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Schrodinger-cat states at finite temperature:
Influence of a finite-temperature heat bath on quantum interferences
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Recently several methods have been proposed for generation of superposition (Schrodinger-cat) states
in microwave cavities. At microwave frequencies, thermal photons can significantly affect statistical
properties of superposition states. In the present paper we study the influence of a thermal heat bath on
nonclassical properties of quantum superposition states. We show that at nonzero temperature the loss
of coherences is much faster than at zero temperature. Using the formalism of quasiprobability distribu-
tions and solving the corresponding Fokker-Planck equations, we describe the time evolution of the
super-position states in phase space and derive the rate of the decay of quantum coherence. This decay
rate depends on the separation between the component states and on the temperature of the heat bath.
Moreover, we discuss in detail how the interaction with a nonzero-temperature heat bath leads to a
transformation of a nonclassical state to a classical state. We show that the sensitivity of the quantum
coherence to the presence of thermal photons can lead to some difficulties in the preparation of
Schrodinger-cat states in microwave cavities unless the temperature of the microwave cavity is
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sufficiently low.

PACS number(s): 42.50.Dv, 03.65.Bz

I. INTRODUCTION

The quantum interference between states of light de-
scribed by a pure superposition state gives rise to various
nonclassical effects [1-3]. For instance, it has been
shown that quadrature squeezing [1,3] (i.e., a reduction of
quantum fluctuations below the level associated with a
vacuum state [4]) and higher-order squeezing [1,5]
emerge as a consequence of quantum interference be-
tween various components of superposition states. Quan-
tum interference can also lead to sub-Poissonian photon
statistics [1] (for a recent review of sub-Poissonian pho-
ton statistics see Ref. [6]) and oscillations in the photon-
number distribution [1,2].

It has been shown that quantum superposition of
coherent states can be produced in various nonlinear pro-
cesses [7—12] and in quantum-nondemolition and back-
evading measurements [13]. In particular, it has been
shown by Yurke and Stoler [7] that in the presence of low
dissipation, a nonlinear system (for instance, a Kerr-like
medium [8]) may convert an initial coherent state |{)
into a quantum superposition of macroscopically distin-
guishable coherent states | )y (for details see Ref. [7])

1 iT
|§>YS=‘/—§(|§)+€ 2=, (1a)
where |£) is a coherent state (CS) defined as

|;>=5<;)|o>=exp(—l§lz/2>n§0—‘/%——!|n>, (1b)

and ﬁ(§)=exp(§aT—§*ﬁ) is a displacement operator
with @' and @ playing the role of the creation and annihi-
lation_ operators of a photon in a single-mode field
([a,a*]=1, we adopt units such that #=1). The state
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(1a) is a superposition of two coherent states |£) and
| —¢&), which are 180° out of phase with respect to each
other. It is natural to refer to state (la) as the Yurke-
Stoler coherent state. It should be noted here that the
Yurke-Stoler CS can be identified with a particular reali-
zation of a generalized coherent state introduced by Titu-
laer and Glauber [9] (see also Ref. [10]), who we believe
were first to realize that state (1a) is of a thoroughly non-
classical nature because it cannot be represented by
means of the P representation (Mandel [6] has explicitly
shown how the P function acquires its singular character
for the particular superposition states of interest here).

There have been described other methods to generate
superposition states. For instance, dissipative optical bi-
stability as a tool to obtain quantum superpositions has
been proposed by Savage and Cheng [11]. Savage, Braun-
stein, and Walls [12] have suggested that quantum super-
position states can be created by means of a single-atom
dispersion. Another possibility to create superposition
states is to use quantum-nondemolition techniques [13].
Phoenix and Knight [14] have shown that a single-mode
electromagnetic field resonantly interacting with a single
two-level atom described in the framework of the
Jaynes-Cummings model [15] evolves into an almost pure
state (see also recent papers by Gea-Banacloche [16]).
Depending on the initial photon number of the coherent
field and on the time of interaction between the atom and
the field [17] this state can evolve into a state which is ap-
proximately described either as an even CS,

|§>even:‘/véx{e2n(lg)+l_§>) ’
N L =2[14+exp(—2|E1D)],

even

(2a)

or as an odd CS,
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1€ 0aa=NGIUEY —1=EN)

—1 ) (2b)
oaa =2[1—exp(—2[&[*)] .

There is another possibility to go beyond the Jaynes-
Cummings model to a more realistic model of a micro-
maser, describing a resonant interaction of a stream of
polarized atoms with a single-mode cavity field. In par-
ticular, Meystre and co-workers [18] have made an exten-
sive study of the production of macroscopic superposi-
tions of micromaser states.

Recently Haroche and co-workers have proposed [19]
a conceptually simple and elegant method to prepare su-
perposition states confined in a micromaser cavity. The
principle of this method (the so-called atomic phase
detection quantum-nondemolition scheme) is based on a
Ramsey-type experiment [20]: first, the two-level atom is
prepared in a superposition of upper and lower states in
the first Ramsey zone, then the atom is passed through
the microwave cavity. The atomic transition frequency is
far from resonance with the field frequency. Because of
the detuning only one (upper) level of the atom interacts
with the cavity field and it dephases this field by 7. The
lower level has no effect on the field. In the second Ram-
sey zone the atomic states are coherently mixed which re-
sults in the fact that the quantum-mechanical superposi-
tion is no longer carried by the atom but by the field. In
other words, the atomic superposition has been
transferred into a field superposition. The outcome of the
experiment is that a field has either initial phase or a
phase shifted by m, i.e., the field is prepared in either even
or odd CS Egs. (2).

