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Dark solitary waves in a generalized version of the nonlinear Schrodinger equation

F. G. Bass, V. V. Konotop, ' and S. A. Puzenko
Institute for Radiophysics and E/ectronics Academy ofSciences of the Ukraine, Proscura Street 12, Kharkov, Ukraine

(Received 4 November 1991)

We investigate dark-wave solutions of the nonlinear parabolic equation with a nonlinearity of rather
general type and nonzero boundary conditions at infinity. Traveling-wave solutions of some polynomial
models are presented in the evident forms. The bistability of dark pulses as the possibility for two
different waves to exist under the same boundary conditions is discussed. The consideration is supported
by the numerical treatment of the polynomial nonlinearity allowing the bistability regime. It is found
that some different boundary conditions can be coordinated with the nonlinear equation in the case of an
N-shaped nonlinearity. In the small-amplitude limit the nonlinear Schrodinger equation is reduced to
the Korteveg-de Vries equation. The stability of small-amplitude solutions is determined by both the
kind of the nonlinearity and the intensity level at infinity. The occurrence of antidark pulses is pointed
out.

PACS number(s): 42.65.Pc, 03.40.Kf, 42.65.Vh, 42.50.Rh

I. INTRODUCTION

(where I=~/~ and, for the meantime, f(I) is an arbi-
trary nonlinear function) satisfying nonzero boundary
conditions at infinity. As is evident, the simplest case
f (I) =kI of Eq. (1) is the conventional nonlinear
Schrodinger equation (NSE), which has many applica-
tions in various branches of modern physics (see Ref. [1]
for a review). In particular, the NSE is of great impor-
tance for nonlinear optics [2], where it is successfully
used for a description of picosecond pulse propagation in
monornode fibers. In that case, the nonlinearity if stipu-
lated by the dependence of a fiber refractive index on the
field intensity. The NSE can also be considered as a lead-
ing order of the expansion of Eq. (1) with respect to small
nonlinearity. Hence, physical factors contributing to the
increase of nonlinearity may require the employment of
the HNSE with a more general function f (I). For exam-
ple, multiphoton resonances and light-induced phase
transitions are such mechanisms in optics [3].

It is well known [4] that the NSE, which is exactly in-
tegrable by means of the inverse scattering technique,
possesses two kinds of fundamental traveling-wave solu-
tions depending on the sign of k. The first one is often
called a bright soliton. It may exist under zero boundary
conditions: $~0 as ~x~~ao if k (0. Another solution,
called a dark soliton, is possible when k &0. It has the
form

f(x, t) =q (x —vt)exp( 2i p t)—(2)

(where v and p are a real and a positive constant, respec-
tively), with q (x) satisfying boundary conditions

p as x~ —(x)

p exp(i0) as x ~ ao, (3)

In the present paper we study traveling-wave solutions
of the highly nonlinear Schrodinger equation (HNSE)

i g, +f„„—2' (I)=0

where 8 is a constant belonging to the interval [0,2m ). A
dark soliton is an intensity hole on the constant cw back-
ground of the amplitude equal to p.

In the case when f (I) is a nonlinear function, station-
ary bright-soliton-like solutions also exist. Conditions for
their existence as well as stability aspects of the problem
have been thoroughly investigated by Kaplan [3], Enns,
Ragnekar, and Kaplan [5], and Enns and Ragnekar [6].
In this way Kaplan discovered the bistability of bright
solutions [3]. The associated stable solutions according
to him are those that have the same energy but different
parameters.

Dark pulses of the HNSE with f(I)= I+aI are-
known as well. Their evident form has been obtained by
Barashenkov and Makhankov [7], and stability has been
studied numerically by Barashenkov and Kholmurodov
[8]. Such systems turned out to have no bistable regimes.

The essential feature of the dark NSE soliton com-
pared with the bright one is that it has only one
parameter —a pulse velocity. It is determined by the
boundary conditions (3). Other characteristics of the
dark soliton (amplitude and width) are expressed through
the velocity. Such a situation is also held in the case of
generic nonlinearity f(I) (see below). Therefore, one can
foresee that the straightforward treatment of the bistabil-
ity in the manner mentioned above is no longer available.
Even application of the "bistability" term in the sense
generally accepted [9] is questionable for the dark-pulse
dynamics. Nevertheless, in the present paper we make
use of this conception (being conscious of the conditional
character of this term) in order to designate two kinds of
solitary dark solutions of nonlinear equation (1) with
different initial but the same boundary conditions.

