coupling.
This limit does not apply for class-B lasers because the
laser is not a limit-cycle oscillator but rather a weakly
damped oscillator. A weak coupling between the lasers is

enough to destabilize both the amplitude and the phase of
each oscillator. A Hopf bifurcation is the simplest rnani-

festation of this amplitude and phase instability. Recent-
ly, this Hopf bifurcation has been analyzed for a popula-
tion of two lasers [7,8]. In this paper, we consider a pop-
ulation of N lasers and determine steady and time-
periodic solutions in terms of the amplitude of the cou-
pling. We find that the first bifurcation of the basic
steady state corresponds to a time-periodic and spatially
nonuniform solution. The wave number of this solution
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is always equal to N/2 (N even) whatever the values of
the laser parameters. This is a particular feature of the
laser problem which does not appear in other (hydro-
dynamic, chemical, or laser) stability problems. Thus the
first instability corresponds to a preferential mode of in-
stability.

The paper is organized as follows. In Sec. II we formu-
late the evolution equations for a system of coupled lasers
in a ring geometry. In Sec. III we describe the steady-
state solutions. Section IV is devoted to their linear sta-
bility analysis. In Sec. V we investigate the first Hopf bi-
furcation in the case N even. Section VI summarizes the
results for N odd and discusses the relevance of bifurca-
tion methods for other laser array problems. All
mathematical details are described in the Appendix.

II. FORMULATION

We consider a system of N coupled semiconductor
lasers described in dimensionless form by the following
equations [8]:

dX. =ZJ X) —rt [XJ+,sin(p + i
—

QJ. )

+X,sin(((},—P.)],
dZj

T =p —Z —(1+2Z )X. ,do J J

dP ' = —aZ, +7)X, '[X+, cos(P +, P, )—

+X, , cos(P, ,
—

PJ )],
Xiv+1(a) Xi(a) N+1(a } l(a }

Piv+, (o )=P,(cr)+m2n. ,

where m =0,+1,+2, . . . is arbitrary.

III. STEADY-STATE SOLUTIONS
AND THEIR LINEAR STABILITY

(2.5)

(2.6)

(2.7)

(2.8)

dYj =(1 ia)—Z~ YJ+.i'( Yi+, + YJ,), (2 1)
We seek a steady-state solution satisfying the condi-

tions

dz
T =p —Z) —(1+2'�)iYJ i (2.2)

In these equations, the variables Y and Z are defined as
the normalized electrical field and normalized excess car-
rier density in the jth laser, respectively. The basic time
0 is defined as cr =t/r where r denotes the photon life-
time. The parameter p is the normalized excess pump
current (p =0.05), 7) is the coupling strength
(rt=10 —10 ), a is the linewidth-enhancement factor
(a=5), and T is equal to the ratio r, /r where r, is the
spontaneous carrier lifetime r, ( T=2 X 10 ). Typical
values of these parameters are shown in parentheses and
were used in numerical studies [8]. As Otsuka [9], we
consider a ring geometry (looped coupled waveguide
lasers [9]} and introduce periodic boundary conditions
given by

dX /der =dZ /da =d(h +, i)/der =0, (3.1)

and

X p1/2 Z=0, (3.2)

sin(Z)= sin(P, P~) and c—os(h)= cos(((}&—
Piv) .

(3.3)

Since we may write P~ —P, as P~ —Pi=(N 1)b„Eq. —
(3.3) implies that

where b,~+ ~ ~. =Pi+, —
PJ is defined as the phase

difference between laser j + 1 and laser j and which is in-
dependent of j. We denote the steady-state solution by
Xj X Zj Z, and 6 + &

=h. From the steady-state
equations (3.1) and since b i

. = —Z, $0=$~+m2m. ,
and P~+, = P &+m 2n, we obtain the conditions

Ytv+, (t)= Y, (t) and Ziv+, (t)=Z, (t) . (2.3)
(N —1)6+2m—m

or, equivalently,

(3.4)

The ring geometry allows us to find all the steady-state
solutions of Eqs. (2.1)—(2.3). For the case of a one-
dimensional geometry with fixed boundary conditions
(open coupled waveguide lasers [9]), the steady-state solu-
tions cannot be obtained for an arbitrary N. They must
be determined either numerically or asymptotically for a
specific range of values of the parameters (for example,
N =2 [8] and N ~ 00 [12]).

