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The near-zero threshold and the very high gain of the active optical microlaser are investigated both
theoretically and experimentally. These properties are found to be determined by the synergy of several
quantum-statistical processes taking place in the condition of extreme field confinement provided by the
peculiar Casimir-type topology of the optical microcavity. The determination of the microcavity mode
structure leads to a detailed study of the process of merging of the spontaneous emission with stimulated
emission (StE) and of the consequent anomalous onset of the collective atomic behavior at very low exci-
tation levels. An excitation threshold of about 50 pJ has been determined experimentally with a molecu-
lar oxazine microlaser excited by a femtosecond-pulse source. The relevance within the overall StE dy-
namics of the processes of mode-competition fluorescence loss, interatom transverse Bose correlations,
and periodic excitation are investigated both theoretically and experimentally. A discussion of the
overall process in terms of a second-order phase transition in a nonequilibrium statistical problem is
given. The extension of the microcavity dynamics to quantum-dynamical systems such as the “micro-
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scopic” parametric oscillator and to Raman and Compton scattering is also considered.

PACS number(s): 42.50.Fx, 03.65.—w, 12.20.Fv

I. INTRODUCTION

High gain and a near-zero-threshold have been recog-
nized to be distinctive properties of the microscopic laser
(microlaser) since its original proposal and realization [1].
This peculiar phenomenology, of obvious interest for
modern technology, is in fact rooted in the fundamental
quantum dynamics of the collective atom-radiation cou-
pling process. What looks interesting in this respect is
that the overall striking behavior of the device results
from a synergy of several different physical processes that
are independently affected in a favorable manner by the
microlaser geometry. First, the spontaneous emission
(SpE) of a single atom is strongly affected by the extreme
vacuum confinement determined by the Casimir-type
one-dimensional topology of the Fabry-Pérot (FP) micro-
scopic cavity (microcavity) [2-4]. There in fact micro-
cavity spacings d =nd, d =(A/2) with n a whole number
(WN) determine the ‘“‘enhancement” of the coupling
strength of a single atom with the field, a well-known
manifestation of the increasing field density of states for
decreasing d. Second, the decrease of d implies at the
same time a decrease of the number » of longitudinal cav-
ity modes available for atomic deexcitation [1,4]. If N is
the number of excited atoms present in the cavity, a de-
crease of d implies that an increasingly larger number of
atoms N, =(N /n) will eventually cooperate by the stimu-
lated emission (StE) taking place on each mode. This in
turn leads to a most important anomalous quantum-
dynamical condition, i.e., for large N, the *“vacuum
state” is practically nonexistent as it is “occupied” very
quickly by the first SpE photon emitted by an atom
within the coherence time. Then the Bose-Einstein
inter-atom correlations determine a collective behavior
with a sudden onset of stimulated emission with exponen-
tial gain. From the perspective of statistical mechanics,
this anomalous merging of SpE into StE may be under-
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stood as a consequence of the lowering of the relevant
dissipation process provided by fluorescence loss and
mode competition. This is partially due to a reduction of
the dimensionality of the mode-statistical ensemble to-
ward a single degree-of-freedom condition which implies
the elimination of the statistical-mode ‘“‘reservoir” and a
quick establishment of a “collective” state in the medi-
um. By reversing the argument, the usual macroscopic
laser condition is reached by increasing d > d, i.e., when
additional modes become available for atomic deexcita-
tion. There the original orderly system at d =d becomes
a “chaotic” system with rapidly increasing complexity.
This leads to the appearance of mode competition and
fluorescence loss with reduction of gain and increase of
the threshold pumping level. The dynamics of the com-
plex laser system is generally investigated by the methods
of nonequilibrium statistical mechanics, i.e., by the
Fokker-Planck method [5] and by the second-order
phase-transition theory [6]. In the context of the latter
theory the behavior of the microlaser may be understood
by analogy with the phenomenologies of ferromagnetism
and superconductivity. In our cooperative system the
“order” process is overwhelming the ‘““disorder” provided
by cavity losses so much that once one photon is stored in
the cavity, any additional emission process provides the
symmetry-breaking field to establish a phase transition to
the state on nonzero average field (E), i.e., to the
Glauber’s state |a@). In nonequilibrium laser phase-
transition theory the resulting virtual cancellation in the
disorder phase leads to a zero value of the critical “reser-
voir variable,” which is the threshold population inver-
sion” o,=N,=~0. Then by analogy with equilibrium
problems, the microlaser may be thought of as behaving
as an extremely high-critical-temperature (7T,) ferromag-
net or superconductor [6]. In the present work we do not
pursue any further the phase-transition analogy as the
“single-degree-of-freedom” condition results quite natu-
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rally from the QED analysis of the interaction of the
atoms with one or few cavity modes. The work is organ-
ized as follows. In Sec. II the structure of the modes is
investigated following closely the corresponding theory
given in Ref. [3]. This leads to the field quantization in
Sec. III and to the derivation in Sec. IV of the emission
rates for SpE and StE in a collective (i.e., multiatom) re-
gime. There the effect of different excitation distributions
is investigated. A steady-state single-mode laser theory is
given in Sec. V showing the dynamical origin of the
thresholdless and high-gain behavior of the microlaser.
These findings are substantiated by the experimental re-
sults reported in Sec. VI, while in Sec. VII the interplay
of the thresholdless dynamics with the “laser phase-
matching” process is shown. The application of the same
process to SpE allows a direct determination of the field
energy distribution in an optical cavity.

II. TRAVELING-WAVE MODES
OF A FABRY-PEROT CAVITY

In order to calculate the atomic emission rates in a
Fabry-Pérot cavity we first determine the appropriate
spatial modes for quantization of the electromagnetic
field [3]. Refer to Fig. 1: The z axis is taken normal to
the mirrors with its origin in the middle of the cavity.
The mirrors are assumed to have infinite extents in the xy
plane. As it is represented in the Fig. 1, multiple
reflections couple together waves of wave vectors

k, =k (sin® cos® ,sinO sin® ,cosO) ,
k_=k(sin© cos® ,sinO sin® , —cosO)