It should be noted here that the bistability of dark opti-
cal pulses has been reported by Mulder and Enns [10]and
Enns and Mulder [11]. In contrast to our case, in these
papers, moving solutions of Eq. (1) were considered under
boundary conditions with phases varying in time at
infinity. In that case, the bistability of dark holes was un-
derstood in the same sense as that of bright solitons.
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Only stationary solutions were treated under fixed phases.
Another peculiarity of the problem under considera-

tion consists of coordination of the nonzero boundary
conditions (3) with the nonlinear evolution equation (1).
(It is the requirement that gives p in the representation
(2) for the dark NSE soliton [4].) In the event f (I) is a
nonlinear function, the corresponding requirement may
give rise to additional complexity.

The organization of the paper is as follows. Section II
is devoted to both the derivation of general equations and
a discussion of the main properties of traveling solutions.
Examples of polynomial models —the simplest one,
f(I)=I+ctI, and those for which the bistability of
bright pulses have been observed [5],f (I)=I bI +—cI
(t2, b, and c are constants) —are treated in Sec. III. The
main results are briefly summarized in the Conclusion.

II. GENERAL APPROACH

I, = f (~q~
—

p )dx,

I2 =(1/2i) f (q„q*—q„*q)dx,

I3=f ~q ~
+2f [f(s) ru]ds—dx . (6c)

oo P

As usual, the third integral is the Hamiltonian of the sys-
tem so that one can represent Eq. (4) in the form,

(6b)

q, = —i (5I, /5q*) .

the cw backgrounds with amplitudes p, against which
different dark pulses with the same cw frequency can
propagate. Illustration of this situation for an N-shaped
function f (I) is represented in Fig. 1.

It is not difficult to state that Eq. (4) possesses at least
three integrals of motion for each given p (cf. Refs. [4]
and [5]):

Let us search for a solution of Eq. (1) in the form
g(x, t)=q(x, t)exp( 2irut—), where ru is a real constant
(for the sake of definitenesses we will call it a cw frequen-
cy). Then q(x, t) is governed by the equation

A. Basic relations for a traveling-wave solution

Since we are interested in traveling-wave solutions, we
represent function q (x, t) in the form

i q, +q„„2q[f (I)—ru] =0 .— (4) q (x, t) = u (y)exp[i/(y) ], (7)

Apparently, Eq. (4) is compatible with the boundary con-
ditions (3) if

ru=f(p') .

This relation between co and p is not, generally speaking,
one to one (cf., the case of the conventional NSE [4]) if
f (I) is a nonlinear function. Depending on the type of
f (I) there can be a set of values [p, ] (i =1,2, . . . , N)
under which the formulation of the boundary problem is
possible for the same co. In other words, there is a set of

uP +2u P —uu =0,
u —u j P uP +2[f—(I)—cu]] =0

(8a)

(gb)

(evidently now I = u ). The boundary conditions for new
unknown functions u(y) and P(y) follow directly from
Eqs. (3) and (7):

where a real amplitude u (y), phase P(y), and moving
variable y =x —Ut with a real constant v being a pulse ve-
locity, are introduced. Substituting the representation (7)
into Eq. (4) and separating real and imaginary parts of
the resulting equation, one derives the system

u p as ~x~~~,

0 as x~ —~
0 asx~~ .

(9a)

(9b)

(9c)

rn f

I

P

FIG. 1. The model f(I)=I—bI'+cI' Hand B are ex-.
trema of f(I} values p, and p2, whic. h are the crossing points

of the graph with the level co, are evidence of the two appropri-

ate backgrounds.

(10b)

Here the designation

Q(I) =8If,[f(s) f(p'))ds— (11)
P

is introduced. The straightforward algebra allows us to
verify that now the Hamiltonian of the system is ex-
pressed directly through the function Q (I):

To be rigorous in accordance with Eq. (5) one has to
write p; and, hence, u; in Eq. (9a) and in all expressions in
what follows. We do not do it to shorten formulas, how-
ever, bearing in mind that each relation obtained below
corresponds to the definite boundary conditions deter-
mined by Eqs. (5) or (9).

