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Pair correlations, cascading, and local-field effects in nonlinear optical susceptibilities
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A formalism is developed for evaluating the effects of pair correlations on cascading of the nonlinear
susceptibilities of fluid dielectrics. The corresponding correlative and nonlinear alterations of the usual
local-field corrections are determined. These corrections to the nonlinear susceptibilities when the po-
larization density is expanded in terms of the effective linear field are found to be significantly different
from results previously reported in the literature. The consequences of the considerable field dependence
of the susceptibility expansions on the local-field corrections and the cascading are pointed out, and a de-
tailed comparison is made to previous work. A simple model (P media), in which only the second-order
molecular polarizabilities are nonzero, is introduced in order to isolate the roles of the pair correlations
and the intermediate electromagnetic propagators on the parts of the macroscopic third-order suscepti-
bilities that result solely from cascading. In /3 media the exact macroscopic third-order susceptibilities
are expressed in terms of so-called irreducible cascading coefficients, which are multidimensional multi-

ple integrals involving known quantities. This model is extended to include intrinsic linear and third-
order polarizabilities and the effects of pair correlations in the local-field-correction factors.

PACS number(s): 42.65.An, 33.90.+h, 78.20.Wc

I. INTRODUCTION

The effects of pair correlations on the linear and non-
linear dielectric properties of fluids have been investigat-
ed extensively from a number of points of view [1—4].
Some indications of their influence on nonlinear optical
susceptibilities have also been observed [5]. For example,
Levine and Bethea [6] found that pair correlations can be
significant in associating liquid mixtures and it has also
been shown that they lead to a twofold error in the mea-
sured second-order susceptibility in liquid nitrobenzene
[7—9].

Pair correlations can affect any nonlocal phenomenon,
particularly cascading, which is the generation of
higher-order nonlinear dielectric effects by means of
lower-order ones. For example, in noncentrosymmetric
media, with nontrivial g' ', contributions to g' ' arising
from cascading have been observed [10—17]. Because of
nonlocality there is some ambiguity in isolating "intrin-
sic" higher-order effects from those arising from cascad-
ing [15—17]. Also, since it represents one way in which
the collective response of the medium differs from the
simple additivity of the isolated responses of its constitu-
ents, cascading comprises part of the problem of local-
field corrections [13,18].

We should contrast our work with the approach advo-
cated by Meredith [15—17], where the effects of cascading
from points throughout the medium can sometimes be
represented in terms of a cascading operator that acts lo-
cally upon the fields. This approach was formalized by
Meredith and co-workers [19—22] in a generalization of
the traditional [23—26] local-field argument correct
through third order, but it is not specific enough to allow
the identification of the effects of pair correlations.

It has been shown that dipolar molecules exhibit
enhanced third-order optical nonlinearities [27,28], and

dense incorporation of such molecules in polymers and
polymer liquid crystals may lead to nonlinear-optical ma-
terials of practical interest. It is of central importance,
then, to obtain estimates of the effects of pair correlations
on cascading in dense dipolar materials. Although pair
correlations and cascading have been discussed previous-
ly, see, e.g. , [29], no previous treatments, to the authors'
knowledge, have brought these concepts together as re-
quired for this promising class of materials. Since no pre-
vious treatment is entirely suitable for practical calcula-
tions of this kind, we undertake this problem here. This
paper develops a formalism for investigating pair-
correlation contributions to cascading in dipolar fluids.

We establish how cascading is manifested in three
different ways of organizing the macroscopic susceptibili-
ty expansion, how it depends on the correlations for vari-
ous modelings of the microscopic properties of the fluid,
and how it is tied in with a proper treatment of the local-
field problem for nonlinear media. The level of interest in
these questions and our discovery of several important
corrections to previous work has led us to present the for-
malism we require for model calculations and analysis of
experiments. The theoretical and experimental applica-
tions of this formalism are planned to be reported sepa-
rately.

II. ALTERNATIVE MACROSCOPIC
SUSCEPTIBILITIES

The signal generated by an externally applied field E,„
in a nonlinear medium is often studied in terms of a back-
ground linear field EL rather than either E,„or the full
macroscopic electric field E. It is known that there are
significant differences among these three fields in the han-
dling of the constitutive-relation, wave-propagation, sta-
tistical averaging, and local-field problems [12]. In this
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section we obtain nontrivial corrections to previous re-
sults that are crucial for the calculation of local-field cas-
cading.

We consider the field E in a nonmagnetic dipolar medi-
um in thermal equilibrium that is related to the polariza-
tion density P by

E=E,„—F (P), (2.1}

(4m. /c ) VV — V— 1 8
Bt

'82
at2

' (2.3)

where E,„satisfies Maxwell's equations with P=O. In
x =(x, t}space the components of this equation are

E'(x, t) =E,'„(x,t}
—g f d x'dt'F'(x —x';t —t')P (x', t'), (2.2)

J

where i,j =1,2, 3. See Ref. [30] regarding some of our
notational conventions. Although its precise structure is
irrelevant for the analysis in this section, the nonlocal
second-rank tensor F(x;t) is the kernel of the differential
operator

which, in turn, are expressed in terms of the y'"'s. These
relationships are used for identifying cascading for sta-
tistical averaging and for analyzing the local-field prob-
lem [12,14,33,34]. They are obtained by a method that
we illustrate next by expressing the y'"'s in terms of the
y'"'s for n ~3.