It is convenient to reformulate Eqs. (2.1)—(2.3) in terms
of the amplitude (X ) and phase (P ) of the electrical
field. Inserting

1
b, =—m2n. (m =0, 1,2, . . . , N —1) . (3.5)

Using (3.5), we then determine an expression for
P, (a)=P, (a):

1 . 1$.=2gcos —m2m tr+P +j—m2m'.J N
(3.6)

In surnrnary, we have found N distinct steady-state solu-
tions characterized by a constant intensity and an identi-
cal constant phase difference between each laser
[E=Z(m)]. We call m the wave number of the steady
state. For example, if m =N/2 and N is even, we find

Y =X.exp(iP )

into Eqs. (2.1)—(2.3), we find

(2.4) Y (o }=(—1)~p' exp[i($0 2go)), — .

Zi=0 (1 j N) .
(3.7)
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We now analyze the linear stability of the steady-state
solution (X,Z, P )=(X,0,$ ). To this end, we intro-
duce the deviations u, v, and w defined by

u =pe g, v =qe f, w =re" g (3.13)

The general solution of Eqs. (3.9)—(3.12} is a linear com-
bination of eigenfunctions of the form

X, =X+u, , Z, =v, , and P, =P, +w, . (3.8}
where it, satisfies the eigenvalue problem

Neglecting all quadratic terms, the linearized equations
are given by 0, +i+0& i —20—

&

= k'—0, IN+i=Pi Co=fr

du~.
=Xv, —

oisin
—2nm (u, +, —u, , )

dO'

1—7)X cos —2nm (wj+i+ w~ i
—

2w~ ),

dU) 2T = —2Xu —(1+2X )v
do

(3.9}

(3.10)

and k is the eigenvalue. Solving (3.14), we find

1
1(t =e +—'~, 8=—2nn (n =O, . . . , N —I ),

and

k =2[1—cos( 8) ]=4 sin (8/2) .

(3.14)

(3.15)

(3.16)

de' = —av, —ri sin 2i—rm ( w, +, —w, , )
do

1+i)X cos —2mm (u~+, +uj, —2u, )
N

Note that there are N possible solutions. We call n the
wave number of the perturbation. Substituting (3.13) and
(3.15) into Eqs. (3.9)—(3.12) leads to a characteristic equa-
tion for the growth rate cu. Because T is large and g is
small, we introduce the parameters e and b defined by

(1~j~N) . (3.11)
e=T ' and rt=e b [b =O(1)] . (3.17}

uo(t) —u~(t)y u~+i(t) —ui(t) y

vo(t) VN( )t) vJV+1(t) v 1(t) ~

w o ( t ) ~w( t ), w~ + i ( t ) =w i ( t )

(3.12)

The periodic boundary conditions for u, v, and w, are
formulated as

0 +D& Q +D20+D3 =0

where

(3.18)

The scalings of g and co are motivated by the analysis of
the case N =2 [8] which indicates that an oscillatory in-
stability appears as g=O(T '), with frequency
co=0(T '~ ). In terms of (3.17), the characteristic equa-
tion for co =eQ is given by

D =e (1+2X )+4ib sin —2@m sin(8)
1 N

(3.19)

D =2X +4ie b(1+2X ) sin —2am sin(8)+e b cos —2nm k —sin —2am 4sin (8)
2 l

N N N
(3.20)

1 1
D =eb —2aX cos 2m.m k —+4i sin(8)X sin —2am

N N

+(1+2X )e b cos —2irm k —4 sin (8) sin —2~m (3.21)

Since e =0( 10 ) is small, we determine the roots of
(3.18}using a perturbation method. Specifically, we seek
a solution of the form

Q, (e)= —e(2X ) 'b —2aX cos —2am k

Q(e)=QO+eQ, +e Q2+ (3.22) 1+4i sin(8)X sin 2irm-
N

Substituting (3.22) into (3.18) and equating to zero the
coefficients of each power of e leads to a succession of
problems for Qo, 0, , . . . . We have found the following
three solutions:
(1}One complex root

+O(e')

and (2) a pair of complex-conjugate roots

(3.23}
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Q2 3(e)=+i2' X+——(1+2X )

1.0 rn=(N —1)/2 ond m=(N+1)/2

+O(E ) .