(2.1

for (0=© = 1m). Four distinct spatial modes can be con-

structed from contributions with the same two wave vec-
|

tors. For each set of polar angles © and ®, there are two
transverse polarization directions whose unit vectors are
chosen to be

ek,,1)=ek_,1)=(sin® , —cos® ,0), (2.2)

ek ,2)=(cosO cos® ,cosOsin® , —sinO) ,
(2.3)
e(k_,2)=(cosO cos® ,cosO sind ,sinO) ,

where the k, and k_ designations indicate the polariza-
tions of the respective wave-vector contributions. It is
convenient to indicate the polarizations in (2.2) and (2.3)
by an index j=1,2. The complex reflection and
transmission coefficients r,;,¢,; and r,;,t,; of the cavity
mirrors are generally different for the two polarizations
and depend on the polar angle © [7]. They are assumed
to have the following unitary lossless properties for all
values of ©:

l’lez'*'ltxj|2=lrzj|2+|t2j|2=1 , (2.4)
rijty =ittty =0, 2.5)
where 75, are complex conjugates (c.c.’s) of 7;;,¢;;. Op-

tical propagation within the mirrors is not important for
the present study, and we accordingly ignore their inter-
nal mode structure. For each pair of coupled wave vec-
tors k., k_ designated by k for brevity, and for each
transverse polarization there are two distinct mode func-
tions corresponding to incoming plane waves of unit am-
plitude that are incident, respectively, from the negative
and positive z sides of the cavity. The forms of these
functions are obtained, as usual in Fabry-Pérot theory, by
summing the geometric series resulting from the multiple
reflections in the mirrors [7,8]. The two kinds of spatial
dependence are thus given as follows:

Mode function Uy ;(r)

exp(ik, 'r)
tjexplik, -r)/D;
Ty;explik 1)

Ry ;exp(ik_-r)

tljrzjexp(ik_-r-i-ikd cose)/Dj
0

—w<Z< —%d
—3id<Z<+1d (2.6)
+id<Z<+w

Mode function Uj;(r)

Tyjexp(ik_-r) 0
tyjexplik _-r)/D;

exp(ik_-r) Ry explik, 1)

where the expressions in each row of (2.6) and (2.7)
represent, as shown in Fig. 1, the plane-wave mode func-
tions propagating in the space portions indicated at the
rhs and excited for the sets Uy; and Uy; by the waves

exp(ik,-r) and exp(ik_-r), respectively. In (2.6) and
(2.7) the various quantities are defined as
D;=[1—ry;r,;exp(2ikd cos©)] , (2.8)

Ry;=[r,jexp(—ikd cosO)

+r,;(t};—ri))explikd cos©)]/D

i, 29)

ty;rjexpliky -r+ikd cos©)/D;

—wo<Z<—1d
—1d<Z<+1d 2.7
+id<Z<+w

r
Ty;=Ty;=tyty;/D; , (2.10)
Ry;=[r,;exp(—ikd cos©)

+ry;(23;—r3;)explikd cos©)]/D; . (2.11)

The last three quantities represent the reflection and
transmission coefficients of the cavity as a whole. With
the use of (2.4) and (2.5) they satisfy

Ry |=IR}, !,
|Rkj|2+|Tkj|2=lR;(j|2+|Ti(j'2=1 »

(2.12)
(2.13)
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FIG. 1. Geometry of the Fabry-Pérot microcavity showing
the two kinds of modes and the geometrical orientation of the
emitting dipole u. Mirrors labeled by 1,2 in the text are
represented, respectively, at the left and right of the figure.

Ry Ty +R,;Ty;=0. (2.14)
These properties ensure the normalization and ortho-
gonality of the two modes that have the same wave vec-
tors and polarizations, and the general relations are

[drek, jek,j ) U DU (1)=0, (2.15)
[ dre(k, j)-e(K'j ) U (0) U, (x)
=(27)%8,;8(k—k')  (2.16)

together with the identical normalization integral for the
primed mode function (2.7). The modes (2.6) and (2.7)
form a complete set of functions for all of space, includ-
ing the interior of the cavity and the exterior regions on
either side. They allow calculations to be made of the
SpE and StE rates and radiated-field operators for atoms
that are excited in cavities whose mirrors both transmit
nonzero fractions of the emitted intensity. In the limiting
case of a perfectly reflecting closed cavity, the traveling-
wave mode functions used here reproduce results ordi-
narily obtained with standing-wave modes, while in the
opposite extreme of an absent cavity, the mode functions
(2.6) and (2.7) taken together produce the usual complete
set of plane waves in infinite free space. In intermediate
conditions the modes form a convenient basis for general
calculations, and they are free of the potential limitations
inherent in modes restricted to exterior regions of finite
extent or to only one side of the cavity. Several
mathematical expressions encountered in the present and
in further sections can be simplified in cases of physical
relevance for the problem at hand. A typical
simplification relates to the high-Q and symmetric cavity
for which r\;=r,;=r;=—|r;| and 1,;=1,; =1, =ilt;|. In
this case and for the purpose of easing the integrations in-

volved in the evaluation of the cross section considered
later, also the expression of the resonant Airy function
IDJ-!*2 can be simplified substantially. In fact, owing to
(2.8), the Airy function Y can be written as

Y=1/|D;*=[(1—|r;|*)*+4]|r;|*sinw] "
i [2lr|(w —1m) P+ [1= |, 212}
(2.17)
~{m/[2kod|r;|(1=1[r;|)]}
x |18(0)+ [f_, 8(C — (17 /kyd)) ]
=1
=[2nlr;[(1—]r;1H]
X [18(C)+ S 8(C—1/n) |,
1=1
C=cos® , n=koyd/m=d/d . (2.18)

Equation (2.18) is written in terms of the two non-
negative parameters n and /. Both parameters are taken
thereafter as whole numbers and represent the microcavi-
ty order n =(2d /A) =1 and the mode order 0<! <n, re-
spectively [2]. In particular, note that this assumption
taken for n expresses, within the stated approximations, a
cavity dimension d corresponding to the well-known con-
dition of enhancement of all atom-field interaction pro-
cesses, including spontaneous and stimulated emission
[1,2,3,9]. In the present work only that dynamical condi-
tion and the related values of n and d are taken into con-
sideration. The expressions (2.17) and (2.18) are valid for
a microcavity having a large FP finesse f [7]

f=[nmlrl/(1=]r]*)]>1. (2.19)

III. FIELD QUANTIZATION

The electromagnetic field is quantized by the introduc-
tion of mode creation and destruction operators. The
operators for the modes with spatial functlons U,,(r) and
Uy,(r) are denoted akj, @y; and 6kj, ﬁkj, respectively,
where j =1,2 indicates the choice of mode polarization
(2.2) or (2.3). With k taken to be a continuous variable,
the operators satisfy the commutation relations,
a0 1=8,8(k—k'),

+
[akj’ak’j’ 1= [a;q’

[akpa

, (3.1)
1= akj’akj] 0.