If we truncate the expansion (2.6) at third order and
then replace each factor of (E,„) by [E+F.(P)], we ob-
tain a nonlinear integral equation for P whose linear ker-
nel we invert to obtain

P=l (y ' (E)+y(2) ~ (E+F (P))82

+y"'(E+F (P)) '),
where

r=(U —y"'F)-' .

(2. 10)

(2.11)

+(1) p (1) (1) pt (2.12}

The iterative solution of (2.10) yields an infinite power
series in E whose coefficients are the exact g'"'s for n ~ 3,
but for n )3 correspond to the approximation y'"'=0 for
n &3.

On comparing Eqs. (2.7) and (2.10) we see that

The inverse in (2.3) is defined by the outgoing-wave con-
dition along with a consistent treatment of the singularity
at the origin [31,32]. In k—:(k, co} space Eq. (2.1) be-
comes

where

I ( (U P.y(1))—1

so that

(2.13)

E(k, co) =E,„(k,co) —F(k, co) (P(k, co)),

where the outgoing-wave (+1'0}propagator is

(2.4)

F(k, co)=4m[k —(cg/c+iO)2] '[kk —U(a)2/c2)],

(2.5)

with the tensor notations kk=(k;k, ) and U=(5;J ).
We suppose that P can be expanded in powers of either

E,„or E:

I'=(U+g"'F),
r'=(U+F q(") .

Upon further iteration of (2.10) we find that

~(2). I .(y(2).(I &. )82)

(2.14)

(2.15)

(2.16}

where the free dots define the tensor product contrac-
tions, viz. ,

P=y"'(E,„)+y' '(E,„)8 +y' '(E,„)8 +, (2.6)
y(2).(E)82=I .(y(2).(l '.E)82) (2.17)

P=g"'(E)+y( '(E)8 +y( '(E}83+ (2.7) The expression one obtains for g' ' in terms of the
y'"'s, with n 3, divides into two parts:

where (V) " denotes the nth-order direct product of the
vector V. Using a truncated form of the expansion (2.6)
in Eq. (2.1) one obtains an explicit solution of the wave-
propagation problem in the nonlinear medium. A similar
truncation of (2.7) when inserted into Eq. (2.1) yields a
nonlinear integral equation for E that can be solved ap-
proximately by systematically replacing E in P by a
known field, such as one finds with the expansion (2.6)
when E,„ is regarded as the known field. If the linear
field

x"'=x."+x."..'
~(3). I .(y(3).(I &. )83)

X."..'=—g X"'
I F, X"']

(2.18)

(2.19)

(2.20)

that we call the intrinsic and the cascading parts of y' ',
respectively [35]. The rank-three tensors y( ' [F, y( ']
with m = 1,2 are defined by

EL=E,„—F.(y"'(EL )) (2.8)
y"'[F y("],.(E)8'—=y") (p ~ (y(2'(E}8'))(E),

(2.21)
is taken as the known field, only the nonlinear effects are
treated perturbatively and one has the constitutive rela-
tion

P —g()).(E )+g(2).(E }82+g(3).(E )83+ (2.9)

It is convenient to obtain a nested set of dependencies
wherein the g("'s are expressed in terms of the y("'s,

y(2). [p .y(2)] .(E)8 =y( ).(E)(p (y( ) (E)8 })

(2.22}

Here F, is the dipole propagator in the linear medium
that is expressed in terms of the dielectric-constant tensor
6[ =U+47ry("] as—
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F,=4m (4n F '+ e—U) (2.23) g(1)—+(1) (2.30)

It is evident that g,'„' is a macroscopic third-order sus-

ceptibility built up out of successive second-order pro-
cesses connected by a wave propagating in the linear
medium [Fig. 1]. However, pair correlations enter into
y(„) only through their inhuence on the macroscopic g'"
and y' ', rather than from the microscopic cascading be-
tween molecules that is statistically averaged as with y,'„'
in Sec. III.

Let us next rewrite Eq. (2.7) as

which agrees with the results of Refs. [12, 14], and

P „[E ] =(1 ')-(P „[E)), (2.31)

which does not, cf. Eqs. (2.29) and (2.30) of [12], but
which is crucial for the correct treatment of the nonlinear
local-field and cascading problems in the EL formalism.

Equations (2.25), (2.26), and (2.31) lead us to the expan-
sion

P=y'"(E)+PNr [E],
where, e.g. , to third order,

P [E]—~(2).(E)82+~(3).(E)83

From Eqs. (2.1) and (2.8}we find that

(2.24}
+ [y"'—y"'] (EL)~3+ ) (2.32)

(2.33)

which, upon using Eqs. (2.9) and (2.31}imply that
(2.25)

g(2) ( l —l ).(~(2) )

and
E=EL—F. (PNL[E) } (2.26) g(3) (l —1).(~(3) ) (2.34)

P=y' '(E )+(I ') P „[E]. (2.27)

On the other hand, as an alternative to (2.24), and cor-
responding to (2.9), we can write

P=g"' (EL)+PNL[EL] . (2.28)

The exact equivalence of (2.27) and (2.28) leads to the
identity

X'")'(EL)=(l '} (PNL[E]) PNL[EL] (2.29)

Since by (2.26) E and EL differ only by nonlinear terms,
we infer from (2.29) that

Equation (2.26} does not allow us to eliminate E in favor
of EL in (2.24), except iteratively, in contrast to the tran-
sition E,„—+E. Using (2.26) in the linear part of (2.24) we
obtain

The susceptibilities (2.33) and (2.34) differ from the re-
sults obtained in Refs. [12] and [14] by the multiplicative
factor I '. This factor results from the difference be-
tween the linear kernels of the integral equations for P as
obtained in the E or E„formalisms. Equations (2.33) and
(2.34) are needed for a consistent treatment of the local-
field problem in terms of EL.