The Yurke-Stoler and even and odd coherent states be-
long to a wider class of quantum superposition states,
which may be used for a study of the Schrodinger-cat
paradox. Therefore these states have been called
Schrodinger-cat states. They can be generally written in
the following form:

) =172

N
2 e’¢’j|§j>l s

=1

N 1= g ei(¢j_¢k)<§k|§j>,

k=1

The nonclassical properties of these states have been in-
tensively studied recently and the influence of damping at
zero temperature on quantum coherence has been ana-
lyzed by Walls and Milburn [21], Milburn and Holmes
[22], Kennedy and Drummond [23], Agarwal and Adam
[24], Vourdas and Wiener [25], Phoenix [26], and by oth-
ers (for more references see Ref. [1]). In particular, it has
been shown that the effect of dissipation is to wash out
the oscillations of the photon-number distribution. The
sensitiveness of the photon-number distribution (PND) to
even a quite small dissipative coupling has the origin in
the fact that the PND depends on all moments of the
field observables. Generally it is true that higher mo-
ments decay more rapidly than lower moments and there-
fore the overall decay rate of the oscillations of the PND
is high. On the other hand, as shown in Ref. [1], quanti-
ties such as quadrature squeezing are more robust against
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dissipation because they involve only lower moments of
field operators.

The role of the influence of damping on quantum in-
terferences was originally analyzed by Caldeira and Leg-
gett [27] who have included the effect of dissipation by an
influence-functional technique which is valid for the case
of strong coupling as well as for the case of weak cou-
pling. Unruh and Zhurek [28] have recently proposed an
alternative way to describe the influence of the environ-
ment on a quantum system. They have studied a model
of a harmonic oscillator interacting with a one-
dimensional massless scalar field. From results of Cal-
deira and Leggett [27] and Unruh and Zurek [28], it fol-
lows that quantum interferences are in general destroyed
much faster than is the relaxation time of the system (see
also the paper by Joos and Zeh [29]).

The aim of this paper is to study in detail the influence
of a thermal reservoir on the decay of superposition
states. For a description of the time evolution of the
quantum system initially prepared in the superposition
state we will utilize the exact solution of the Fokker-
Planck equation for the generalized quasidistribution of
the system. The Fokker-Planck equation governing the
time evolution of the quantum system follows directly
from the master equation for the density operator in the
Born-Markov approximation (for details see Ref. [30])
which is valid only for a weak damping, i.e., is not as gen-
eral as the approach proposed by Caldeira and Leggett
[27]. Nevertheless, for the quantum optical systems (for
which the weak-damping approximation is justified) the
exact solution of the Fokker-Planck equation for the ini-
tial superposition state can be found. This solution al-
lows us to show clearly the effects of a nonzero-
temperature heat bath on macroscopic superpositions.
We will show that at nonzero temperature the loss of the
quantum coherence can be very rapid and that at high
temperatures Schrodinger-cat states are transformed into
mixture states almost instantaneously. We will consider
the experimental consequences of our results.

Recently Daniel and Milburn [31] have studied the dy-
namics of a nonlinear oscillator, modeling the interaction
of a single-mode field with a Kerr-like medium, subject to
damping at nonzero temperature. These authors have as-
sumed the oscillator to be initially prepared in the
coherent state, which means that they have analyzed the
influence of a thermal heat bath on a production of the
Yurke-Stoler states. In our paper we assume the field
mode to be initially prepared in the superposition state
(for instance, this superposition state can be generated in
the experiment proposed by Haroche and co-workers
[19]) and then we study the influence of damping on
quantum coherences, i.e., our analysis is applicable to mi-
crowave experiments [15,18,19], in which the influence of
damping is neglected during the time interval when an
atom interacts with the cavity field and the superposition
state of the field is produced.

II. THE MASTER EQUATION

The state of the quantum-mechanical system can be
characterized by the density operator p, which can be
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defined as
ﬁ=2Pit‘Pi)<q’il s (4)

where p; is the normalized probability (3;p,=1;p; >0)
that the system is described by the state vector |¥;). The
expectation value of an arbitrary operator Mis given as
(& ) =Tr[pM). The density operator p is Hermitian and
its trace is equal to unity. If the quantum-mechanical
system is in a pure state, that is p=|W)( ¥/, then p>=p
and Trﬁ2=1. On the other hand, a statistical-mixture
state is characterized by the p operator for which
Tr;’)‘2 < 1. The superposition state (3) is an example of the
pure quantum-mechanical state characterized by the fol-
lowing density operator:

N
p=N| 3 explileg,—@;)]I5; (&l
ij=1
N
=N 2|§i)<§i[+ > CXP[i(¢’i“¢’j)]'§i)<§j| ’
i=1 ij=1

(5)

while the density operator

N N
p= 3 pile )&l , I pi=1 (6)
i=1 i=1
describes a statistical mixture of coherent states |; ).