12—ib sin —2m.m sin(8)
N

—ha cos —2m.m k
1

N

(3.24)

C: 0.6
(D
L-

N

CP0.4
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From (3.23), we find that Re(Q, ) &0 [Re(Q& ) & 0] if
r

0.0 I I I I J I I I I f I I I I f I I ~ ~ t I I I I / ~ I I I
/ ~ I ~ I $ ~ ~ I I $ I I I I

0 1 2 3 4 5 6 7 8 9
wove number n

1
cos —2m.m (0,

N
(3.25)

1
cos —2am )0

N
(3.26)

Thus we conclude from (3.25} that one condition for sta-
bility is the inequalities

FIG. 2. Neutral stability curve for N odd. The full curve
represents the Hopf bifurcations b „ for m =(N —1)/2 or
m =(N + 1)/2 and as a function of n taken as a continuous vari-
able. For m ((N —1)/2 or m ) (N+1)/2, the function b „as
a function of n is similar but the minimum appears at a higher
value of b. The dots indicate the permitted wave numbers. The
figure illustrates the case N=9. Note that the first instability
corresponds to n = (N —1)/2 and (N + 1)/2.

N 3N—(m(
4 4

(3.27)
is below a critical value b =b „:

We now analyze the real part of Q2 3. From (3.24), we
find that Re(Q2 3 }& 0 if

r

(1+2X )

cos[(1/N )2am]k ~. (3.30)

(1+2X )+bacos —2am k &0 .
N

(3.28)

and Re(Q2 3) & 0 if

(1+2X )+bacos —2am k &0.
N

(3.29)

1.0-
m=N/2

Ql
C 0.6
Q)

N

tabl

Assuming that the stability condition (3.27) is satisfied,
the condition (3.28) implies that the coupling strength b

The critical values b =b „correspond to Hopf bifurca-
tion points. They are characterized by two wave num-
bers m and n. Recall that m is the wave number associat-
ed with the steady-state solution and n is the wave num-
ber of the small-amplitude perturbation. As b progres-
sively increases from zero, the first bifurcation point cor-
responds to min(b „}.Taking into account the condition
(3.27), we find from (3.30) that this minimum appears for
the steady state with "m =N/2" and with respect to a
perturbation of wave number "n =N/2" if N is even. If
N is odd, m is either equal to (N 1)/2 or equa—l to
(N + 1)/2. Moreover, both the wave numbers
n =(N —1)/2 and (N —1)/2 are possible candidates for
an instability because we obtain the same minimal value
of b „. Figures 1 and 2 illustrate the two cases. If N is
even, we determine from (3.30) a simple expression for
bo = min(b „):

CP0.4
C
CL

o 0.20 b =ho=a '
—,'(1+2X ) (N even) . (3.31)

0.0 ~ ~ s ~ ~ ~ s ~ ~ ~ ~ ~ ~ ~
~

~ I I ~ ~ ~ ~ ~ s J ~ ~ ~ aJ ~ ~ ~ rgI ~ ~ ~ ~ ~ ~ ~ ~ ( ~ ~ ~ ~

0 1 2 3 4 5 6 7 8 9 10
wave number n

FIG. 1. Neutral stability curve for N even. The full curve
represents the Hopf bifurcations b „ for m =N/2 and as a func-
tion of n taken as a continuous variable. For mXN/2, the
function b „as a function of n is similar to the curve for
m =N/2 but the minimum appears at a higher value of b. The
dots indicate the permitted wave numbers. The figure illustrates
the case N=10. Note that the minimum of the curve corre-
sponds exactly to n =N/2.