Another striking feature of the Ez formalism is the
cancellation of the third-order term g,'„' that appears in

the EL formalism. Therefore, the cascading in this pic-
ture is entirely implicit in the intrinsic susceptibility y;„,
appearing in (2.19) and so can be isolated from other
effects only within specific models. We see then that the
identification of cascading is strongly dependent on how
one chooses to organize the power series for P in terms of
the various fields. For example, parts of the purely
second-order terms in the E formalism get promoted to
third-order cascading terms in the EL formalism because
of the second-order difference between these two fields.
Those cascading terms then exactly cancel terms that
arise because of the differences, in all except the lowest
order, between the fields E and E,„. Thus g,'„' disappears

entirely in the EL case. The corrected susceptibilities
(2.33) and (2.34) are required for the quantitative evalua-
tion of the third-order cascading signals in terms of EL.

III. MICROSCOPIC MODKI.

(~) (2) (3) (~) (2) (3)

FIG. 1. Graphical representations of the third-order cascad-

ing terms y"'(F, .7t ] . The external lines depict incoming

and outgoing waves, while the intermediate line represents the

propagator F, in the linear medium; the square boxes refer to
the wave mixing generated by g' '. The numbering is such that
the top box corresponds to the formal functional dependences
g' '(1+2+3;I+2,3) for m =1, and g( '(1+2+3;1,2+3) for
m =2.

Statistical correlations in a model of the linear dielec-
tric properties of a collection of nonpolar molecules in

thermodynamical equilibrium were studied in detail by
Bedeaux and Mazur [31]. The same model was extended

to the nonlinear case by Bedeaux and Bloembergen [12],
but cascading was considered only in the uncorrelated
limit. We apply this model to the nonlinear case to iden-

tify the correlative part of the polarization arising from

cascading in each of the three ways of organizing the sus-

ceptibility expansion considered in Sec. II. Our treat-
ment of the EL formalism yields new results in both the
uncorrelated and the correlated cases.
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The model of Bedeaux and Mazur consists of a collec-
tion of N identical molecules at positions R,. and with

orientations 0;, with i = 1,2, . . . , N. It is assumed that
each molecule responds to an electric field as a fixed-
point dipole, but that it has no permanent dipole moment
[36]. Macroscopic observables are calculated by statisti-
cal averaging over the molecular positions and orienta-
tions with the neglect of any dynamical changes in R;
and 0, that might occur during the interaction with the
electric field. The molecular susceptibilities a'"',
n =1,2, 3, . . . , are assumed to be local, time invariant,
and, in general, orientation dependent.

The molecular dipole moment p „(x,Q, t) generated in

response to the local field ELF(x, t) is

p „(x,Q, t) =fdt'a"'(Q, t —t'}.[EL„(x,t')]+n[E„„],
(3.1)

where, suppressing the time integrations,

n[E„„)=a' '(Q) ~ (E„F) +a' '(Q) ~ (EL„) + . -.

(3.2)

The local field at (R;,t), which is a function of all of
the variables [N] —= (R),Q), . . . , Riv, Qiv), is the sum of
E,„, the dipole radiation from the other molecules, and
the self-field [31]:

Ei F(R;,t; [N] ) =E,„(R;,t) —g Idt'[F(R; R;t——t')(1 —5, )+5,"—,'[F(0;t —t') —F (0;t —t')]] p, )(R.,Q, t'),
J

where f denotes Hermitian conjugation.
If we note that the total dipole-moment density is given by

Po(x, Q, t; [N] )=p(x, Q; [N] )p, )(x, Q, t),
where the particle density is

N

p(x, Q;[N])= g 5(x—R, )5(Q —Q, ),

(3.3)

(3.4)

(3.5)

then (3.3) can be rewritten compactly as

EL„(x,t; [N] ) =E,„(x,t) —fd x'dt'dQ'H(x x';t —t') (—P()(x', Q', t', [N J )) . (3.6)

Here H is the short-distance-modified propagator [31]

H(x —x', t —t'}=—F(x—x';t t'), ~x——x') )a,
=——,

' [F(x—x'; t t ') F—(x —x'; t —t—') ],
~x —x'( (a, (3.7)

where the limit a~0+ is taken after all integrations
have been completed. The representation-independent
form of Eq. (3.6) is

where Fz( [N] ) is the N-particle distribution function, V
is the volume, and Q is 4n (linear molecule) or 8n (other-
wise). Because of correlations the statistical average of
(3.9) does not yield an integral equation for P—:(Po).
However, if we iterate (3.9) up to some order in E,„and
then ensemble average, we can use the methods of Sec. II
to obtain the g("'s and g("'s in terms of the statistically
averaged y'"'s.

The inversion of the linear part of Eq. (3.9) brings in
the linear factor

Et F
=E,„—H. ( P()), (3.8)

~here the dot operation has been extended to include the
intermediate integration over the orientation, and we
have suppressed the dependence on [N ] .

Using Eqs. (3.1), (3.4), and (3.8) we obtain an integral
equation for Po [12]:

Ko—= (U+pa"' H) '=(U —yo 'H), (3.11)

(3.12)

so that upon iterating the higher-order terms we get

P y(1).(E )+y(2).(E )s2+y(3).(E )83

with

Po=pa") (E,„)—pa"'(H. (Po))+pn[E,„—H. (Po}] .