The electromagnetic field quantization now proceeds in
the usual way, and we need quote only the main results
[9]. The Heisenberg electric-field operator is convenient-
ly separated into two parts

A

E(r,)=E"(r,0)+E “(r,1) , (3.2)

where



I&

Et(r,n=i [ dk 3 (fike /167°€,)! %(k, )
j

X[Uyj(ray;+Uy(ray;]
Xexp(—ickt) (3.3)

and ﬁ_(r,t) is given by the Hermitian conjugate (H.c.)
expressions. In writing out the field operators explicitly,
the polarization vectors, given by (2.2) and (2.3), are those
associated with the wave vectors k_ or k., appropriate
to the corresponding terms in the mode functions, given
by (2.6) and (2.7). Because of the way in which wave-
vector space is divided into two half spaces by the cavity,
the three-dimensional integral in (3.3) is

J

Bl=i [ dk'S (#ick /16m¢,)!%exp( —ickt)/D;
k . /
J
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Jak=["dk [""de [Tdoksino. (4

The normal-ordered part of the free-field Hamiltonian is

A°= [ dxdick 3 (@}, +atay), j=12, (3.5
J

and the Hamiltonian for interaction of the field with an
atomic electric-dipole transition of matrix element u lo-
cated at position r,, inside the cavity is H/= >k A i A f
is the contribution due to the interaction of the dipole
with any single-cavity k mode. In that case only the ex-
pressions of the quantum fields defined in that mode are
to be taken into consideration

X{ay;le(k, )t jexplik 1o +e(k_,j)t,;ryexplik _-1o+ikd cosO)]

+a,;[elk_,j)t,explik_ 1)+ €(k,,j)tyr explik , -1o+ikd cos®)]}-p+ H.c. , (3.6)

where (2.6) and (2.7) have been used and the integration is carried out over the angular extent of the cavity k mode.

IV. EMISSION RATES: SPONTANEOUS EMISSION

The spontaneous emission (SpE) rate is calculated for the decay of an atom in the vacuum field of the cavity from an
excited state of energy fick, to the atomic ground state. Assume that Markov approximation holds, and the SpE rate
can be obtained by the a?plication of Fermi’s golden rule. We use the commutation properties (3.1) with the total in-

teraction Hamiltonian A’ and the result

(ky —k_)ry=2kz cosO

4.1)

z being the relevant coordinate of the atom. The SpE rate for an atomic assembly belonging to a layer parallel to mir-

rors, with coordinate z and thickness dz, is

I'(z)= f dk 3 (k /8m€i)(|{ €k, )ty ;+e(k_,j)t,;ryexplik (d —2z)cosO ]} p|?
j

+(€e(k_, )ty + ek, j)tyr i explik (d +22)cosO 1} -p|2)8(k —ko)/|D; | . 4.2)

It is convenient to calculate separately the contributions to the SpE rate from the components of the transition dipole
moment u parallel and perpendicular to the cavity mirrors. For the parallel contribution, we assume with no loss of
generality that u is parallel to the x axis, so that (2.2) and (2.3) give

ek, 1) p=ek_,1)p=psind® ,
e€ky,2)u=e(k_,2)-p=pcosOcosd .

(4.3)

The k and @ integrations, as defined in (3.4), can now be performed, and with the © integral simplified by a change of

variable to C =cosO, the emission rate is

FI|(Z)=(3FO/8)foldC{[(l—lrlllz)l1+r2|exp(2iw_)|2+(1—|r21]2)11+r“exp(2iw+)|2]ID1|_2

+[(1=rp D1+ rpexp(2iw _)|*+(1—|ry )1+ r,expiw, )12)|C/D, |2}, (4.4)

where

To=k3u?/(3me,fi)=(T,) !

(4.5)

is the usual free-space SpE rate [9], k is replaced by k, in the expression (2.8) for D, (2.4) has been used to express the
emission rate entirely in terms of the ©-dependent mirror reflectivities, and

w4 Eko(%d +Z)C , W_ Eko(%d —z)C s
w=kydC, C=cosO .

(4.6

The SpE rate for a u perpendicular to the mirrors or parallel to the z axis is calculated in a similar fashion. The polar-
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izations (2.2) and (2.3) now give,
e€ky,1)u=ek_,1)u=0,
eky,2)u=—elk_,2)-u=—pusin®
and the emission rate (4.2) becomes,

T (2)=(3T,/4) [ dC(1—C¥)|1—rpryexp(2iw)]| 2
0 2

X[(1=]r 1)1 —rpexp(2iw _ )|+

1—|ry D1 —rexpiw, )|?)
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4.7)

(4.8)

after partial integration as before. The above expressions simplify in various special cases, as shown in Ref. [3]. the

condition of symmetrical cavity expressed by

PSS = —I"j| and tlj:t2j=tj=iltjl

4.9)

should be worked out in some detail as it represents our experimental condition. By the use of (4.9) the integrands in
(4.4) and (4.8) can be put in forms more convenient for computation, as

T,(z)=(3T,/4) fo‘ dC[F,(C)+C*F,(C)]
and
Fl(z)=(3l“0/2)foldC(l—Cz)G,_(C)

where

(4.10)

(4.11)

F (O)=[(1—r D*+2]r [(sin*w _ +sin®w )]/[1—|r, > +4(]r,| 2= 1) sin%w] ,

GL(O)=[(1—|r,[)*+2|r,|(cos’w _ +cos’w )] /[1—]|ry 2 +4(|r,| 72—1) " sin?w] .

F,(C) is obtained by substituting r, by r, in the expression of F,(C). Figure 2 shows the SpE rates for a dipole in the
condition of extreme confinement d =d. These expressions can be combined to give the SpE rate for a transition whose

dipole moment has an isotropic spatial distribution as

[(z)=[2T(2)+T(2)]/3

=17, f0‘ dC(F,(C)+[1—r,2+4(|r,| 2= 1) 'sin2w ]~

X {(1+|ry)*=2]r, |[sin*w _ +sin*w , +2C2cosw cos(2k,Cz)]}) .

The above integrals can be calculated easily by making
the additional approximation of high-Q cavity i.e., by
considering the limit \rj |1, \tj | >0, f— «, and the re-
sults (2.18). For a single atom, the rate of spontaneous
emission over all modes of a very high-Q cavity, with or-
der n =kd /m, is now found to be

— 3 (=D /n)cos(2wlz /d)

=1

Jn.