Equations (8) can be integrated once. This gives

P(y) =(—')u f [(I p')/I]dy, — (10a}

I2 —
Q (I) u2(I p2}2
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I =(—,')f [Q(I)/I]dI . (12) (16)

While obtaining Eqs. (10) we have taken into account the
boundary conditions [(9a) and (9b)] only. As it follows
from Eq. (10a), in order to satisfy the limit (9c) one must
require

which must be held for all I from the interval mentioned.
Evidently, if it is not valid at least for I =p, no dark
pulses may exist. Substituting this value in the inequality
(16), we obtain the following restriction for the velocity:

(13) U
2 & 4p2f t(p2) —U2 (17)

This formula allows us to determine the pulse velocity for
given 8, p, and f(I). It is important to stress that Eq.
(13) is a transcendental equation with respect to U, since
according to Eq. (10b) I(y) depends on parameter U in
the evident form (rather than through the variable y
only}.

Equation (13) is the basic formula of our approach. It
provides the opportunity to answer the questions of
whether the traveling-wave solutions of the boundary
problems (3) and (4}exist and how many there are.

Depending on the problem parameters, Eq. (13) may
have no roots, (it corresponds to the lack of solitary
waves), one root, and more than one root. The latter
means in fact that there are various traveling dark pulses
that can propagate against the same cw background p
with the same constant phase shift at infinity 8 and cw
frequency co.

Thus we can formulate the bistability (multistability)
problem. The event when two (or more) dark pulses
governed by Eq. (4) with the same boundary conditions
(3) but having diferent parameters (amplitudes, veloci-
ties, etc.) exist will be called bistability (multistability).

As it follows from Eq. (10b), I, defined by Eq. (6a) has
an evident dependence on v and, hence, the first motion
integrals corresponding to different bistable pulses are
different. In this sense, our definition of the bistability
differs from that used by Kaplan [3].

It is useful to point out that by analogy with Ref. [3]
one need not solve the Eq. (10b) in order to calculate v.

Indeed, with the help of Eq. (10b) it is possible to pass
from the integration over y in the left-hand side of Eq.
(13}to the integration over I. In this way Eq. (13) can be
rewritten as follows:

l~ [U

v f, dI [IP(I)] '=8. (14)
P

Here P(I)= ~I /(I —
p )]~ and I (v ) is a root of the

equation

(15)

being the closest one to p . It is by definition the intensi-
ty extremum of the pulse, or, more precisely, the deepest
point of the intensity hole in terms of dark-pulse dynam-
ics. The particular case when I~~ =0 at I=I is beyond
our consideration.

We mainly restrict the present investigation to the case
of dark-pulse dynamics that corresponds to I (p and,
hence, I (U ) &p . Consequently, it is easy to see that
this case implies that I(y) belongs to the interval
[I (U ),p ]. As a necessary condition for the problem to
be solvable in accordance with Eq. (10b}, one can obtain
the inequality

[the prime means the derivation of f(I) with respect to
its argument]. The first consequence of this relation is
that the traveling dark pulses may propagate only against
the background with an amplitude satisfying the require-
ment

B. Small-amplitude pulses

As has been stated in Ref. [7], small-amplitude dark
solutions of the higher nonlinear model f (I)= I +aI—
having velocities close to critical v are described by the
Korteveg —de Vries equation (KdV). A similar result for
dark solitons of the NSE [f(I}=I] was obtained by Kiv-
shar and Afanasyev [12]. It is not difficult to state analo-
gous behavior for the HNSE of a general type. To this
end we represent the wave amplitude in the form

u (x, t) =p+ a(x, t), (19)

assuming that a(x, t) depends on provisional variable x
and t instead of the traveling variable y and ~a(x, t)

~
&&p.

Then we follow to Ref. [12]. Namely a(x, t} and p(x, t)
are represented in the form of expansions:

P(x t) =E$0( v, 1 ) +e pi( v, 'T) +'

a(x, t}=eao(v, r)+e ai(v, w}+

(20a)

(20b)

(where e is a small parameter introduced for conveni-
ence), and slow variables

v=e(x —u t) and 2=a t (21)

are used. Since these calculations closely follow those in
Ref. [12], we omit them and write only the final answer.
The function ao(v, r) solves the KdV equation:

2v ap +gapap ap =0,
where the constant g is determined by

g =gp[3f'(p )+p f"(p')] .

(22)

(23)

Equation (22) is integrable and has one soliton solution
[1]that in the case under consideration has the form

ao(vr)= —[(12m )/g]sech [a[r—(2a /v )v]] . (24)

Here the constant ~ characterizes the soliton amplitude

f'(p )&0.