(3.9)

The macroscopic polarization density P(x, Q, t) is the
statistical average

and

y,'"=K,.(pa" '),
y(2). K (+a(2) (K( )e2)

y'"=[y."'];.,+ [y.'"],„
(3.13}

(3.14)

(3.15)

P{x,Q, t ) = g (1/Q) Id Q; (1/V}d R;

XF)v( [N J )P()(x, Q, t; [N ] ), (3.10)

[y(3)] . K ( ( a)(3K )s(3)

[yo"Icas= —2 yo" [Hi( yo" ]m ~. (3.16)

(3.17)
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K'=(U+H pa ) =(U —H y )

H~ =(K()) '.H=H. (K())

(3.18)

(3.19)

y(3) ( [y(3)] )

y."..'—= ( [yo"'l...»
(3.21a)

(3.2 lb)

then g' ' decomposes into terms representing the intrinsic
and cascaded third-order susceptibilities

The ensemble average of Eq. (3.12) yields (2.6) with
y(n) ( y(n) ) (3.20)

Then y'", g' ', and y' ' are given in terms of the y'"' by
Eqs. (2.12), (2.16), and (2.18)—(2.20), respectively. Also,
g( ' and g( ) are obtained from Eqs. (2.33) and (2.34), re-
spectively. If we call

tion function [4]. For a uniform liquid of density po, we
have

g' '(Q)=(po/Q)f, (0)a' '(0), (4.8)

where f, (0) is the normalized orientational distribution
function

JdQ f)(0)=1 .

The orientational average of y( '(0) is then

y' '—= (1/0) JdQy( '(0)

(4.9)

(4. 10)

(3)— (3)
+int (4.1 1)

Next we consider the statistically averaged third-order
terms. We see from (4.6) that the intrinsic third-order
term

g(3) —g(3)+ g(3)

P(3).— (3).(I (. )83)int Pint

p(3). — (3).(I &. )Is 3
Seas Yeas

(3.22)

(3.23a)

(3.23b)
y'„,=/ y' '[F.y' 'j (4. 12)

is actually a sum of two cascading terms involving two-
particle correlations. This is in contrast to the noncorre-
lative "cascading" term

Thus we see that in this microscopic model the cascading
contribution is indeed recovered in the EL-field formal-
ism; see the discussion following Eq. (2.34).

that arises in passing between the E,„and the E pictures.
Summing these two contributions, we get

IV. P MEDIA
y(3)=y X. , (4.13)

a("'(0)=0, n%2 (/3 media) .

When (4.1) applies, Eq. (3.9) reduces to

P()=pa( '(E,„—H (P ) )

(4.1)

(4.2)

To identify irreducible cascading coefficients, we study
cascading under circumstances where it can be isolated
from other e6'ects by specializing the model of Sec. III to
the artificial case in which [37]

where

(pa()[Hpa()j)+y()[Fy()j (4.14)

Equations (4.6) and (4.14) involve the density-density
correlation function [38]

(p(x, 0; [N j )p(y, 0', [N j ) )

=(po/0) F2(x, Q;y, Q')

(4.15)+(po/0)5(x —y)5(Q —0')F, (x, Q) .

In the uncorrelated (unc) limit F2 factorizes and so

(p(x, Q; [N j )p(y, Q', [N j ))„„,
=(p()/0) F, (x,Q)F, (y, 0')

+(po/0)5(x —y)5(0 —0')F, (x, Q) .

a single iteration of which gives Po through third order in

E,„,

P =pa' '(E,„) —gp[a' '[H pa' 'j ] (E )

(4.3)

(4. 16)The ensemble average of Eq. (4.3) is

P=y '(E,„) +y' '(E,„)~

where g2(x, 0;y, 0') =F2(x,0;y, 0') —F, (x,0)F, (y, 0'),
(4 4) The pair-correlation function, which is defined by

and

(2) ( )a(2)

y = —y (p[a( ~ [H.pa(2)
j ] )

(4.5)

(4.6)

(4. 17)

vanishes in the uncorrelated limit.
In the average (4.6) the 5 functions in (4.16) yield a

self-correlative term that is omitted in the identification

For P media g'"' and y'"' are identical for all n

In P media the susceptibilities g' ' and y' ' are also
identical:

(pa(2)[Hpa(2)j)y(2)[Hy(2) (4.18)

This leads to the decomposition of y' ' into its uncorre-
lated and correlated (cor) parts,

y' '(x, Q) =y' '(x, Q) =(p()/0)F, (x, 0)a' '(0), (4.7) Unc++cor (4.19)

where po=N/V and F, (x, Q) is the one-particle distribu- where
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y'„„',=/y' ' [G y' 'j (4 20) where

A=a '(Qlt;t', t3).IU a"'(0'It', t»tz}j i

+a'"(Qlt;t„t') ~ tU.a"'(0'lt', t„t3}jz, (4.24}

y(z)). IH. ( ( Ig j
)a(z) y(z)) j )

and in the limit a ~0+,
G=F—H=(4m /3)U .

(4.21)

(4.22)

In P media both g(„), and y(„) arise solely from cascad-
ing. However, as we see next y(„)%0only when gz%0, so
unlike y„'„'„ it is nonlocal and responsive to molecular
correlations.