(4.13)

By this expression we may also calculate for a single atom
the rate I'; , of spontaneous emission over any particular
cavity mode order / <n and for one polarization by as-
suming, by a further approximation, that |r;| and ltjl do
not depend on the polarization of the fields

T, (2)=10[(n2—=12)+212f%x))/n3 , x=(z/d)
(4.14)

(4.12)

f

where

f¥(x)=cos¥(wlx) for I=an odd whole number ,

L 4.15)
f2(x)=sin*(wix) for ] =an even WN .

Let us consider now an ensemble of excited atoms in the
cavity and suppose that no superradiant effects are
present [2,3]. The corresponding SpE rates I', and T,
are obtained by averaging I', (z) over the normalized dis-
tribution density g(z) of excited atoms in the cavity.
Various kinds of excitation distributions may be con-
sidered. For instance, the atoms may fill out the cavity
with uniform density and g(z)=d ~!. In this case the
contribution of the sum of cos functions in (4.13) is zero
and the rates are I, =3[y(1+2n)/nand I'; , =1Ly /n (I
independent).

Alternatively, g (z) may be expressed by a sum of n’ §
functions whose arguments may be chosen to enhance the
contributions of the / modes in (4.13) and (4.14). For in-
stance we may take n'=n & functions peaked at coordi-
nates equally spaced over the cavity spacing
gz)=(1/n")3, 8[|z —(dl' /2n)|], where I’ is an even
whole number 0 <!’ <n, if n is odd and vice versa. The
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simplest configuration, appropriate for odd cavity order
n, is represented by g (z)=¥5(z), i.e., by a single excitation
8 function placed at the center of the cavity. This condi-
tion may be approximated by a semiconductor microlaser
operating with a thin active quantum well placed at z =0
[10]. In this case the emission rates are
I, =To[(1+n)+(2n)"'1/n, and T, =L1Ty(n?+1%)/n3
for odd I, T';,,=1Io(n?—1%)/n> for even I. Another in-
teresting configuration, adopted in one experiment de-
scribed later, leads to a substantial enhancement of T,
and of I'; ,. It corresponds to an excitation distribution
g (z) provided by a single (or a combination of) sinusoidal
function of z with periodicity expressed by an excitation
wave vector k. In this way it is possible to enhance selec-
tively the rates of SpE taking place over any of the k;
modes, the ones corresponding to the I/th cavity order.
We refer to this process as a laser-phase-matching (LPM)
process, which is expressed, in the simple case of g(z)
given by a single sinusoidal function, by the resonant con-
dition in the momentum k space:

Ak=(k—k;)=0 (laser phase matching) , (4.16)

3 single atom at metal Ag: R=0.90
the position z, h=352 R
L d=A/2=m/k,
o 2
—
ha
2
°©
~—
> 1
O
]
o
%05 0.5
position (z,/d)
3
single atom at the
| cavity center
e
L° metal Ag: R=0.90
™ 2t h=352 A
N—
(O]
L L
o
“
> -
o 1
O
L
_O =
L /
o= -+ — 5 — | 1 |
0 1 2 3

mirror spacing (2d/\)

FIG. 2. Decay rate I'|(z) and I'|(z) of a single dipole u
placed at position z with orientation, respectively, parallel and
orthogonal to the mirrors in a symmetrical microcavity
confined }’)y Ag mirrors with normal reflectivity R =0.90 at
A=6111 A (upper panel). Decay rates of a dipole placed at the
center z =0 of a symmetrical microcavity as a function of the
cavity spacing (lower panel).

where |k;|=1(m/d) [11]. Most important for our present
work, we shall see in a later section that the same process
shows up also in stimulated emission thus providing a
substantial enhancement of the microlaser gain. The
LPM process in SpE and StE will be demonstrated exper-
imentally later for a microcavity with n =1 making
recourse to the technique of periodic excitation [12]. The
simplest normalized distribution for StE enhancement
over the /' mode can be expressed by

g (x)=(2/d)cos®(ml'x) . 4.17)

Making use of (4.17), we may calculate the SpE rates cor-
responding to LPM emission over the /th mode for a
cavity-order n=o0dd number [13]. These are

L,=Tl(n+1)+2n) ' —(=1D"UI'/n)]/n
Ty, =iTo(n*+11%)/n? for I'=1,
I,,=1ily/n for I'#l .

No enhancement is provided for emission over the k;
mode if I’#I. Similar conclusions can be drawn for any
cavity order expressed by even n number by replacing in
(4.17) the cos?(wl'x) function with sin®(7l’x). In fact in-
spection of (4.14) shows that, in general, the rates of
spontaneous or stimulated emission over a particular mi-
crocavity mode k; with any order / <n can be increased
(or decreased) by selecting a distribution of atomic excita-
tion that is periodic along the z axis with periodicity
(wl/d) and appropriate phase. The reader should be
warned, once again, about a relevant approximation
which is implied by the above calculations. In fact the
expressions above have been evaluated by assuming for
the sake of simplicity, that the mirror coatings are
infinitely thin and that the reflectivities are independent
of © and that fields undergo a O-independent phase
change ¢== upon reflection. We recall that the ©
dependence of field reflectivities, transmitivities, and
phases realized in actual cases with any kind of mirror
coating may lead to quite different results for I';(z,) and
I\ (zy) [3,7].

V. STIMULATED EMISSION

The rate of stimulated emission (StE) over a single-
cavity k mode is found by a similar method by adopting
in the Fermi rule the expression of the corresponding
partial Hamiltonian H} given by (3.6). This approxima-
tion, which is valid for low excitation and near-threshold
operation, implies absence of coupling between different
cavity modes. In this way the dynamical equation ac-
counting for laser action can be obtained easily. We shall
later demonstrate that this equation leads to a most
favorable behavior of the microlaser. Precisely, as previ-
ously discussed, a very high microlaser gain can be at-
tained and the threshold-pumping energy can reach a
very low level thus realizing a nearly thresholdless laser
interaction [1]. In order to do that, consider that the
laser action implies for each emission k; mode a collec-
tive interaction of atoms with the radiation field associat-
ed with that mode. As a consequence a crucial feature of
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the laser action relates to the number (or density) of StE-
cooperating atoms of the medium. In this respect we be-
lieve that it is useful to postpone the main threshold-
lowering argument and account first for two different
cooperation processes that generally interfere with the
microlaser dynamics. These processes are (a) the StE
mode competition and (b) the transverse quantum correla-
tions [1,15]. Let us consider them in detail by focusing
our attention on the stimulated emission over the micro-
cavity forward mode k, with just one linear polarization.