Employing Fig. 1 as an example, one can determine that
there are two possible cw backgrounds (they are designat-
ed by points pi and p2).

The second consequence consists of the upper limit v

for dark-pulse velocities. As is clear, it can be achieved
at least by small-amplitude solutions. The latter allow
consideration in more detail.
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and is determined by the initial conditions for the HNSE.
Depending on the sign of g, the value ao(x, t) is nega-

tive (g &0) or positive (g &0). The last case corresponds
to I being greater than p so that one has an anti-dark
solution (as a similar bright splash against the back-
ground has been called in Ref. [12]). Its appearance is
caused by the higher nonlinearity under the condition
p'f"(p') & —3f'(p').

Returning to the investigation of the dark-pulse dy-
narnics, we can conclude that a stable soliton in the
small-amplitude limit is available if

2f II( 2) & 3f t( 2) (25)

The requirements for the small-amplitude approximation
to be valid have been discussed in Ref. [12]. In our case
one more restriction has to be satisfied: ~g~ &&e

The relation (25) just obtained can be also derived from
the general approach described in the previous section.
Indeed, let us analyze Eq. (15) graphically as is shown in
Fig. 2. It is easy to see that the value I (v ) at v~v
crucially depends on the sign of D'(I) at I =p . Taking
into account the representation (11), one can verify that
sgn[D'(p )]=sgn[g(p )]. For v~v and g&0 the cor-
responding dark pulses are of small amplitude [see Figs.
2(a) and 2(c)], entirely in agreement with the KdV ap-
proximation considered above. However, if g (0, the
corresponding pulses have sufficiently large amplitudes
[see Fig. 2(b)] so that the KdV approximation is impossi-
ble.

To conclude this section, in the case of traveling dark
solutions we have reduced the initially formulated bound-
ary problem [(3) and (4)] to the system of equations
(10)—(12), which, together with the representation (7),
give a full description of the solutions we are seeking.

(b)

Intenelt y

Intsnyt ty

III. EXAMPLES

Now we illustrate the employment of the general rela-
tions just obtained for investigation of polynomial mod-
els. This choice allows us to obtain exact solutions of
HNSE having limiting transitions to the conventional
NSE dark solitons and to observe bistability. Also, a po-
lynomial model provides an N-shaped nonlinearity and,
hence, gives an opportunity to investigate a case of two
stable backgrounds.

A. Simple polynomial models

The first nontrivial case we consider is as follows:

f(I)=I . (26)

I

I z
, !~ fv )

I(y)=p —rI sech (gy), (27a)

P(y)=(8/2)+arctan[tanh(gy)tang(8/2)], (27b)

where

2rI=[v —v ]', v = —2p cos(8/2), v =4p (27c)

Inserting Eq. (26) into Eqs. (10) and (14), one can easily
derive the conventional NSE dark soliton [4] that is de-
scribed by formulas

intenit y

FIG. 2. Graphical solution of Eq. (15) for the highly non-

linear model. Within the chosen range of the problem parame-

ters, we have three qualitatively different types of D (I) depen-

dence corresponding to three types of 0( v) behavior (a, b, and c
correspond to the first, second, and third types, respectively). In

the dark-pulse case, I can belong to the interval [O,p ]. The

point I (v') is the root of Eq. (15) we are seeking.
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Another simple polynomial model that can be treated
analytically has a nonlinearity of the form

f (I)=I +(3a /2)I (28)

where a is a real constant and the factor ( —', ) is introduced
for convenience. Note that the related HNSE differs
from that considered in Ref. [7]. The solitary solution
obtained there with the appropriate background tends to
zero at a~0. At the same time, the model described by
Eq. (28) allows the limiting transition to the NSE dark
solution (27). Substituting Eq. (28) into Eq. (5), one can
conclude that for each p satisfying the inequality (18)
there is one-to-one correspondence between the back-
ground amplitude and frequency under which the formu-
lation of the problem is possible. The intensity minimum
of the dark solution is equal to

I (U )=[(5 +av )'~ —fi]/(2a), (29)

I(y)=p —(2il) /[y+(y —4au )'~ cosh (r)y)] .

Here y =1+4ap, and q is expressed through parameters
»nd U, as previously in Eq. (27c), but now v is defined

by Eq. (30) and v =4p p. At a equal to zero, Eqs. (30)
and (31) coincide with Eqs. (27).