As a consequence of Eqs. (4.5) and (4.22) one finds
from (4.20) the local structure

and now the I
.

j notation refers only to tensor con-
tractions. For a uniform liquid Fi(x,Q)~f)(0)»d so
the spatial Dirac 5 functions in (4.23) give rise to an
overall momentum-conserving 5 function in k space,
which we ignore, along with a factor 5(co —g co )

representing energy conservation resulting from time in-
variance, which we also ignore, when we write down the
Fourier component of y„'„', in k space:

x.".'.(QI —~;~(,~z ~3)

x.(3.).(0 lx;x i,xz, x 3 )

3

=(4n/3)(po/0) ff 5(x—x;) F, (x, Q)
i=1

X fdt 'd 0'F, ( x, 0' ) A( 0,O'
I t, t, , t z, t 3; t '), (4.23)

=(4m. /3)f, (Q)(p()/0)

X fdQ'f, (0')a(0 0'I ~'~) ~z ~3)

where

(4.25)

a=a' '(Ql —co;c0, +coz, c03) IU.a' '(0'I —co( —coz, co„coz)j (+a' '(Ql ru;co„co—z+co3) IU a' '(0'I —
coz

—c03;coz,coz) jz .

The nonlocality and the g2 dependence of g,'„' are manifested in its x-space representation:

(4.26)

y(.',),(0lx;& i,xz, x3)
= —(Po/0) fdt'dt"dQ'[gz(x, Q;x), Q')5(x —x3)5(xi —xz)a' )(QIt;t', t3) IH(x —x„t'—t") a'z)(0'lt";t„tz)ji

+gz(x, Q;xz, Q')5(x —x, )5(xz —x3)a' '(Qlt;t„t') IH(x —xz, t' —t") a' '(O'It";tz, t&)jz],

(4.27}

where, for simplicity, we have omitted the self-correlative part of (4.21). Translational invariance implies that when gz
and H appear together in (4.27), they depend on the same coordinate pairs, which presents the possibility of mutual
enhancements of the propagator and correlation-function contributions to g,'„'.

The nonlocality implies a nontrivial wave-vector dependence in the Fourier transformation of g,', ',. Here we obtain,
ignoring the overall k-space 5-function factor,

y,','(Ql —k;ki, kz, k3)= —(po/0)b(QI —co;co),coz, co3)—(po/0) f dQ'd qc(q, Q, Q'I —k;ki, kz, k3),

with the self-correlative term given by

(4.28)

b —a (Ql —co;co)+6)z,hl3)'Ih(co(+coz) a (Ql coi coz, co), coz)j i

+a' '(QI co;co(,coz+c03) Ih(coz+co3)'a' '(QI coz &3 ~z ~3)jz (4.29)

where h(co) = i (4/3)(co/—c) U is the Fourier transform of H(0, t), and where

c—:gz(Q, Q', k, +kz —q)a' '(Ql —co;co)+coz, c03).Ih(q, co)+coz) a' '(O'I —co) —coz, co„coz)j,
+gz(Q, Q', kz+k3 —q)a (QI —co;co),~z+c03).Ih(q, coz+co3)'a' '(O'I ~z ~3 ~z c03) jz (4.30)
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I)

(ki + k2 + k3 to( + (02 + (03)

+ k3, t()p + t(is)

, to, + t(i,)~ ~ (k, + k, - q, 0)

of the irreducible cascading coefficients for representative
parametrizations of the pair-correlation function,
second-order hyperpolarizabilities a' ', and ranges of
thermodynamic conditions. This work, which involves
the evaluation of a large number of multidimensional in-
tegrals using Monte Carlo techniques, is planned to be re-
ported elsewhere.

The major result of this section is the identification of
irreducible cascading coefficients that depend only on the
one- and two-particle distribution functions in addition to
the second-order hyperpolarizabilities and electromagnet-
ic propagators. These coefficients provide a means for es-
timating limits on the magnitude of two-particle correla-
tions in association with possible near-field enhancements
on the cascading arising from the propagator H.

V. GENERAL MEDIA

(k~ Mi) (k2 t(i2) (ks Ms)

FIG, 2. Graphical representations of a correlated third-order
cascading term Eq. (4.28) in wave-vector and frequency space.
The external lines represent waves that are mixed by the hyper-
polarizabilities a' ' depicted by the rectangular boxes. One arc
on the loop attached to the intermediate line corresponds to the
propagator h(q, ~2+co3) between two spatial points correlated
by the function g2, which carries momentum k&+ k3 —q, but no

energy, and represented by the other arc of the loop. An in-

tegration over all of the virtual loop momenta q is implied.

Here h(k, to) is the Fourier transform of H(x, t), viz. ,

h(k, co)= f d x dt e '"'" ""H(x,t), (4.31)

whose explicit form is given in [31]. Using translational
invariance we have

g~(Q, Q', k)—:f d x e '""g~(x,Q;O, Q') . (4.32)

A k-space graphical interpretation of the non-self-
correlative terms entering into Eq. (4.28) is shown in Fig.
2. In contrast to Fig. 1, the intermediate propagation
line in Fig. 2 contains a "bubble" subgraph representing
the effects of the molecular interactions.