A. Mode competition

Assume that N equal atoms are excited in the micro-
cavity in the upper energy level and that the fluorescence
time of the upper level is such that a steady-state solution
of the dynamical equation represents an adequate approx-
imation. Within the approximation of near-threshold mi-
crolaser action, viz. where all cooperative processes are
weak and the gain is small, we may assume that the frac-
tion of atoms N, that are effective in StE over the for-
ward mode k,, is given by the expression N, =N17’, where
n'=(T,,/T,)<1. According to the definitions given in
Sec. IV, T, , and T, are, respectively, the rates of emis-
sion over the mode k; with / =n and over the entire set of
modes allowed by the microcavity of order n. By making
use of the results of previous theory, the mode-
competition coefficient 7’ may be calculated for various
types of excitation functions g, (z)

g,(2)=(~', p=01+2n)""
(uniform excitation) , (5.1)

2,(2)=8(0), n'=[1+n+2n)""']"!

(laminar excitation) , (5.2)

g,(2)=(2/d)cos¥(mnz/d) , n'=3[2+n+(2n)"']"!

(periodic excitation) .  (5.3)

These expressions have been calculated for a cavity order
n, where n is an odd number. Similar expressions are ob-
tained for even n. Furthermore, the above analysis only
refers to the laser action in the forward mode | =n. A
generalization to out-of-axis microcavity stimulated emis-
sion will presumably reproduce qualitatively the results
obtained for / =n. We see that a decrease of the cavity
length d =nd and then a reduction of mode competition
implies an increase of the coefficient of atomic coopera-
tion ’. This, of course, effects in a favorable manner the
dynamics of the microlaser.

B. Transverse quantum correlations

The cooperation within a StE process of excited atoms
belonging to a transverse section of the microcavity in-
volves the quantum-mechanical process of the field’s
delocalization during emission in the proximity of a local-
ized source. This is a subtle problem whose origin goes
back to Einstein and involves the basic dynamics of the
emission process as well as the very QED definition of a
quantum field close to a source [15]. While postponing a
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detailed theoretical analysis of this process to another
work, we note that the problem is generally overlooked at
least in context of laser dynamics. In fact to our
knowledge all laser theories developed so far appear to
imply the tacit assumption that all excited atoms belong-
ing to the transverse section of the active medium always
cooperate in StE. This is to say that quantum correla-
tions giving rise to the interatomic StE coupling extend
to infinity, viz. over the full transverse (x -y) plane of Fig.
1 [14,16]. In fact we shall see that this may be approxi-
mately true for long-cavity high-Q lasers, but it is not
true in general, in particular for active microcavities. Let
us investigate this condition with the help of the Fig. 3,
which also represents the general layout of our experi-
ments. There it is shown that two microlasers, a distance
s apart, can be excited by focusing an excitation laser
beam in two different spots, of diameter =10 um, in the
transverse section of the microcavity. In the original ex-
periment the microcavity, with finesse f=170, was
confined by plane mirrors with |r[2=|r,|*=R =99, 5%
at A and the excitation source was a second-harmonic
generator driven by an unstable-cavity neodymium-doped
yttrium-aluminum-garnet (Nd:YAG) laser delivering
7=5 nsec pulses at A, =0.53 um [15]. The StE radiation
emitted at A=0.63 um over the cavity forward k mode
(I =n) was focused by a 30-cm focal-length lens, with lens
aperture equal to 10 mm into a pinhole of diameter
6'=10 um placed in front of a phototube. This provided
an efficient spatial filtering against StE processes taking
place on all cavity modes with /F*n. The transverse-
correlation problem may be reformulated by the follow-
ing question: To what extend does a StE photon emitted
over the common k mode by one microlaser determine
the gain of the other microlaser, in spite of a macroscopic
distance s, externally imposed on the two lasers: Accord-
ing to the usual theory, since a field delocalization is ex-
pected after emission over the full transversal extension
of the mode, full interlaser correlation is also expected in
spite of the peculiar topological configuration of the ex-
periment [15,16]. Let us analyze the problem by consid-
ering the single longitudinal-mode case n =1, for simpli-
city. Let m,, m, denote the numbers of photons emitted
by microlasers (1—2), respectively, within the coherence

time 7.=[A/(vAA)] over the common k mode
N
XDZO.53pm‘ ix 20.63um
r—rwnsducer | ;
| i B
pinhole(¢) -
----------------------- S
I
1
|
i
¢ Nd:YAG+SHG Y 3

FIG. 3. Piezoelectrically (PZT) tuned Fabry-Pérot microcav-
ity (uc) with two-beam excitation.
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(AA=bandwidth of the detected radiation). The time
evolution equation for m, is given, by disregarding the
cavity losses, in the simple form

m
dt

where the degree of correlation, a=al(s,d), 0=a=1,
|

=G(1+m,+am,), (5.4)

f(s,d)=[m(s,d)/m(0,d)]
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represents interlaser coupling. The extreme values taken
by a in its existence range correspond to full laser in-
dependence and to full correlation, respectively. An
identical equation holds for m, by interchanging indexes.
At last, the overall emitted photon number
m =(m, +m,), relative to condition a=1, is related to
a(s) through

=2sinh[G(a+1)]exp[G(a—1)/2]/[(a+1)sinh(2G)] , (5.5)

where G =(gdI,) is the small-signal gain proportional to
the microlaser pump intensity I,, and to d, in first ap-
proximation [16,17]. Note that the overall output gain is
strongly dependent on a, as it almost doubles in the case
of a=1. The measure of gain as a function of s and d is
precisely the method we adopt to investigate the
quantum-correlation process. By analysis of the experi-
mental plots of the output-radiation intensity I emitted
from the microcavity versus the pump intensity for vari-
ous values of d and s, a progressive loss of interlaser
correlation for increasing distance s was detected. The
correlation loss expressed by the behavior of a(s) shown
in Fig. 4 is found increasingly less pronounced for in-
creasing d >d, approaching asymptotically (i.e., for a
macroscopic cavity n >>1) the general behavior a(s)=1
expected according to standard theory. The a curves for
d =d, 5d, 10d are shown in Fig. 4 together with related
best-fit Gaussian plots, which reproduce the relevant
correlation, increasing behavior for increasing d =nd.
An approximate, simplified explanation of this behavior
may be given as follows [15,18]. Consider the forward
mode / =n 21 of an active microcavity with finesse given
by (2.19). This mode may be considered as a superposi-
tion of plane waves with a k-space distribution assigned
by the Fabry-Pérot transfer function, i.e., by the Airy
function ¥ =|D;|~? given by (2.8). A simplified expres-
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FIG. 4. Degree of Bose-Einstein quantum correlation a(s) as

a function of the intermicrolaser distance s for microcavity

spacings d =d =11, d =5d,d =10d.