In this paper we consider the interaction of a single-
mode bosonic state with a heat bath at finite temperature
(T+0). The master equation (in the Born-Markov ap-
proximation) describing the time evolution of the density

operator p in the interaction picture can be written as
[30-32]

%ft’— =Lz +1)00p2"~a"ap—pa")

+12’—ﬁ(za*ﬁa—aa*ﬁ—ﬁaa*) , )

where y is the decay rate and 7 is the average number of
thermal photons at the frequency w of the cavity mode at
the temperature 7,

1
exp(fiw/kgT)—1 "’

n= (®)
where kj is the Boltzman constant. The first term of the
right-hand side (rhs) of Eq. (7) describes the transfer
through the decay of photons from the quantum system
to the heat bath, while the second term corresponds to
the transfer of excitations from the nonzero temperature
heat bath to the quantum system (compare the ordering
of the creation and annihilation operators). For 7 =0 Eq.
(7) reduces to the equation describing the decay of the
quantum system to a zero-temperature reservoir [the
second term in Eq. (7) is then obviously equal to zero].
As one may expect the stationary solution of Eq. (7) de-
scribes either a thermal (i7=0) or vacuum (77 =0) state of
the field mode under consideration.
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It is not straightforward to solve the operator equation
(7) for the density operator g directly. It is much more
convenient to transfer this operator equation into a corre-
sponding c-number Fokker-Planck equation for a
quasiprobability distribution, which can be solved more
easily.

III. TIME EVOLUTION OF QUASIPROBABILITY
DISTRIBUTIONS

The state of the quantum-mechanical system is charac-
terized by the density operator. Alternatively, the quan-
tum system can be described by the complete set of ex-
pectation values of the system operators. In particular,
the state of a field mode (harmonic oscillator) can be de-
scribed by the mean values (moments) of the bosonic
operators @ and a’. Generally, the moments of the bo-
sonic operators are given in normally ordered (@"Hmar ),
antinorma]lfy ordered (6"(6”’"), or symmetrically or-
dered ({(@')™@"}) form, and can be evaluated with the
help of the s-parametrized characteristic function (CF)
C(§,s) introduced by Cahill and Glauber [33]

C(&,s)=Tr[pexpéa’—£*a+s||2/2)], )

which for s =1 reduces to the normally ordered CF, for
s=—1 to the antinormally ordered CF, and for s =0 to
the CF of symmetrically ordered moments. Generally,
the mean values can be evaluated as

FIG. 1. The Q function (a) and the Wigner function (b) for
the even CS with {=2. We see that the quantum-interference
term is more visible in the Wigner function but not in the Q
function [x =Re(a) and y =Im(a)].
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Wigner function [35], and W(a,s=—1)={(alpla) /7

([(aT)ma"}Q:ﬁC(g,s) , (100  =Q(a) is the Q function [36].
98mA(—£%) £=0 One can convert the master equation (7) into a linear
where differential equation for the Q function (see, for instance,
. . Refs. [30,31,37] and references therein):
({@ahma",-_y=<(a"ahm),

@ ra,--0=4a 8t _ [,y [, 8, .3
((@hrma"y,_)=¢@"ma"y, at Y72 %8 T 3ot
({@hmamy,—e)=({@hma"y) . 3

) +y(A+1) T (Qa,t), (12)
These mean values can be evaluated from the quasiproba- dada

bility distributions W(a,s), which are defined as Fourier

transforms of characteristic functions which can be identified as a generalized Fokker-Planck

equation [31,32]. This equation for the Q function with

(11a) an initial condition

Wia,s)=—= [d% C(&,s)explag* —a*€)
w aM(a*)n

Q(a,0)=exp(—|al’) 3 172 tmin

mato (m'n! 0,

(13)

and
(t@hmany Y= [d2aa*"a"Wia,s) . (11b)
f h,,,,,,(O):L(nlﬁ\m) ,
The quasiprobability distribution W(a,s=1) is the m

Glauber-Sudarshan P function [34], W(a,s=0) is the can be solved exactly (see Appendix) to give the solution

e—\a|2 - . . e_w/z m+n
(a,t)=———~—~ a™a*"
¢ A(l—e™7+1 n§0m2=0 A(l—e "H)+1
]
S e (m+Dln+1)!
Xlgo R —e T mintir Pmtin+1(0)

XF(—m,—n,l+1;47(7 + 1)sinh®(y /2)t) , (14)
where F(x,y,z;h) is the hypergeometric function [38].
If we assume the field mode to be initially prepared in the superposition state (§ is real)
) =NVA|E) +e'®|—E)), NT1=2[1+cospexp(—2£2)], (15a)
then the Q function of the initial state is given by the relation
— —(a —E)? —la 2 —a?
Q(a,O)Z-':/—e Gle T e T T e e T Meos(@+26a,)] (15b)
and the matrix element 4, ,(0) by
— Neﬁgz +m n,i m,—i¢ n+m
hm’n(O)—mgn [1+(—1)e'?+(—1)"e "+ (—1) ]. (16)
In this case from Eq. (14) we find the explicit expression for the Q function at ¢ 20,
N a% (ar__e-yt/Z )2 (ar+e—yl/2§)2
Qla,t)=—————exp | — exp | — +exp | ——————
(7, +1) 7, +1 7, +1 7, +1
—yt a? 2¢ ~V1/2
+2ex [— R 2exp | — — a;+ , (17)
P =l e merra