In P media the susceptibility g( ' is equal to y' ' and is
given by Eqs. (4.28) —(4.30), but with g2 replaced by the
two-particle distribution function F~. Using (4.17}we see

that this leads to a different, propagator-dependent un-

correlated limit than y(„„', [cf. Eq. (5.16b)]; however, g(, ',

and y,'„' are identical.
For more realistic media, with a"'WO and where the

effects of the a'"' for n ) 1 are a small perturbation on the
linear behavior, the generalizations of Eqs. (4.27) and
(4.28) are of such complexity that their exact evaluation
is typically not practical, except when the effects of corre-
lations on the linear behavior are small. Estimates of the
cascading can be made within a more comprehensive pic-
ture (Sec. V) using the irreducible cascading coefficients
defined by (4.25) and (4.28), or their counterparts for y'
with the conventional uncorrelated linear local-field fac-
tors appended in the usual way [11,14,23 —25]. Even this
is no trivial endeavor. The first step is the computation

The linear polarizability (a"') affects the polarization
directly and indirectly through local-field corrections to
the nonlinear contributions. These effects complicate the
extensions of the P media model in which the nonlinear
(cascading) effects due to correlations are handled exact-
ly. We carry out the extension to a'" %0 for n ~3 in
several stages.

A. Uncorrelated media

P„„,=(p&[ "'.((E „&„„,)+ "' ((E „&„„,) '

+a"'((E„„&„„,) '], (5.1)

which is correct to third order in an expansion in terms
of the uncorrelated local-field

(E„„&„„,=E+G (P„„,) .

Therefore, to third order in E we have

P —+(() .(E)++(2) .(E)s2++(3( .(E)83

(5.2)

(5.3)

where the first-order susceptibility is given by the
Clausius-Mossotti relation

g'„'„', =f, ((p&a"')=(p&a"'(f, .),
f,=—(U —(p&a"'.G} '=(U —G (p &a'")

The usual form of Lorentz local-field correction

f,= —,
' (e„„,+2U)

(5.4a)

(5.4b)

(5.5)

is recovered in terms of the uncorrelated dielectric tensor

~„„,=U+4~y„"„', . (5.6)

The complicating feature of the ensemble-averaged sus-
ceptibilities y'"', y'"', and g'"' is the occurrence of the
"inside" local-field factors Ko and Ko, cf. Eqs.
(3.11)—(3.19). The "outside" local-field factors I and I'
given by Eqs. (2.11) and (2.13), respectively, are them-
selves defined in terms of ensemble-averaged quantities,
but otherwise present no difficulties.

In the uncorrelated limit Ko and Ko also present no
problems [12,14]. We can see this by neglecting all corre-
lations in the ensemble average of Eq. (3.9), which yields



46 PAIR CORRELATIONS, CASCADING, AND LOCAL-FIELD. . . 4179

The higher-order susceptibilities are

f ({p)a"'(f ) ') (5.7)

(3) (3) (3)
Xunc Xunc)int+(Xunc}cas &

where we introduce the notation [39]

(X'„'„',);„, —= f, ({p) "'(f, ) '),
(3) (2) . . (2){Xunc }cas—XXunc [ Gs Xunc ) m

(5.8)

(5.9)

(5.10)

G, =4m(e„„,+2U) (5.11)

We see that (X„'„',)„„which is the local-field-corrected
form of (4.20), survives in the P media limit, while
(X'„„',);„,does not.

It is important to see how the preceding results for y' '

follow directly as the uncorrelated limits of Eqs. (2.12),
(2.16), (2.18)—(2.20), and (3.20) rather than indirectly
from Eq. (5.1). This is shown in the Appendix and pro-
vides the basis of our analysis of correlations.

Using the effective linear field E„(1)in the uncorrelat-
ed limit defined by

as in P media Eq. (4.7) except for the local-field correc-
tions, and

B. Linear media

We use the linear form of Eq. (3.9) to study X'":

P ( 1 ) pa ( 1 i
(E ) pa ( 1 )

( H .( P ( i ) ) ) (5.17)

We replace (5.17) by a hierarchy of integral equations
corresponding to a density expansion of Po" in terms of
the variance bp[—:p

—(p) ]:
P"'(l)=pa'" (E,„)—{p)a'".(H {P'"(1))), (5.18a)

moving them from the ensemble averaging, and thus as-
cribing all correlative effects solely to the irreducible cas-
cading functions.

Generally, it is necessary to assess the role of correla-
tions on all of the factors that involve linear susceptibili-
ties appearing in the X'"'s and the g("'s to see how such a
hybrid model is embedded in a more general approach.
Despite the enormous literature concerning the effects of
correlations upon linear dielectric properties, we are not
aware of any systematic techniques for dealing with the
linear factors arising in the local-field and cascading
problems as we have developed them in Sec. III. The
method we consider next (linear media) is especially
designed for application to local-field corrections in the
nonlinear case (nonlinear media}.

E„(1)=E,„—F (X'„'„', (E„(1)), (5.12) P,"'(p +1)= —{p)a"'(H (P"'(p +1)))

we obtain in place of (5.3)

P„„,=X'„'„', (EL(I))+g'„'„', (EL(I)) '+g'„'„', (EL(1)) ',
where

—&pa"'(H (Po '(p))), (5.18b)

(5.13)

where, in disagreement with the results of [12, 14], cf.
Eqs. (3.20)—(3.22) of [12],

P(()—y P(1)(p)

Thus the polarization of the linear medium is

(5.19)

g'„'„', ~ =(~,)„„,~ (&p } '" (f, )"),
kunc kunc)int+(tune)cas &

(g'„'„', );„, =(& )„„,({p) "'(f, ) '),
{tune }cas g tune [ s Xunc I m

(5.14)

(5.15)

(5.16a)

(5.16b)

P(1)—y P(()(p)
P

in terms of the statistical averages

P'"(p):—{P' "(p)),

(5.20)

(5.21)

The factor (Ko)„„,and the propagator H, are defined in
the Appendix. It is clear that g'„(„', and (g(„„',)„s are the
local-field-corrected P media limit forms of g'„„', and g'„„'„
respectively.