Qualitatively, the main features of both solutions
presented by Eqs. (27} and (31) are similar. The function
U(8) in both cases is monotonic, with U(m. )=0 and
U(0, 2m)=+v . The intensity minima of both dark
pulses reach zero at 0=m. . Such waves are called black
pulses. The expressions for the inverse widths of the
pulses il and their phases p(y) are identical [the latter
statement can be verified by substituting Eq. (31) into Eq.
(10a)].

where 5 =1+2ap . Equation (14) can be also solved, pro-
viding the following expression for the pulse velocity:

U =2p [P—ap sin8+cos8(P —ap sin 8)'~ ], (30)

where p=l+3ap and sign(U)=sign(n. —8}. For the
mathematical correctness of Eq. (30), one must require
p ) (ap sin8) . Therefore, dark solutions exist for those
ap in the interval [—(6+2 sin8)/(9 —sin 8),—(6—2 sin8)/(9 —sin 8)].

As it follows from Eq. (30), U(8) is a single-valued func-
tion (remember, 8 belongs to the interval [0,2m']) and,
consequently, for given quantities of p and 8, there exists
the only traveling-wave dark solution. In the bright case,
for the analogous polynomial model, no bistability is ob-
served, as well [3].

In the case under consideration, it is easy to obtain the
evident expression for I (y ):

dark solutions that may exist under the nonzero bound-
ary conditions. Since it seems to be impossible to treat
analytically Eqs. (10) and (14) with f (I) defined by Eq.
(32), we use numerical study.

Substituting Eq. (32) into Eq. (5), it is easy to verify
that, depending on the values b and c, there can be one or
two available [i.e., satisfying the inequality (18)] back-
ground amplitudes corresponding to the same frequency
~. The last event can occur if one chooses b and c so that
f (I) has two local extrema for the positive argument,
say, A and B,as is shown in Fig. 1. It is possible only
if 0(c (9/(20b ). We let b = 1 and var'y c from zero to
0.44. For each value c, the quantity p varies in the inter-
val [ A, B ] [see the inequality (18)]. After the deter-
mination of U for a given p in accordance with Eq. (17),
we find numerically I ( U ) for each U ( v E [0,U ] ) and
then calculate the left-hand side of Eq. (14) as a function
of v, which hereafter is designated as 8(v ). 8(U ) is an an-
tisymmetric function of the argument that follows from
Eq. (14). Since we assuine that it belongs to the interval

[0,2m. ], we have 8=nas th.e center of 8(u ) symmetry. It
allows us to restrict our consideration to the positive U,

i.e., 8E- [n, 2m. ].
Qualitatively, one can distinguish three general types

of the observed 8(v ) behavior. They are reflected in Figs.
3-6. However, before discussion, we note that there is a
close relation between the functions I (v ) and 8(U }. So
in order to explain the dependence 8(U), it is useful to
start with Eq. (15), which determines I (v ).

The change of the pulse intensity extrema depends cru-
cially on the function D(I). Three observed kinds of
D (I) are plotted in Fig. 2. The case presented in Fig. 2(a)
provides a monotonic I (v ) dependence with I (0)=0
and I (v~ )=p . The corresponding graph of 8(u) [the
first type of the 8(U) behavior] is shown in Fig. 3. Quali-
tatively, it is a monotonic function as well, similar to
those observed for the models considered in the previous
section [see Eqs. (26) and (29)]. This type of graph is ob-

f(I)=I bI +cI— (32)

where b and c are real constants, that allows a bistable re-
gime of bright pulse propagation. We also employ this
model in order to demonstrate a wide range of traveling

B. Dark-pulse bistability

As has been stated by Kaplan [3] it is the nonlinearity
of the type

0.2 0.4 0.6

velocity
0.8

3
1

FIG. 3. Example of the first type of 0(v) behavior; c =0.4,
p~=0. 2, v =0.84.
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5.5

" 3.4
.

I 4,5

3.2

V 1 V
1 2

I I
I l I I . I I I 3

0.1 0.2 0,3 0.4 0.6 0.6 0.7 0.8

velocity

l t

0.2 0.4 0.6 0.8

velo|. l ty

3.5

3
1.2

FIG. 4. Example of the second type of 8(u) behavior. It was
observed for every c (0&c &0.44) and p being rather close to

(see Fig. 1), e.g. , at c =0.01 for 0.45&p &0.58 and at
c =0.4 for 0.52 &p' & 0.71. The crossing of the level 9=0, with
the curve 8(u) produces two roots of Eq. (14) and hence pro-
vides evidence for the bistability regime; c =0.3, p'=0. 55,
u =0.71.

served for every c when the value of p is far enough from
the external points A and B depicted in Fig. 1.