where a, and a; denote the real and imaginary parts of a respectively, i.e., a=(a,,;). The parameter 7, is defined as

n,=n[l—exp(—yt)], (18)
which is, in fact, the number of photons transferred from the nonzero temperature heat bath to the quantum system.
Equation (17) at ¢ =0 gives a picture of the Q function exhibiting the “central” interference term [the term in the rhs of
Eq. (17) containing the cos function], which has its maximum at the origin of the phase space. This term arises as a
direct consequence of the quantum interference between coherent states |£) and | —¢). The coherent components of
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the superposition state under consideration are described as two Gaussian peaks around a, =*{. We should emphasize
here that these two peaks can be observed also when the field is initially prepared in the mixed state described by the
density operator

p=+UEI S+ =61 (—=¢lT. (19)

In this case the Q function at ¢ = 0 reads
[exp

2

and we see that it does not contain an interference term. From Eq. (17) it follows that the interference term in the Q
function contains a factor exp(—£2) which means that even for relatively small values of ¢ this interference term is
significantly suppressed. The amplitude of the Q function at the origin a=(0,0) (i.e., the amplitude of the interference
term) is much smaller than the amplitude at a=(=+¢,0) corresponding to the component states |£) and | —¢) [see Fig.
1(a) describing the Q function of the even CS with {=2]. Therefore the Q function is not very convenient for a pictorial
description of quantum-interference effects. As seen below the interference term in the corresponding Wigner function
is much more pronounced and therefore we will use this function to describe the influence of the thermal heat bath on
the quantum-interference effects.

(@,—e 7'7%)

7, +1

(a,+e 72

,+1

Q(a,t)=——1—exp — +exp

2m(7, +1) ,+1

e

IV. THE TIME EVOLUTION OF THE WIGNER FUNCTION

From the explicit expression for the Q function we can derive other quasiprobability distributions. Using the Fourier

transform Eq. (11) we can obtain from the Q function the characteristic function C(&,s=—1,t)=C'?(£,t) for the an-
tinormally ordered moments of the bosonic operators,
C'9(E t)=2Nexp[ — (7, + 1)|£]2]{cos(2e ~7*/2LE; ) +exp( —2L%)cosh(2Le ~7'/2E, +ig)} . 1)

The characteristic functions C(£,s) for various values of the parameter s are related as follows:
C(&,s=—1)=exp(—|£]2/2)C(£,5 =0)=exp(—|E|})C(&,5=1) , (22)

where C(§,s =0) and C(&,s =1) are the characteristic functions for the Wigner and the P functions, respectively. Once
the explicit expression for the symmetrically ordered characteristic function is known from Egs. (21) and (22) we can
find the Wigner function which we write as a sum of two terms,

2
Wia,t)= 3 Wila,t)+W,(a,t), 23)

i=1

where W;(a,t) corresponds to the interference term

AN 2 2 —yt —yt/2
Wila,t)= exp |— la] exp|—2|[1— ¢ &2 |cos Lgai , (24)
m(27,+1) 27, +1 27, +1 27, +1
and Wi)(a,t) separately describes the Wigner function IN

(up to the normalization constant) of the composition  W(&)a=(+£0)1=0= [142¢ %' +¢78] (26b)

states [{) (i=1) and |—¢) (i =2), whose sum is the m

Wigner function of the mixture state (19)

W 2 2a?
Wila,t)=——————exp | —
(27, +1) 27, +1
2a, Fe 1722
Xexp | —————— | . (25)
27, +1

The Wigner function (23) of the even CS at =0 is plot-
ted in Fig. 1(b). The interference term which is responsi-
ble for nonclassical effects is much more visible compared
with the Q function [see Fig. 1(a)].

We notice here that the values of the Wigner function
(23) for the initial moment ¢t=0 at a=(0,0) and
a=(x£,0) are

W(a,t)|a=(0,0)’,=0=i1r'/x[l+e_2§2]=£ , (26a)

3

which means that for large enough ¢ we can approximate
the Wigner function at @=(0,0) and a=(%¢£,0) as fol-
lows:

4N

W(a,t)la=(0,0)1=0=Wilat,t)| a=(0,0),: =0= - (27a)
and
Wia,t)la=(160,0=0= Wi, Dla=(1,000=0= N

(27b)

From above it follows that the total Wigner function lo-
cally around @=(0,0) and a=(=£(,0) at initial moments
of the evolution can be approximated by the functions
Wi(a,t) and Wil(a,t), respectively.