Using (3.17), we may then obtain an approximation of the
first bifurcation point g =g, . The scaling
g, =O(T 'a ') is in agreement with the result of a
different analysis given in [12]. Moreover the case N =2
can be analyzed in detail and does not require the limit
a~0 (the laser equations are the same as the equations
given in [7] except that r) must be replaced by 2g because
we consider periodic boundary conditions and
YJ+, =Y, ). We have found that the out-of-phase solu-
tion becomes unstable if b )b* where b* is identical to
bo.
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IV. BIFURCATION ANALYSIS
FOR m =X/2 AND N KVKN

These equations can be simplified if we introduce new
variables defined as

We consider Eqs. (2.5)—(2.8) with e = T ' and g=e b,
or equivalently,

dX- =Z, X, eb—[X,+, sin(P, +,—(t, )

' 1/2

s = ( 2p ) ecT

e 'Z, y =(X —p)p

(4.4)

+X, , sin(P, —
P, }],

e =p —Z —(1+2Z )X
dZJ 2

do J J

= —aZ +e bX [X +, cos(P, +,—((} )

+X,cos(P, —
P )] .

(4.1)

(4.2)

(4.3)

These new variables are motivated by the expressions of
the frequency and the eigenvector of the critical mode
previously obtained by the linear stability analysis. Simi-
lar changes of variables have been proposed for other
class-B lasers (such as CO2 lasers). Equations (4.1}—(4.3)
then become

= —y —e(2p) ' x, [1+2p(1+y )],
' 1/2

=(1+y )x eb —— [(1+y +&)' (1+y )' sin(P +&
—

P )+(1+y &)' (1+y )' sin(P, —P )],
ds

(4.5)

(4.6)

d = —
—,'ax, +eb(2p) ' (1+y, )

' [(1+y,+, )' cos(P, +, —P )+(1+y, )' cos(P, , P~)] . —
ds

(4.7)

We are interested in determining the periodic solution
which is bifurcating from the steady state m =X/2. In
terms of the new variables, this steady-state solution is
given by

x =y =0 and P = —2eb(2p) ' s+Po+j ~ . (4.8)

We are now ready for the bifurcation analysis. We first
introduce the new variables u. , v, and w which are
defined as the deviations from the steady state,

uJ =xJ, UJ =PJ,

w, =P, —
[
—2eb(2p) 'c s+Po+ jm] .

We then seek a small-amplitude solution of the form

u, (S,v)=vu, (S)+v u z(S)+

U, (S,v)=vu, ,(S)+v U, ~(S)+

(4.9)

(4.10)

(4.1 1)

w, (S,v)=D(v)S+vw i(S)+v w 2(S)+, (4.12)

where the new time S is defined by

in (4.12), we allow a possible O(v ) correction term for its
linear dependence in time. The small parameter v is pro-
portional to the deviation b —bo and is defined by

b(v) ho=v c, — (4.15)

bo(e)= (1+2p)+O(e )
1

4e
(4.16)

and the frequency of the oscillations at the Hopf bifurca-
tion point is

coo(e) =1+0(&') . (4.17)

where c =1 if b —bo & 0 and c = —1 if b —bo &0. We in-
troduce (4.10)—(4.15) into Eqs. (4.5)—(4.7) and equate to
zero the coe%cients of each power of v. We then obtain a
succession of problems for the unknown coeScients. The
three first problems are given in the Appendix. Each
problem is then solved by a perturbation analysis valid in
the limit @~0.

In summary, we have found the following results.
From the O(v) problem, we obtain that the Hopf bifurca-
tion is located at

S=co(v)s=[cuo+v co2+O(v )]s . (4.13)

All the correction terms uJ „uJ2, . . . , vJ, , vJ2, . . . , wJ &,

w.z, . . . are 27r-periodic functions of S. Note from (4.9)
that w corresponds to P, the phase of the electrical field.
The phase has an expression of the form

P (S)=R +R0,S+R&(S) where R2 is a 2m.-periodic
function of S. By introducing the term

u, =v(Pe' +' '+ c.c. )+O(v ),
v, =v(PBe's ' '+ c.c. )+O(v'),

w =v(PCe ' s+ J '+ c.c. ) +0 ( v ),

(4.18)

(4.19)

(4.20)

The periodic solution corresponds to a standing-wave
solution in space and is harmonic in time. It is given by

D(v)S=(v D2+v D3+ . )S (4.14) where 8 and C are two constant coeScients defined by
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S e/2

() l k k 4 4 l 0 i 4 i'o

loser nb
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s c s s & a
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FIG. 3. The standing-wave solution. The intensity of the
2~-time-periodic standing-wave solution is represented for ten
coupled lasers and for three different times.