f

sion is given by ¥ =[1-+(2f /7)*sin’¥] ™! and by the re-
lated expression of the Fabry-Pérot interference phase
¥ =1n cosO as a function of the emission angle © (Fig. 4
inset) [8]. The full width half at maximum of the k-
vector distribution is found to be A®, =2(fn)" /2. The
superposition of plane waves, over each of which the for-
ward emitted photons are delocalized, determines accord-
ing to field-interference considerations, a limitation of the
transversal coherence length over which StE correlations
can effectively take place [18]. This process may be ac-
counted for in simple terms by the following argument.
The extent of the photon-gas Gibbs phase space corre-
sponding to the cavity forward mode is expressed for a
rectangular  spatial cross section AXAy  by:
AxAyAzAp, Ap,Ap,=h>, where Az, Ap, refer to time
coordinates. This of course may be interpreted to express
the minimum-uncertainty application of the Heisenberg
principle to the three-dimensional dynamics of the pho-
ton particles localized with the coherence extent of the
mode. By writing Ap, Ap, =(#%kAO, )2, we finally obtain
for cylindrical symmetry the expression of the transverse
quantum-correlation length I, =2A(fn)!/2. Then two cy-
lindrical microlasers with diameter 8, sharing a common
FP cavity mode can be coupled by StE if /, > 6. This re-
lation leads to a further interesting insight of the dynam-
ics of the process. In fact, if </, the cavity-allowed k-
space distribution is sharper that the one requested in the
nonconfinement condition by Fresnel diffraction from the
circular ends of each active microlaser, or
AB, <ABp[=A/8. Since in this case the diffraction pro-
cess is made ineffective in determining the output k dis-
tribution, we may say that there the microcavity inhibits
diffraction. The back reaction of the field to this anoma-
lous condition consists of a kind of a coupling halo, a cy-
lindrical region of thickness 1(/, —8) surrounding the mi-
crolasers in which quantum correlations can take place.
We refer to this condition as the cavity regime. On the
other hand, if /, <8, no StE correlation in transverse
direction is possible outside the active regions. Here
diffraction inhibits external correlations. This identifies
the diffraction regime. Since in this regime no transversal
correlation takes place over radial distances s>/,, the
maximum number of StE-interacting atoms is
N'=Llmy'dl}=Lluy’ fn’A?, u' being the fraction of the
volume density of excited atoms corresponding to emis-
sion over the forward mode and given by (5.1), (5.2), and
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(5.3). The above considerations lead to conclude that in
open space, viz. outside a mode-selective cavity, it is im-
possible to detect transverse field-delocalization effects
using our StE technique involving active spots apart by
I > A. There in fact the diffraction regime is always real-
ized. In fact, by our arguments we find /, =A for two iso-
lated atoms cooperating in open space in the absence of
external fields, in transverse photon emission, viz. emit-
ting along a direction orthogonal to any plane to which
the two atoms belong [18]. On the other hand, the use of
an ideal cavity with infinite finesse leads to a single-
plane-wave structure for the forward mode A©, =0 and
to quantum correlations extending over the full trans-
verse extent of that mode /, = . Furthermore, since /,
identifies a region of spatial coherence for the quantum
field, including the vacuum field, it also identifies the
transverse extent of the modes that are effectively in-
volved in the dynamics of the single-atom SpE [3]. The
cavity regime is demonstrated experimentally in Fig. 4
for increasing n. The value of f (f =170) has been deter-
mined by direct measurement of the width of the angular
distribution of the output intensity A©, according to
classical optics [7].

VI. STEADY-STATE MICROLASER THEORY

The steady-state dynamics implied by the adoption of
the mode analysis of Sec. II is justified by the relatively
small value of the photon confinement time in the micro-
cavity 7,,=Q/o=~nf /w, where Q ~nf is the microcavi-
ty quality factor. The time 7, of the order of 50 fsec for
an optical microcavity, is generally far shorter than the
SpE T,=(T,)" ! or the other times that preside over
laser dynamics [19]. We may then assume a steady-state
microlaser theory which is further simplified for small n
by the deterministic one-degree-of-freedom character of
the coupling dynamics as remarked in Sec. I [20]. We
may follow the standard theory, assuming monochromat-
ic emission at A over the forward mode, by adding to the
rate equation (5.4) written for a single microlaser with the
dominant loss term (—m /7,;) according to Yariv [16,21].
Assume that the atomic excitation is provided by inject-
ing in the cavity-active plane a pump laser beam within a
focal region of diameter 8’ </,, such as full transverse
correlation is established among the excited atoms. Con-
sider that I", , is the single-atom stimulated-emission rate
over the forward mode / =n. The threshold excitation
and the small-signal gain of a microlaser with spacing
d =nd is immediately found to be

Ny =Qme)/(ny'AfT, ,)=mcl,/ldn (T, )], (6.1

G=n'NT,,=N(, )*/T,, (6.2)
where 7' is the n-dependent, mode-competition parame-
ter given by (5.1), (5.2), or (5.3) for three different excita-
tion density distributions. We may now insert in (6.1)
and (6.2) the expressions of the emission rates evaluated
in Secs. IV and V. For instance, in the case of a uniform
excitation distribution g (z)=(d ~') the above expressions
lead to
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Np=[4mc/(AfT))(1+2n),
G=(INTy)[n(1+2n)]7".

(6.3)

This result shows that the linear decrease of the threshold
population together with the microcavity spacing d =nd
comes with a dramatic increase of the microlaser gain G.
the expressions (6.1), (6.2),and (6.3) represent the key re-
sults of our work. Note that this striking process does
not belong to the usual laser phenomenology nor has
been previously detected or anticipated theoretically in
that context [1,6]. It is a quantum-mechanical
phenomenon arising exclusively from the large overall
vacuum confinement provided by the microcavity. It
may therefore appear somewhat remarkable to have
demonstrated by our past and present work that the
Casimir-type vacuum confinement not only can affect the
quantum behavior of single atoms, such as their spon-
taneous emission and Lamb’s shifts, but is also able to
modify, under appropriate conditions, their statistical,
collective dynamical behavior. Note that the process just
reported should persist as long as a virtually complete
confinement of the field modes is determined by the cavi-
ty [2]. In Sec. VII we shall present experimental results
showing that the effect is relaxed and tends to disappear
for increasing cavity orders n > 100, i.e., when the micro-
cavity starts becoming a trivial macrocavity.