To understand properly the decay of the quantum
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coherences we evaluate the first derivative of the Wigner
function at t =0

S el o= S LW, 0)l, ot S W (a1,
ot t=0 = ot M ’ t=0 ot VARt t=0>

(28)

where

%W;p(a,m,:o

=2y Wa,t)|,—o{ —Fi +2a27 +27(a, FE)?
Ttla, TE)) 29)

and

d
EW,((Z,I)’,=O

=2y W la,t)|,—of —7+2l|al?m— (27 +1)E2
+[8a; +4nfa; Jtan(4fa;)} . (30)

At the origin of the phase space (i.e., for a,=a;=0), we
find

)
5W(a,t)|t=o,a=(o,0)

=4y Wif(a,0)|, =0 g=(0,0( — 7 +20E*+£?)
=2y Wila,t)|,—o,q=(0,0) T +£*+20E?) 31)

from which it follows that we can, for { large enough, ap-
proximate the Wigner function in the following way:

0 d
EYS Wi(a,1)l, =0,a=(0,00~ 3, Wia,t)l,=0,a=10,0

—ﬁﬁLN(ﬁ+g2+zﬁg2) NG5

The above expression describes the rapidity of the loss of
the quantum coherence. We can conclude from it that
for 7 =0 (zero-temperature heat bath) the rapidity of loss
of the coherence depends only on the value of ¥£?, that is
on the separation between the components of the super-
position state and the spontaneous-damping rate y. In
this case during the initial moments of the evolution the
peak of the interference term of the Wigner function [i.e.,
W,(a,t) at a=(0,0)] is decaying according to the rela-
tion

W,(a,l‘)|a=(o,o)2%CXp( —2y&)=wlt), (33)

which is in agreement with the results by Milburn and
Walls [21], Phoenix [26], and BuzZek and co-workers [1].
On the other hand, if the quantum superposition state is
decaying into a nonzero-temperature heat bath (7 >0),
then the evolution of the Wigner function at a=(0,0) for
small ¢ is governed by the relation:

W) o0y~ ﬁ;Tﬂexp[ Ay ey A+ 2y RN ]

=w(t)exp] —2yA(1+2£H)], (34)
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which means that at nonzero temperature the quantum
coherence is lost much faster than at zero temperature.
How much faster depends on the actual values of 7 and ¢.
For large values of 7 the coherence is lost almost instan-
taneously. Qualitatively one can understand this result as
follows: The decay rate of the quantum coherence at
zero temperature during the initial moments of the time
evolution is equal to ¥£%. On the other hand, the system
relaxation rate at nonzero temperature, due to the stimu-
lated emission, equals to y'=y (7 +1). Combining these
two facts, one can expect that the decay rate of the quan-
tum coherence at nonzero temperature should be
y'¢?=(7+1)y£? which is in qualitative agreement with
Eq. (34). The rapid decay of the interference term of the
Wigner function can be seen in Fig. 2. From this picture
we see that the even CS is transformed under the
influence of the thermal heat bath into the mixed state.
We will turn our attention to this point later when we an-
alyze the oscillations of the photon-number distribution
of the even CS decaying into the thermal reservoir.

It is interesting to note that the time derivative of the
Wigner function at a=(=££,0) for small ¢ (during the first
moments of the evolution) can be approximated as

9

E W(ayt )[1 =0,a=(%¢,0)

Wila,t)

t =0;a=(*¢,0) ™

(b)

FIG. 2. The Wigner function at y¢=0.1 of the field mode in-
itially prepared in the even CS with {=2. The field mode in-
teracts (a) with a zero-temperature heat bath (7 =0) and (b) with
a nonzero-temperature heat bath (i=1). We see that the in-
terference term in the latter case (7#0) is much more
suppressed than the former case of zero temperature (7 =0).
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For 7 >0 the maximum amplitude of the part of the
Wigner function corresponding to the component state
|£) (| —&)) is slowly decreasing and as seen from the ex-
pression, Eq. (25), simultaneously the width of this part
of the Wigner function becomes broader. This is due to
the interaction with thermal photons. If 7#=0 then the
width of the peaks of the Wigner function corresponding
to |+£) is constant. The maximum amplitude of
W}‘})(a,t) is constant as well. The coherent state remains
such under dissipation, with its mean value decaying but
its variance being unchanged. In a heat bath the initial
coherent-state variances will increase to reflect the
greater fluctuations of the thermal state to which it must
tend in the equilibrium, i.e., in the stationary limit,
t— oo, the field mode interacting with the thermal heat
bath will reach the thermal state described by the Wigner
function

W(a,t)|,aw——-—2——exp l

- _2lal®
m(1+27)

) (36)
1+2n

which for 7 =0 corresponds to the Wigner function of
the vacuum state.

4245

V. OSCILLATIONS OF THE PHOTON-NUMBER
DISTRIBUTION

One of the most transparent nonclassical effects emerg-
ing from the quantum-interference between two coherent
states is the presence of oscillations in the photon-number
distribution [1,2]. The photon-number distribution /(/)
is defined as

AD=1plT) (37)

and can be evaluated from the Wigner function W(a) us-
ing the relation

sh=7[da W@)W(a), (38)

where W,(a) is the Wigner function of the number state
1) [33],

I
Wia)= exp(—2|a|?)L,(4]a]?) (39)

2(—1)
T
and .L,;(x) is the Laguerre polynomial of order / [38].
Using the explicit expression for the Wigner function
(23) of the superposition state (15a), we find the following
expression for the photon-number distribution:

1
= 2Me L 1 n, ' ger 1177
’ A1 S0 =R [ 1+7, | | (7,+1)?
e 2 (= e " |,
X lex 1— +(—=1)""Vcospexp | — |1— . (40)
| e - |

From this expression we can easily derive the photon-
number distribution of the initial superposition state at
t=0. If we consider the field initially prepared in the
even CS (i.e., =0), then

Ig[Zl
n .’