B(e)= i+O—(e) and C(e)=i +O—(e) ..a
2

(4.21)

a&a =(—")' —1 20
C (4.22)

If u &a„the bifurcation is subcritical and leads to unsta-
ble periodic solutions.

V. DISCUSSION

We have investigated the first Hopf bifurcation of a
system of N coupled class-8 lasers. If X is even, we have
shown that the bifurcation leads to a specific time-
periodic standing-wave solution. It corresponds to a
preferential mode of instability because the wave number
is equal to X/2 for all values of the laser parameters.

Since the wave number is O(N} as N~ oo, the
standing-wave solution varies a lot from one laser to the

Figure 3 represents the intensity of the standing-wave
solution for an array of ten lasers and during half the
period (time 5=0, n /2, and m). The coefficient vp is the
amplitude of the periodic solution and p=p(c) is deter-
mined from the O(v ) solvability condition. The expres-
sion of ~p~ is given in (A42) and the fact that it is positive
gives the direction of bifurcation. The bifurcation is su-
percritical (i.e., b &ho), if c= 1 which then requires the
condition (A43). On the other hand, the bifurcation is
subcritical (i.e., b (bo } if c = —1 which then requires the
condition (A44). A supercritical bifurcation means that
the transition to the oscillations is smooth and the ampli-
tude progressively increases from zero. A subcritical bi-
furcation implies a hard transition near the bifurcation
point to large-amplitude solutions which may or may not
be periodic and are not approximated by our analysis.
From (A42), we find that the supercritical case appears if

next in the array. It is not a function of the slow space
scale j/N and cannot be determined by using the contin-
uum limit as in [12]. To use the continuum limit as

and determine an approximation of the time-
periodic standing-wave solution, we must seek a solution
of the discrete laser equations that depends on both the
position j and the slow space j /N [15].

The bifurcation results described in this paper will be
useful if we investigate the stabilizing efkcts of additional
control mechanisms (injection locking, periodic modula-
tions, parallel coupling). Provided that these additional
terms in the laser equations can be treated as weak per-
turbation terms, we may derive amplitude equations
which are slight modifications of the bifurcation equation
of Eq. (A40). In particular, the nonlinear term in (A40)
will remain unchanged.

Of particular physical interest is the fact that the con-
dition for a smooth transition to small-amplitude time-
periodic solutions only depends on a. Increasing a (i.e.,
a & a, =1.2) has a stabilizing eff'ect even if the value of
the bifurcation point i}=ri,(a) is decreased because we

may guarantee the existence of stable small-amplitude
time-periodic solutions. We have analyzed the predic-
tions for the direction of bifurcation (4.22) by investigat-
ing numerically the laser equations. For T=2000,
p =0.05 (the values of the parameters used by Winful and
Rahman [8]), and N=4, we have determined the branch
of periodic solutions which appears at the first Hopf bi-
furcation point. We have used both a continuation
method (AUTQ [16])and a direct integration method. We
have found that the bifurcation is supercritical if a = 1.3
and subcritical if a = l. 1. This is in agreement with (4.22)
since the condition predicts that the bifurcation changes
direction at a, =1.20. In addition, we have found nu-

merically that the branch of stable periodic solutions
which appears in the supercritical case (a = l.3 and 5) ad-
mits a secondary bifurcation to quasiperiodic solutions at
a value of b slightly larger than the Hopf bifurcation
point b =bo. This secondary bifurcation reveals the
effects of the nearby modes (n =N/2+ 1 and N/2 —1).