VII. EXPERIMENTAL RESULTS

The process presented in the preceding sections has
been tested by several different experiments involving
different active media and different equipment. Figure 5
shows, on a semilogarithmic scale, the microcavity gain
curves versus pump energy for StE at A=0.700 um from
oxazine-720 excited by 100-fsec pulses at A, =0.620 um
generated by a highly stable multipass amplified
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FIG. 5. Laser output intensity vs excitation energy showing,
on a semilog scale, the dependence of the gain and threshold
population for several cavity orders n. (Active medium:
oxazine-720.)
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colliding-pulse mode-locked (CPM) ring dye laser [22].
The detection system was a high-quantum-efficiency pho-
tomultiplier tube (PM) RCA C31034A-02 connected to a
computer-interfaced digital-oscilloscope Tektronix 2440.
The piezoelectrically (PZT) tuned microcavity was
equipped with dielectric coating mirrors with diameter 25
mm and ©=0 reflectivities R ,=Rz=0.995 (Fig. 3).
The active medium was diluted (concentration 1.2X 1072
mol/liter) in a drop of ethylene glycole squeezed between
the mirrors. The slope of the curves drawn for different n
values expresses the corresponding values of the gain G
on an appropriate scale. The threshold and gain results
are also reported in Fig. 6 together with a fit based on the
theory given in Sec. VI. We may note the departure
from the linear behavior of the threshold output energy,
proportional to N,,, at large values of the cavity order n,
a behavior already discussed in Sec. VI showing the pro-
gressive departure from the microlaser toward the mac-
rolaser condition due to the increasing loss of extreme
confinement for increasing n. Equation (6.3) is adopted
to evaluate the value of value of N, for oxazine-720,
N, =~5X10° for a cavity f ~150 and n =1. This value is
about one order of magnitude smaller than the result
found experimentally which is e=~50 pJ, when expressed
in terms of the pump short-pulse energy. As far as the
gain is concerned, the discrepancy found is of the same
order of magnitude as for N;. Note however in Fig. 6
the good qualitative agreement of the experimental plot
presented with the theoretical results also reported there.
A result similar to the one of Fig. 5, showing a still more
pronounced high-gain effect, is reported in Fig. 7. This
result corresponds to f =170 and StE at A=0.63 um
from 4-(dicyanomethylene)-2-methyl-6-(p-dimethyl-
aminostyryl)-4H-pyran (DCM) dye diluted again in
ethylene-glycole pumped by a A,=0.53 um, second-
harmonic generation (SHG) beam under excitation by a
10-nsec pulse laser emitted by a neodymium-yttrium-
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FIG. 7. Laser output intensity vs excitation energy as for Fig.
S, but corresponding to a microcavity experiment with a
different active medium. (Active medium: DCM.)

aluminum-garnet laser. Note in Figs. 5 and 7 the absence
of any sharp laser threshold at n =1. As discussed in Sec.
I, this is related to the failure of any threshold concept
(generally of any critical point for a quantum-statistical
system) when the dimensionality of the mode reservoir
providing damping to the system is reduced to the point
that a deterministic dynamical regime becomes important
[5]. Another equivalent picture of this process, already
discussed in Sec. I, is provided by the failure of the very
quantum-mechanical concept of spontaneous emission in
the single-mode (n =1) microlaser. This is due to the
critical realization in that dynamical condition of any
vacuum state for a multiatom deexcitation [1,3]. We do
not know of any other example in statistical mechanics
that reproduces such a peculiar phenomenology. The
above results are substantiated by our original microlaser
experiment [1] and by similar, more recent experiments
reported by Yokoyama et al. [23].

A. Enhancement of spontaneous and stimulated emission
by momentum-space resonant excitation:
laser phase matching

The momentum-space resonant excitation and the
periodic excitation method discussed at length in Sec. IV
have been applied extensively to enhance the spontaneous
and stimulated emission in a microcavity [11,12,13]. Let
us discuss first, with some detail, the SpE process by
which excited atoms placed at different positions z within
the interference fringe pattern of the zero-point field at A
within the microcavity with n =1 decay to the ground
state with a SpE time 7T'(z) that reproduces the fringe
pattern. The periodic excitation technique has been
adopted to control by changes of the direction of a
(plane-wave) pump beam injected into the microcavity
(i.e., of the injection angle ©,) the position of the center
of mass of the distribution of atomic excitation p(z)
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along the cavity axis. Figure 8 shows the microcavity
layout. The equilateral-prism shaped FP mirror 4 made
of quartz was multilayer coated on the plane surface be-
longing to the cavity to allow simultaneously for a wide-
band high reflectivity R , =0.995 (at zero incidence an-
gle) at the SpE wavelength A=6110 A with AA/A=25%
and high transmitivity T ,,=0.95 at the excitation
(pump) wavelength A, =3547 A. The other cavity mirror
B was coated by a sﬂver film with thickness 530 A to give
Rp=0.95 at both A, A,. The cavity finesse was f ~60.
The directional coherent pump beam, injected with field
polarization parallel to the mirror plane into the inter-
ferometer through one of the oblique sides of mirror A4,
was provided by a third-harmonic generation of an unsta-
ble cavity, Q-switched Nd:YAG laser. The pump-pulse
duration was =~ 10 ns. At the cavity entrance the pump-
ing beam had a Gaussian transverse profile with a width
~4 mm in the SpE experiment. The cavity was tuned to
d =d and aligned by PZT transducers according to previ-
ous experiments. The active medium was an europium-
dibenzoylmethane complex [Eu-(DBM),] diluted in a
drop of ethylene glycol squeezed among mirrors A -B.
The strongest line at A=6110 A (in vacuo) of the *D-'F
multiplet of the Eu atoms was chosen for our study [3].
The quasiexponential SpE pulses transmitted through
mirror B, were detected along the cavity axis (—z) by a
detection system similar to the one already described in
this section. Each experimental data given in Fig. 9 re-
sults from a pulse-shape reconstruction obtained by the
digital averaging of 2X 10* pulse shapes detected in sta-

tionary conditions. Figure 8 displays the details of the
method of periodic excitation already described in Sec.
IV. For this experiment the method may be described as
follows [3]. Assume that © is the angle between z and the
pump k vector within the cavity k,. Changes of the
pump-injection angle ©, imply changes of the wave-
length A,(0)=27/k,,, k,,=|k,|cos® of the fringing
pattern of the pump beam upon reflection on mirror B.
Assuming field reflection from ideal mirrors and excita-
tion only due to the first dominant pump fringe shown in
Fig. 8, we see that the center-of-mass coordinate of the

p(z) distribution within the cavity can be displaced ac-

cording to z(©)=1[A,(©)—A], where A=27/k and k
are now determined within the excited medium. Then by
simple changes of ©, the excited atoms are driven to in-
teract with different values of the field energy density at
A, (E*(z)), belonging to the microcavity single longitudi-
nal mode n =1. According to first-order QED perturba-
tion theory of atom-field interactions, the probability of
single-atom spontaneous emission along that mode is pro-
portional to the zero-point energy density. For an assem-
bly of atoms we should then expect in our case