2exp(— &%)
1+exp(—2[£]%)

Lfl,t=0)= ifl =2m ,

(41)
,(l,t=0)=0 ifl=2m+1,

which means that 4(/,t =0) exhibits significant oscilla-
tions [see Fig. 3(a)]. These oscillations are very similar to
those which are typical for the squeezed vacuum [2] and
they can serve as a good indication that the state under
consideration is nonclassical. The photon-number distri-
bution of the statistical mixture (19) is Poissonian, i.e.,
Ll ty=exp(—|£|»)| €)% /1N, without oscillations.

As seen from Eq. (40) the photon-number distribution
/,(1,t) can be expressed in the form

2
ALO=S L)+ (Le) (42)
i=1
where

A= [ da W)W (a) (432)

and

D=7 [da W)W a) . (43b)
The term f,;(I), which is related to the quantum-
interference part of the Wigner function and can be nega-
tive, is responsible for the oscillatory behavior of the
photon-number distribution. As we have shown earlier,
the quantum-interference part of the Wigner function,
i.e.,, Wi(a,t), is decaying much faster than the functions
W(a,t). This results in the fact that the oscillations of
the photon-number distribution are very sensitive to the
influence of the heat bath.

In Fig. 3(b) we plot the photon-number distribution
,2(1,t) of the initial even CS (§=2) at t=0.01/y for two
values of 7. From this picture we see that even with one
thermal photon (dotted line) the oscillations are smeared
out in a short time and the photon-number distribution
rapidly converges to that for the statistical mixture.
When an ideal heat bath at zero temperature is con-
sidered (solid line) the oscillations can be observed for a
longer time. We will turn to this point later in Sec. VII.

VI. QUADRATURE SQUEEZING

Another nonclassical effect which has its origin in the
quantum interference between coherent states [1-3] is
quadrature squeezing [4]. In order to study quadrature
squeezing of a single-mode field we introduce two quadra-
ture operators @; and @, corresponding to the creation
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and annihilation operators a" and a of the field mode un-
der consideration

_a+a' _a—a'

a =
R R Y

(44)
and
[a,,a,]=2iC, C=} . (45)

One of the consequences of the commutation relation (45)
is the uncertainty relation for the variances of the quad-
rature operators,

((Ag)?){(A@,)*) =C*=L ,

6

(46)

where the variance of the operator @; is defined as
((A@;)*)=(a?)—(a,;)* and is related to the normally
ordered variance (:(Ag;)%) as follows:

((A,)?)=C+(:(Aa,)%:) . @7
40 ] f\
¥ |
] /\ (a)
A / \x
/: ] ;}J \\‘ \
Fowi || L
= 1 /) / A
i | \ { \ /I \\
] . / \ /o
1 \ / NV
7 :'F \1 \ / A
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photon number
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FIG. 3. (a) The photon-number distribution /(/,0) for the ini-
tial even CS with £=2 (a). We see typical oscillations emerging
from the quantum-interference between component states of the
even CS. (b) The photon-number distribution 4(/,¢) at y¢=0.01
of the field mode initially prepared in the even CS. The field
mode interacts with a zero-temperature heat bath (solid line)
and with a nonzero-temperature heat bath of 7 =1 (dotted line).
We see that the oscillations of the PND are much more pro-
nounced in the case of the zero-temperature heat bath.
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The state for which the equality in Eq. (46) holds is
called the minimum uncertainty state (MUS). For in-
stance, the vacuum and the coherent states of light are
examples of the MUS. For these states the variances in
both quadratures are equal to +. The state is called
squeezed if the variance of the quadrature operator is less
than the vacuum fluctuations (i.e., less than }). Alterna-
tively, one can say that the state is squeezed if the nor-
mally ordered variance is less than zero. It is not neces-
sary for the squeezed state to be a MUS.

The variances of the quadrature operators can be writ-
ten as

((Aa)*y=1+1[(a'a)+Re(a?) —2(Re(a))],

i3
(48a)

((A@,?)=1+1[(a%a)—Re(a?)—2(Im(a))],
(48b)

from which it follows that squeezing can appear only if
the expectation values (@) and/or (@”) are nonzero (of
course this is not a sufficient condition for observation of
squeezing). The nonzero values of (@) and/or (@) are
associated with the off-diagonal terms of the density ma-
trix in the number-state basis.

To measure the degree of quadrature squeezing we can
introduce two squeezing parameters S;2,

((aa@,?*)—cC
(2) —
Y c

al~

(:(A@,)*)

=2[(a'a) +Re(a?) —2(Re(a))?]

—

(49a)
and
2y __
S = ((Az,) )—C
2 C

1
=—C—<:(A62)2:)
2[

Il

(a'a)—Re(a?)—2(Im(a))?] . (49b)

The squeezing condition now reads S,*’ <0, and the max-
imum squeezing corresponds to S;2’= —1 or, equivalent-
ly (:(A@;)%:)=—1.