If N is odd, the bifurcation analysis is more complicat-
ed because the first instability corresponds to a multiple
eigenvalue [17]. Indeed, both modes with wave numbers
n=N/2+1 and N/2 —1 become unstable at the same
time as the bifurcation parameter is increased. Their in-
teraction leads to multiple branches of solutions (two
stable traveling-wave solutions and one unstable
standing-wave solution) [15].
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APPENDIX: HOPF BIFURCATION ANALYSIS

In terms of the new variables (4.9), we rewrite Eqs.
(4.5)-(4.7) as
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= —
uj

—e(2p) ' [uj(1+2p)+2pujv ],
1/2

dUj
1 1 1=u, +uju +eb — [[1+—,'(u, +v, +, )+—,'u, u, +,——,'(v, +uj+, )+ . ]sin(w, +,—w, )

(Al)

+[1+—,'(u, +u, )+—,'u, u, ,
—

—,'(u, +u, , )+ . . ]sin(w, ,
—

w, )j, (A2)

= —
—,'au +eb(2p) '

I [1+—,'(u +,—u )+ ', u, —,'u—j+—,——,'uj+, u, + ][—1+—,'(wj+, —wj) + ]
ds

+[1+—,'(u, ,
—

u, )+—', v,
—

—,'u, ,
—

—,'u, , u, + ][—1+—,'(w, ,
—

w, ) + ]], (A3)

where we have expanded the functions (I+y )'~, . . . and cos(1I).+, —pj. ), . . . in Taylor series. Introducing

(4.10)-(4.15) into Eqs. (Al) —(A3) leads to a succession of problems for the unknown coefficients:

O(v),

(W +1 1+W 1 1 2wjl)

ou ls
—e(2p) '~ (1+2p)uj, —

vj, ,
' 1/2

2
QpoU. lg

=Q 1+E'bpj J

(A4)

(AS)

Qlpwj, s= —
—,'au, , ——,'ebp(2p) ' '(u, +, , +v, 11

—2vjl);

O(v'),

Qlpujzs+e(2p) '~'(1+2p)u, z+ v, ,——e(2p)
' 1/2

2
Qlpvjzs ll jz Ebp (wj + 1 2+ wj —1 z 2wj 2)

(A6)

(A7}

2=Q 1U 1+6'&pj
1/2

[ &(Vjl+Vj+1 1)(Wj+1 1 Wjl)+ &(Ujl+Uj 1 1)(Wj 1 1 Wjl)] j (AS)

coowjzs+ paujz+ 2 ebo(2p) ' (vj+, 2+v, , 2
—2vjz) =ebp(2p) '

[ ——', vjl + —,
' vj+, , +—,'vj+ 1,vj, + ,'(wj+, —,

—wj, )

8 jl ' T j—11 ' 4 j—11 jl

+2(wj —1, 1 wjl) 1 Qzpoz
' (A9)

O(v ),
Iplp ll j3S+e( 2p )

'
( 1 + 2p )uj3 + uj3

=eR, coz uj,s—
' 1/2

2
COQU)3S Uj3 ebo (wj+1 3+wj '1 3 2lDj3)

(A10)

2=( lzjlujz+ Qjzv jl )+ER 2+ Ec

' 1/2

(w, +, , +w —,, —2wj, ) —cozu), s, (Al 1)

R, = —(2p)'i (uj, ujz+u zuj, ),
1/2

2
R2=bp (V 2+Vj +1 2)(wj +1 1 Wj 1)+p(ujl+Uj +1,1)(wj +1,2 Wj2)

~owj3s+ zallj3+ &
&bp(2P)

' '(v, +, ,+vj 1 3 2V, ,}=&R3 cdpD3 c02 j ls

where R, and R 2 are de6ned by

(A12)

(A13)

+ p( jz+UVj —1 2}(wj—1 1 wj 1)+ 2(vjl+Vj —1 1}(wj—1 2 Wj2) 6(wj+1 1 Wjl)
3

(W' —l, l W'1) +[ v lvj+1, 1 (v 1+v +1,1}j(wj+1,1 W 1)

+[4ujlvj 1 1 8(v 1+Vj 1 1)](wj —1 1 Wjl) j (A14}
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We do not need to know the expression of R 3.
We solve each problem sequentially. The 0(v } prob-

lern has a 2m-periodic solution if

BO(E)= —E p '(1+2p)+O(E ),
A (E)=——+—(2p) '~ (10p —1}+O(E),

3 9

(A27)

(A28)

bo(E)=boo+0(E )= (1+2p}+O(E ),1
(A15) B2(E)=——', +—E(2p) 'i (4p+5)+O(E ), (A29)

(vo(E)=co(~+O(E )=1+0(E ) .