(z) < ({EXz)))"!, where the overbar means a suitable
averaging over the spatial distribution of the excited
atoms [9]. More precisely, the theoretical curve
7(z)=[T(z)/Ty] shown in Fig. 9 representing the SpE
decay time of the overall detected pulse has been deter-
mined by a rigorous computer calculation of the time su-
perposition of the contributions due to each of the 500
spontaneously emitting plane layers orthogonal to z, by
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FIG. 9. Plot of the SpE time 7(©)=(T/Tg) relative to the
value at ©=0 as a function of the angle © made by the pump kp
vector with the 2z axis within a d=d microcavity
[To=T(©=0)=530 u s]. The square dots represent results of
a falsification experiment carried out with an identical cavity
but with f=0. Several values of the z coordinate corresponding
to © are also given.

which to total cavity length d ~d has been divided. The
SpE-radiation pulse contributed by each layer at coordi-
nate z decays quasiexponentially according to the value of
(E¥z)) [3]. In the calculations the effect of the entire
pump fringe pattern established in the microcavity and
the real multilayered (or metal) structure of the mirrors
have been fully accounted for by use of the Lissberger-
Wilcock algorithm already tested and adopted in Ref. [3].
The experimental data of Fig. 9 are found to fit well the
theoretical results. The inverse bell-shaped curve with
the minimum at z=O0 clearly shows the effect of the
field’s interference pattern. These results have been test-
ed by a falsification procedure by three additional experi-
ments in which the cavity field interference pattern at the
SpE wavelength A was expected to be absent while keep-
ing the pump fringe pattern at A, virtually undisturbed.
In the first experiment the cavity was misaligned, in a
second one the cavity spacing was lengthened to the
value d = 15d, in a third one the prims mirror 4 was sim-
ply replaced by an equal but uncoated prism, viz. R , =0,
S =0. Figure 9 reports the results of the last experiment:
the other ones led to similar results. There the flat 7(z)
curve shows absence of any cavity-field interference at A,
as expected. An enhancement phenomenon similar to the
above process has also been observed within the StE con-
text by measuring the StE threshold N, of our micro-
laser with n =1 in conditions similar to the ones just de-
scribed but with the pump beam focused in the cavity by
a 8-cm focal length lens to raise the local pump intensity
at z=0 to I, =500 kW cm ™2 (Fig. 10). The value of the
threshold was determined as reported in other microlaser
experiments. Figure 10 shows once again that the inter-
play of a phased excitation distribution with the self-
interference of the field either in the presence or in ab-
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FIG. 10. Plot of the threshold pump energy as a function of
© for the active microcavity showing evidence of the laser-
phase-matching process within StE.

sence of photons determines a sizable enhancement of the
collective atom-field interactions. In particular we have
found that the laser gain can be enhanced by our laser-
phase-matching method by quite a large factor. The
enhancement is found to be maximum when an exact su-
perposition of the interference pattern at A with the
atomic excitation pattern with periodicity %7_»[,(6) is real-
ized. This is in agreement with the theory reported at the
end of Sec. IV. Of course this concept involving spatial
superposition of excitation and field patterns is quite gen-
eral and can be extended to more complex, three-
dimensional-field modal structures in cavities of any size
and shape. With this last work we have demonstrated
that the method leads to a further improvement of the
performances of the microlaser. On a more fundamental
side, by this work the spatial field distribution in a cavity
has been determined, either in presence or in absence of
photons, i.e., in the vacuum state. From this viewpoint
our SpE results provide a direct demonstration that the
vacuum field exhibits the expected property of field in-
terference [24].

VIII. CONCLUSIONS

We have reported a rather extensive investigation of
the stimulated optical emission process in the microscop-
ic Fabry-Pérot cavity. We have emphasized in the Intro-
duction the relevance of the zero-threshold laser phase
transition as a problem of statistical mechanics. Never-
theless, owing to the reduction of the dimensionality of
the mode statistical ensemble, a more appropriate QED
calculation of the scattering parameters giving rise to the
dominant emission processes for an atomic ensemble in
strong confinement condition has been undertaken.
These processes are spontaneous and stimulated emis-
sions. The expression of the rate equation for atomic
emission in a microcavity has been developed, within the
approximation of very high cavity Q, to determine an ex-
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act dependence of the relevant parameters for the pro-
cess, the gain G, and the population threshold N, on the
cavity order n. The main theoretical result consists of
Egs. (6.1)-(6.3), and Fig. 6 summarizes the overall process
that motivates the work. Moreover, clear evidence of the
quantum-merging process of SpE into StE is provided by
the n =1 plots in Figs. 5 and 7. We do believe that these
results are determined, as said, by a peculiar synergy be-
tween several quantum-statistical processes. In our
opinion they also represent a relevant achievement in
modern laser physics, in particular in the field of integrat-
ed optics and related technology. The results of the
theory are tested by several experiments involving
different techniques inspired by the main idea of the
work. The technique of laser phase matching may prove
useful to externally control the coupling of atoms with
the field in a microcavity. The unique dynamical behav-
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ior of the microlaser and most of its highly attractive
phenomenology are expected to be reproduced by all ac-
tive nonlinear optical systems whose quantum dynamics
involves the concept of vacuum field in any photon
creation or annihilation process. This represents quite a
wide class of phenomena including the optical parametric
oscillation, the free-electron laser, and generally all
Compton- and Raman-type processes [25]. The extension
of the concept of extreme vacuum confinement to Bose
fields other than the electromagnetic one, e.g., to the dy-
namics of Cooper pairs in highly anisotropic structures in
modern superconductivity, has also been proposed [26].
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