Using the relation (11b) we can evaluate the mean
values of the field operators from quasiprobability distri-
butions. In particular, if the field is initially prepared in
the superposition state (15a) then the mean value of the
number operator at time ¢ has the form

(R)=2WN{[1+7,+E%xp(—71)]

+e %' [1+47,—Eexp(—yt)]cosp} —1  (50)
t

from which we can find the mean photon number of the
superposition state (15a) at time t =0

(h)=8 1—cospe -2

3 (51)
1+ cosge —%
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On the other hand in the stationary limit z — o0, when
the field is in the equilibrium with the thermal heat bath,
we find that

(A, =H . (52)

Analogously, with the use of Eq. (11b) we calculate the
time development of the squeeze parameters S;?(¢) when
the field is initially in the superposition of coherent states
(15a)

SP()=4M(1+7,)(1+e % ’cosp)+2£2e 7] -2,
(53a)
SP(=4NM(1+7,)(1+e % ’cosp)

—2e 7% ~2‘Jﬁzcos<p] —-2. (53b)
From the above relations we see that at t =0 the even CS

(¢=0) is quantum optically squeezed because

2,282
5‘22’(:)5,:0:—&%@. (54)
l14+e %

The maximum squeezing can be obtained for {~0.8 at
the initial time =0 [39]. As shown in Refs. [1] if the
field mode which is initially prepared in the even CS is
coupled to a zero-temperature heat bath then during the
time evolution the degree of squeezing becomes smaller
[see Eq. (53b) for =0 and ¢=0]. Nevertheless, the
squeezing is much more robust with respect to damping
than the oscillations of the photon-number distribution
or the interference term of the Wigner function. For in-
stance, for y¢=0.3 one can observe a considerable degree
of quadrature squeezing, while the Wigner function for
this value of yt is almost identical to the Wigner function
of the statistical mixture. The rate of decay of quantum
coherences and the oscillations of the photon-number dis-
tribution is highly sensitive to even a quite small dissipa-
tive coupling because the interference part of the Wigner
function depends on all moments of the field variables,

and higher moments decay more rapidly than lower mo-
J

I
ol
3

yt
FIG. 4. The time evolution of the squeezing parameter S’ of
the field mode initially prepared in the even CS ({=0.8). The
value of £ has been chosen to optimize the squeezing at the ini-
tial time t=0. Line (b) corresponds to the interaction with a
zero-temperature heat bath (7=0) while line (a) describes the
time evolution of squeezing when the field mode is coupled to a

nonzero-temperature heat bath (7 =1).

ments. Quantities such as quadrature squeezing, on the
other hand, are more robust against dissipation because
they involve only lower moments. The difference be-
tween the decay rates of the quantum coherence and the
degree of squeezing is also seen in the case of the
nonzero-temperature heat bath. Generally, the higher
the temperature of the heat bath the more the nonclassi-
cal effects will be deteriorated. Nevertheless, the rate of
deterioration is not equal for different nonclassical effects.

Finally we notice that at zero temperature the squeez-
ing factor S3%)(¢) is less than zero for any 0=t < 0,
which means that the field mode is in a nonclassical state
during the whole time evolution. This is reflected by the
fact that the Glauber-Sudarshan P function defined by
Eq. (11) does not exist for this case. From the integral ex-
pression for the P function

P(a,t)=%Nfd2§exp(—ﬁtlglz)exp(—a§*+a*§){cos(2§e'7’/2§,-)+exp(—2§2)cosh(2§e_7’/2§,+iq))] , (55)
™

we see that this integral diverges for 7 =0. On the other hand, for 7 >0 and ¢ > O the integral (55) is a simple Gaussian

one which can be evaluated as
2

—ﬁiiav

Pla,1)=2e
T,

exp

n;

texp

+2exp

This P function can have negative values for some values
of a which indicates that the field is still in a nonclassical
state, which explains why for some values of the interac-
tion time, even for 7 >0, the quadrature squeezing can
still be observed [i.e., S, <0 as shown in Fig. 4(a)]. Nev-
ertheless, due to the interaction with the nonzero-
temperature heat bath, the P function eventually becomes

e ]?2

_ l_e‘W
n

—yt/2 —yt/2
exp 2§£_—a, +exp —zgg——a,
n, n,
—vyt/2
’é‘z cos L—ai ] (56)
t

[
positive as well as do both squeezing parameters S;?,
which means that the field mode is in a classical state. In
the stationary limit S{* =S}» =27 and the P function
takes the form

_lal?

n

’ (57)

Pla,t)l, .= —exp
mn
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corresponding to a thermal state.

We conclude that while the superposition state (15a) is
interacting with the zero-temperature heat bath the field
state stays as a nonclassical for any £ 20. On the other
hand, if the temperature of the heat bath is larger than
zero, then the field mode will be transformed from the
nonclassical state to the classical one at some finite time ¢,
for which P(a,t)>0.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have studied the influence of a
thermal heat bath on the nonclassical properties of the
quantum superposition states. We have shown that at
nonzero temperature the loss of coherences is much fas-
ter than at zero temperature. The decay rate depends on
the separation between the component states and on the
temperature of the heat bath [see Eq. (34)]. Moreover, we
have shown that the interaction with nonzero-
temperature heat bath leads to a transformation of a non-
classical state to a classical state.