The solution is then given by

(A16) 2

C2(E)= +i (2p) ' (38p+ 7)—(1+2p )—
12 2a 36

u =Pe'(S+&~)+ c.c.j1 (A17) +O(E ) . (A30)

13B
—i ( S+j n ) + c cjl

—pCei(s+ jw)+
j1

(A18)

(A19)

B(E)= i ——E(2p} ' (1+2p)+O(E ), (A20)

C(E)=i 2Eb——(2p) '~ +O(E ) .00 (A21)

We now consider the O(v ) probleln. We find that D2 is
a function of PP given by

where P is an unknown amplitude and B and C are two
constant coefficients defined by

Note that the solvability condition for the O(v } is identi-
cally satisfied because the right-hand side of Eqs.
(A7)—(A9) contains only constant terms or terms multi-
plying exp[+2i(S+ jm )]. However, the right side of the
O(v ) problem contains terms multiplying
exp[+i(S+jm)]. These terms are of the same form as
the solution of the homogeneous problem. Therefore the
right-hand side must satisfy a solvability condition. This
condition will give equations for p and (v2. To formulate
this condition, we first need to solve the homogeneous ad-
joint problem. This problem is given by the following
equations:

D2(E)=E(2p) '~ pp[ —a(l+2p}+b(~2(a —1)]+O(E ) .

(A22)

—(Uouj'$+E(2p) 'i (1+2p)u.' —8"+—w.'=0, (A31)

The solution for uj2, uj2, and Wj2 is then of the form

u, 2=(P2e' +' '+ c.c. )+PPAo

+ (P2 A 2i($+j vr) + ) (A23) OW jS 6~0

' 1/2
2

(vj*+) +vj* )
—2vj')=0 . (A33)

(UovjS+u. +—Eb()(2p} (l8 +) +)8 ) 2l8j )=0,
(A32)

v 2=(132Be". +j '+ c c )+1313B. O.

+(p B e2i(s+jn)+ c c )

wj2=(P2Ce' +j '+ c.c. )+PPCO

+(p2( 2l($+jm)+ c c )

(A24)

(A25)

and

e ki(S+j n. )

J 7

+i(S+j m')

J

e C e +i (s+j n')

J

Equations (A31)—(A33) have two solutions given by

(A34)

(A35)

A()(E) =2E(2p) ' (1+2p)+O(E ), (A26)

where p2 is a new undetermined coefficient which multi-
plies the homogeneous solution and P is the complex con-
jugate of p. The coefficients A(), B(), Co, A2, B2, C2 are
obtained by substituting (A23) —(A25) into Eqs.
(A7)—(A9) and solving the resulting algebraic equations
for (AO, BO, C0) and (A2, B2,C2), respectively As E~O. ,
we find that CO is arbitrary and

where the coefficients 8' and C* are defined by

B'= i+O(E—), C*=—4Eboo(2/p)' +O(E ) .

(36)

Note that the correction term in B* is O(E ) and that
C*=O(E). These properties will be useful in the formu-
lation of the solvability condition. We now consider the
O(v ) problem. The first solvability condition is given by

1/2
—i (S+ m) 2

(ER) c82u~)s)+B —uj)vj2+uj2UJ)+ER2+Ec (w +) )+w ) )
—2w ))—(U2vj),0 P

+C*[ER3—(ooD3 —Co2uj)$] 'ds =0,
J

(A37)

where bar means complex conjugate. We do not write the second solvability condition because it is the complex conju-
gate of (A37). We now solve (A37) by expanding the various functions in power series of E and neglecting all O(E )
terms. The algebra is easier if we first note a series of simplifications. First, since C is O(E), we do not have to take
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into account the contribution of eR3 because C "eR i is O(e ). Second, the constant term cooD3 will not appear after in-
tegration. Third, we only need to evaluate the leading terms in eR, and eR& because their contribution is O(e).