Third-order term (5.16b} represents the contribution of
the cascading over and above the linear background
when there are no correlations. Because of the absence of
local-field-correction factors to the outgoing-wave parts
of the susceptibilities (5.14)—(5.16) and the different form
of cascading manifested in Eq. (5.16b) as compared to Eq.
(5.10), there are significant differences between the non-
linear susceptibilities X'"' and g'"' for n ~ 2.

The uncorrelated limit permits the direct assessment of
the propagator and linear local-field effects on the cascad-
ing. On the other hand, in the P media model the role of
the propagators and the pair correlations is clearly del-
inated, but the linear local-field effects are absent. A hy-
brid of the two models is to ignore correlations in the
linear local-field factors Ko, Ko, I, and I', thereby re-

EL=+ Ei (p),
P

EL(1)=E,„—F (P(')(I)),

EL(p) = —F (P("(p)), p )2 .

(5.22)

(5.23a)

(5.23b)

We can now develop a correlative expansion of P"'.
From (5.18a) we find that

P"'(l)=(K. )„„,({p& "'(E,„)) .

Thus in the uncorrelated limit we have

(5.24)

P"'(1)=X'„'„', {E„(1)). (5.25)

Generally, we can write

(&)— (1) (1)
~unc+~cor ~ (5.26}

where the lowest-order contributions to y,",,' are generat-

with a corresponding expansion for the electric field in
the medium, namely,
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ed by the sum

P()"( 2 ) +P()"( 3 ) = —( K() )„„,.(C(')".( K() )„„,( E,„)),
Ko pa'"'=(KD)„„,.(pa "'—Co"' —H' (Ko)„„,.(p }a'"'),

(5.35)

(Ko)„„,is defined in the Appendix, and

(5.27) while the Kp factor leads to the expression:

K(')=(K())„„,(U —H ".(K())„„,), (5.36)

Co("'=bpa"' (H ((Ko)„„,.(gapa'"'))) .

If we call

(5 28a) where

H"'—:(Apa"' —C'") H (5.37a)

C(n) ( C(n) ) (5.28b)

so we see that to lowest order in the correlations

y "=(K())„„,~ ((p )a"'—C"' (K())„„,),
r=(r)„„,—f, c"'f, F

and therefore

= —f C .f(1) (1j

(5.30)

(5.31)

(5.32)

The significance of Eqs. (5.4), (5.26), and (5.32) is that
they represent the solution of the linear local-field prob-
lem, correct to first order in the correlations. As part of
the solution of that problem we see from (2. 15) and (5.32)
that

then

P("(2)+P"'(3)=—(K())„„,(C"' (K('))„„,(E,„)),
(5.29)

H'" ~ ——H (spa") —C',") . (5.37b)

Using Eqs. (5.35) and (5.36), in conjunction with Eq.
(3.14), we obtain a decomposition of yo

' into a part that
does not vanish in the limit of P media and a part that
does, vj.z.,

y."'=y."[n]+y."[n.],
y(2)[P](K)pa(2)((K())82
y() '[po] = —(K())„„,S()

' ((K())„„,)

(5.38)

(5.39)

(5.40)

((K() ) )(U. )@(" ) —(K() ). }~'2(U. )@(n —&)+ ~ ) t

K"' ~ =—(K,')„„,H"),
(5.42)

(5.43)

respectively. Here Po(/3) refers to a term that is zero
(nonzero) in the P media limit. For n ~2, we have intro-
duced the correlation-dependent quantities

S'"':—C "'—H' ' (K )„„,&p)a'"'+R'"' (5.41)
R( ). (

(n) H(1) (K ) ( ) )

r'=r„'„,—[(K')„„,] ' (D"'),
where

D"'=—f, F (K())„„,C"' f,
= —(K')„„,F y,',", .

(5.33}

(5.34a)

(5.34b)

andy refers in (5.42) to the sum of all other possible or-
derings of the direct products of the tensor K" ' and the
(n —1) factors of U, etc. We use the same notation in
connection with other tensors.

Calling
S(n) ( S(n) } (5.44)

Thus in the linear case, pair correlations enter in through
C"', which has an integral representation analogous to
those for the irreducible cascading coeScients including
the dependence on the propagator H.

C. Nonlinear media

we have then

y'".=(y'")„„,—(K())„„,S"'((K())„„,) ',
where

(y"')„„,—= (y,"'[13] } .

(5.45)

(5.46)

In this subsection the various linear local-field-
correction factors are considered only up to the lowest-
order correlative corrections, but the nonlinear correla-
tions associated with cascading are treated exactly. Be-
sides the factors I and I', linear effects enter into the
nonlinear parts of the polarization through the inside fac-
tors Kp and Kp. Since Kp always appears in conjunction
with pa'"', the pertinent quantity for n ~ 2 is

~(2j ~(2) +~(2)

where the first-order correction from the correlations is

(5.47)

The term S' ', which vanishes in both the uncorrelated
and the P media limits, has an integral representation
similar to that of the irreducible cascading coeScients
when terms of order (bp)3 and higher are dropped.

As in the linear case we can now write

~ = —f ~ [(p)a -((D '. )(f,.)+(f,.}(D'".))+(S' '+C"'.(K())„„,.F.f,.(p}a'").(f, ) '] . (5.48)

Similarly, we have

g2) —g(2) +g(2)

with

(5.49)

g,"„.= —(Ko)„„,.[(p)a"'.((D"'.)( f, . )

+( f . )(D()) ~ )}+S( ).( f ~ )@ ]

(5.50)
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The expressions (5.48) and (5.50) both arise from the
local-field corrections to & p) a' ' from first-order correla-
tive effects; they vanish in the P media limit.