The sensitivity of the quantum coherence to the pres-
ence of the nonzero-temperature heat bath can lead to
some difficulties in the preparation of Schrodinger-cat
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FIG. 5. The photon-number distribution 4(/,#) at yt=0.01
of the field mode initially prepared in the even CS ({=5). The
field mode interacts with a zero-temperature heat bath (a) and
with a nonzero-temperature heat bath with 7=1 (b). We see
that the oscillations of the PND are much more visible when
the field mode interacts with the zero-temperature heat bath.
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states in microwave cavities, which operate at low, but
not zero temperature. In particular, if we adopt the
values of the decay rate y, the amplitude &, and the time
of measurement ¢ as described in a recent paper by
Haroche and co-workers [19] (i.e., y=10s""!, {=5, and
t=1072s) and if we suppose 7 =1 (which is actually sub-
stantially higher than the number of thermal photons in
the experiment proposed by Haroche and co-workers
[19]), we find that the quantum-interference effects can be
significantly suppressed. If we compare the photon-
number distribution in the case of the zero-temperature
heat bath [see Fig. 5(a)] and in the case of the nonzero-
temperature heat bath [Fig. 5(b)] we see that the oscilla-
tions in the latter are much smaller. To measure the
reduction of the amplitude of the oscillations more pre-
cisely, we introduce a new parameter (visibility) ¥, which
we define as

(nmax)_ ( max_l)
V:/l ﬁ(n/l n) , (58)

where n,, is the photon number for which /(n) reaches
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FIG. 6. The visibility of the field mode initially prepared in
the even CS is plotted as a function of 7. In (a) we plot the visi-
bility at ¢ =0.01 and {=3 (line 1); {=5 (line 2), and {=7 (line
3). We can easily see the decrease of the visibility with increas-
ing of £&. In (b) we plot the visibility for a fixed value of =5
and various values of yz. In particular, line 1 corresponds to
yt=0.005, line 2 is for y¢=0.01, and line 3 is for yt=0.03.
The suppression of the visibility with increasing of the interac-
tion (measurement) time is obvious.
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its maximum. Obviously in the case of the even CS at
t =0 the visibility is equal to unity and during the time
evolution it becomes less than unity. In Fig. 6(a) we plot
the visibility as a function of 7 at y¢t=0.01 for various
values of {. From this picture it follows that the higher
the 7 or &, the smaller the visibility is. In particular, for
£=7 the visibility for 7 =0 is approximately five times
larger than for 7 =1. In Fig. 6(b) we plot the visibility as
a function of 7 at the fixed value of { (equal to 5) and for
various values of yt. It is seen that for y¢=0.03 and
n=1 the visibility is almost negligible, while for
yt=0.005 and 7 =1 the visibility is approximately equal
to 0.7.

From above we can conclude that in order to observe
nonclassical effects such as the oscillations of the
photon-number distribution, one has either to cool the
microwave cavity well below 1 K or to operate the cavity
at high frequencies, and simultaneously to perform the
measurements in a shorter time than y¢ ~0.01.
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APPENDIX

We use the method proposed by Pefinova and Luk$
[37] (see also Ref. [31]) to solve the Fokker-Planck equa-

tion (12) and introduce a new function
R(a,t)=exp(|a|})Q(a,t), (A1)

and rewrite the Fokker-Planck equation (12) in the form

Py
+Y(ﬁ+1)aa o +yalal’=1) [R(a,1) .
(A2)
Substituting
|
R(a,t)= i" ia"’a*"exp ﬁ'lalz_;.lt (E;(ﬂ
m=0n=0 1+m, 2 1+7,
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R(a,t)= 3 I a™a*"expllal’g(t)]h,,,(t)

m=0n=0

(A3)

into Eq. (A2) we find two differential equations for the
functions g (¢) and A,,,, (¢)

ig‘%=?’(Tz+l)gz(t)—y(2ﬁ+l)g(t)+yr“z, (A4)

h,,,(t)

2t Omn T8 (0]hy, (1)

+Epnbm+1,n+1(1) (A5)

where

em,.=—12’—(m +n)—yA(m+n+1),

Yo =y(A+1)m+n+1),

Epm=vAE+Dm+1)n+1).
The solution of Eq. (A4) is

g(1)= I:I,Tr ’ (A6)

where 7, is defined in Eq. (18). Using the substitution
h,, ()=exp [emt+r,,,,, Jgtear ]r,,,,,m N
we simplify Eq. (A5) in the following way:

ar,,(t)
dt

I (0 N ) I (A8)

where

Io=exp [~y(1+2me+2ra+D flgdr |, (A9

with
[1ende=—g() . " (A10)
0 yr‘i
The general solution of Eq. (A8) is
I
w1l |atl (m+Dn+I)
P (1)= ; n i g(t)] m!n!
1=0
><hm +Ln +l(0) ’ (A1)

where h,, ., ,4,(0) is given by the initial condition. With
the use of Egs. (A6), (A7), and (A11) we find for the func-
tion R (a,?) the expression

hm +1n +I(0) .

[ e [ m+in+in
m!n!

(A12)

Substituting this result into Eq. (A1) and using the hypergeometric function F(x,y,z;h), we write the Q function for the

general initial state as
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Q(a,t) il S 3 . e 12 e
a,t)=————— amg*n | ——&
ﬁ(l_eyt)+1 n§0m2=0 ﬁ(l_e—yt)+l
!
s [1— e " (m +Dl(n +1)!
2| T R e minit main+1(0)

XF(—m,—n,l+1;47(7+ 1)sinh?(y /2)t) .

(A13)
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