Finally, the first correction term in 8' is O(e ) and we do not need it. The condition (A37) then takes the form
1/2

—
icons[2

—2ie(2p) ' (1+2p)]+2aec — P

+P P ——+—(2p) '
( l l+22p) —e(2p) '~ (5+3a ) =0 . (A38)

3 9 6

After dividing by P, the imaginary and real parts of (A38) lead to two conditions of the form

2coz+ —,
' PP =0, (A39)

' 1/2

—to22e(2p) '
( I+2p)+2aec +e(2p) '~ Ptj —(11+22p)— (5+3a ) =0 .

—1/2 1 (1+2p )

9 6
(A40}

Solving first (A39) for coz and then (A40) for PP, we find

(A41)

and

a(a, if c= —1 . (A44)

72ac 1

(1+2p} (9a —13)
(A42)

a )a, = ( —", )'~ = 1.20 if c = 1 (A43}

The expression (A41) is the correction of the frequency.
The expression (A42) gives the amplitude ~P~. From
(A42), we note that PP) 0 requires that

Following the Hopf bifurcation theorem, we conclude
that the bifurcation is supercritical and leads to stable
periodic solution if c =1 (i.e., b )bo) which requires the
condition (A43). On the other hand, the bifurcation is
subcritical and leads to unstable periodic solutions if
c = —1 (i.e., b (bo }which requires the condition (A44).

[1]D. Botez and D. E. Ackley, IEEE Circ. Dev. Mag. 2, 8
(1986).

[2] D R. Scifres, W. Streifer, and R. D. Burnlam, IEEE J.
Quantum Electron. QE-$5, 917 (1979).

[3]K. Otsuka, Electron. Lett. 19, '723 (1983).
[4] J K Butler, D. E. Ackley, and D. Botez, Appl. Phys.

Lett. 44, 293 (1984);44, 935 (1984).
[5]T. L. Paoli, W. Streifer, and R. D. Burnham, Appl. Phys.

Lett. 45, 217 (1984).
[6] S. S. Wang and H. G. Winful, Appl. Phys. Lett. 52, 1774

(1988).
[7] H. G. Winful and S. S. Wang, Appl. Phys. Lett. 53, 1894

(1988).
[8] H. G. Winful and R. Rahman, Phys. Rev. Lett. 65, 1575

(1990).
[9] K. Otsuka, Phys. Rev. Lett. 65, 329 (1990).

[10]P. Mandel, R.-D. Li, and T. Erneux, Phys. Rev. A 39,
2502 (1989).

[11]R.-D. Li, P. Mandel, and T. Erneux, Phys. Rev. A 41,
5117 (1990).

[12] P. K. Jakobsen, R. A. Indick, A. C. Newell, and J. V.

Maloney, in The OSA Proceedings on Nonlinear Dynamics

in Optical Systems, edited by N. B. Abraham, E. M. Gar-

mine, and P. Mandel (Optical Society of America,

Washington, DC, 1991),Vol. 7, p. 132.
[13]J. R. Tredicce, T. T. Arecchi, G. L. Lippi, and G. P. Puc-

cioni, J. Opt. Soc. Am. 8, 173 (1985).
[14]P. C. Matthews and S. H. Strogatz, Phys. Rev. Lett. 65,

1701 (1990).
[15]R.-D. Li and T. Erneux (unpublished).

[16]E. J. Doedel, AUTD: a program for the automatic bifurca-

tion analysis of autonomous systems [Cong. Num. 30, 265

(1981}].
[17]M. Golubitsky, I. Stewart, and D. G. Schaeffer, in Singu

larities and Groups in Bifurcation Theory (Springer-Verlag,

New York, 1988), Vol. II, Chap. 27.