Function D(I) for p close to A (i.e., for the smaller
background amplitudes) is as shown in Fig. 2(b). It is
easy to verify that in this case there is a break in the
I (u ) dependence as u ~u . In other words, pulses

- 6.3

- 6.1

Qf
CD

1

I

I

I

t
I

I

I

I

I

I

I

i

V
I
I

I

velocity

I

I

I

i
I
I

'l

I

I
I
I

I

V
2

l

-6,9

- 5.7

5.5
7

FIG. 5. Example of the third type of 0(u) behavior. It was
observed at every c as well and for p being close enough to B
(see Fig. 1), e.g., at c =0.2 for 1.62 &p & 1.93. As is seen in this
case, the dark-pulse bistability can also exist; c =0.1, p'=2. 6,
v =6.09.

FIG. 6. Examples of the second and third classes correspond-
ing to the same co but different p. c =0.4, co =0.41. 1:
p =0.58, u =0.72. 2: p =1.09, u =1.05.

having rather small amplitudes do not exist in the system.
It is the effect that has been predicted earlier in Sec. II B.
Corresponding examples of 8(u ) are shown in Figs. 4 and
6 and make up the second type of 8(u) behavior.

As follows from Fig. 4 there can be values of 0 for
which two roots of Eq. (14) are possible. It is the situa-
tion that has been called here the dark-pulse bistability.
Two localized dark traveling waves having different
shapes and velocities but the same frequency and phase
shift at infinity propagate against the same background.

The third type of the 8(u) behavior possesses the bista-
bility regime, too. The main features of it are as follows:
I (0)%0 and I (u )=p [see Fig. 2(c)]. It means that
the existence of so-called black pulses is impossible in this
case. It is worth noting that I (0)=0 is always the root
of Eq. (15), but now there can be another root that is

closer to p than zero. Hence, as follows from Eq. (14),
8(0)=0 and 8(u )=0, so that the bistability regime is

possible as well. This type of 8(u) dependence has been
observed for p close enough to B (i.e., for solutions
against more intensive backgrounds).

It is interesting to point out that for values of c large
enough (0.38 &c &0.44), both bistability regimes are ob-
served for the same value co (see Fig. 6). Thus in this case
we have multistability in a definite sense. Indeed, there
are two localized solutions against both backgrounds cor-
responding to the same frequency.

Our numerical results allow us to conclude that the oc-
currence of the dark-pulse bistability is a thresholdless
process with respect to c (it has been observed even for
c =10 ). It is unlike the bright case when the bistability
takes place for those values c that exceed some critical
value [5]. We also note that formation of the convention-
al NSE solitons is a thresholdless process as well [13].
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IV. CONCLUSION

To conclude, we have investigated localized traveling
dark solutions of the HNSE satisfying nonzero boundary
conditions (3). The problem considered is analogous with
the treatment of the bright-wave dynamics. There is a bi-
stability regime of the dark pulses, as well, which is ob-
served, in particular, for the N-shaped polynomial model.
In addition, the dark-pulse bistability has peculiarities in
comparison with the bright one due to the nonzero
boundary conditions, and, therefore, one parametric
character of a solitary-wave solution.

A number of peculiarities we observed are as follows.
The bistability, which enables the existence of solitary
dark pulses with equal frequencies that can propagate
against different backgrounds, has a thresholdless charac-
ter. From the mathematical point of view, it means that
there are two or more (for a general case) formulations of
the boundary problem coordinated with the evolution
equation (4) (cf. the conventional NSE [4]). From the op-

tical point of view, it means that two levels of the cw
background can be realized. As a consequence, one can
expect the possibility for switching of the wave propaga-
tion in the system. Also, various multistable regimes in
such a system for other kinds of nonlinearity can occur,
say, for saturation models like those considered earlier
for bright solutions [5].

Speaking about small-amplitude pulses, one has to note
that for the rather general function f (I) they are de-
scribed by the KdV equation. It allows us to suppose
that solutions allowing limiting transitions to the KdV
solitons correspond to stable nonlinear dark pulses.
However, a general discussion of the dark-wave stability
was out of the scope of the present consideration.
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