Next, with the use of Eqs. (3.16), (5.35), and (5.36), we
find that

from the expression [cf. Eq. (3.17)]

yeas—= &ro ]cas)

=r"'[p]+yi'.![p.] (5.53)

=(y,'„",)„„,~ —(K,)„„,S"' ((K,')„„,~ )", (5.51)

Here

y"'[Pl —= —g & ro"'[P].{H p "'«Ko'}... )"].& (5 54)

to first order in the correlations, where

(y;'„",)„„,~ =(Ko)„„,~ (&p)a"'((Ko)„„,~ ) ') . (5.52)

The correlations are treated exactly in the cascading part
of y' ' apart from the linear local-field factors as we see

is the part of y' ' that reduces to g' ' in the p media limit;
it is a sum of tensor products of the two types of irreduc-
ible cascading coefBcients introduced in Sec. IV with
various uncorrelated linear local-field factors. Also we
have defined

r!!![po)= —X
—&ro" {HK y0 1

ro"—[p] {(Hx)„„,.y,'"[p] ] ) . (5.55)

We can now analyze the correlative structure of g' '.
Let us decompose the intrinsic part of y' ' into unc and
cor parts

with

rune
= (r tilt )unc+ ( r [p] )unc (5.58)

(3)— (3) (3)
Xint (Xint }unc+(Xint }cor r (5.56) and (y '[p])„„,is the uncorrelated part of (5.54). Thus

the part of (X',„,')„„,that survives in the p media limit is
where

(x,'„",)„„,~ ——(r)„..(r.".'. ((r')„„,~ )'), (5.57}
I

(X';„",[p])„„,:—(I')„„,.(y"'[p]„„,((&')„„,) ') .

Next, after some rearrangement, we find that

(5.59)

(XI!ti),, =(f')... ((rt "[p])...+rt3![po])~ ((r')„„,~ )"—r, s"'(r, )"
—(r)„„,(y'„'„',.([(r')„„,] '([(K,')„„,]-' D"')+p))
—f, C"'( Ko)„„cF.(X;'„,')„„, (5.60)

where (y' '[p])„, is the correlated part of (5.54). The terms in (5.60) involving the tensors y' '[p]„, and y,'„'[po]
represent contributions to the cascading that depend upon the pair correlations. The rest of the terms on the right-
hand side of Eq. (5.60), except the part of (X;'„,')„„that survives in the p media limit, viz. ,

x',„",[p]... =(r)„.. (r [p]... ((r')„„,~ )'), (5.61)

(5.62}

where

are due to correlative effects from the linear factors I, I', Ko, and Ko that correct the third-order polarizabilities.
Thus if the molecular third-order polarizabilities are less important than those of second order, then g,'„,' consists of just
the local-field-corrected cascading terms.

A similar analysis can be carried out with the cascading part of g' ', namely,
(3) (3) (3)

Xcas (Xcas }unc+ ( Xcas )cor

Xcas }unc —=Xcas[P]=XXunc {( s)unc Xunc ] m (5.63)

(Xcas)car—=Xcas[PD] =X [Xunc {(Fs)cor'Xunc] m +Xcor {(Fs}unc'Xunc] m +Xunc' {(Fa}unc Xcor] m ] (5.64)

(F,)„„,= [ f,.] '(Ko)„„,F=F.(Ko)„„,-[ f, ]

(F,)„,= —(F,)„„,X,",,'(F, )„„,=F (Ko)„„,C"'(Ko)„„,F .

We can now identify the p media limit parts of X' ':

x"'I:pl =—x';."[p)+x.".,'I:pl

(5.65)

(5.66)

(5.67)
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where y', „,)[P] is the sum of (5.59) and (5.61).
The susceptibilities g' ' with corrections due to correlations follow immediately. One finds that

g(3)—g(3) +g(3)

where g(„), is defined by Eqs. (5.15) and (5.16) and the correlative part is

g,"„'=(y"'[P]„„+y,"„'[Po]).((I')„„,)
' —y'„'„', ([(I')„„,-] '([(K')„„,] ' D"'.)+p) .

Finally, we group together all of the terms in g' ' that can be associated with cascading:

g,"„' =(y")[P]+y,"„)[((Io])((I')„„,)' —y")[P]„„,([(I')„„,]"([(&,')„„,] ' D"')+p) .

(5.68)

(5.69)

(5.70)

For the sake of consistency it is important to note that
[cf. Ref. [39] and Eq. (A9)]

(3)
Unc cas (5.71)

where (g„'„',)„, is from (5.16b) and y' )[P]„„,is the un-

correlated part of (5.54).
Equation (5.70) is the major result of this paper. It in-

corporates all of our new results on local-field and corre-
lative corrections along with our analysis of P media.
Since, as Bloembergen and co-workers [12, 14] have ar-
gued, the E„-based susceptibilities g'"', n ~ 2 can be con-
veniently associated with the nth order signals in a non-
linear dielectric, Eq. (5.70) represents a definitive starting
point for the quantitative analysis of the effects of pair
correlations on cascading in dielectric fluids.

VI. SUMMARY AND CONCLUSIONS

We have presented a detailed development of cascad-
ing from several points of view. Our major objectives
were to clarify the relationship between the seemingly
different characterizations of this phenomenon that have
appeared in the literature and to determine the depen-
dence of cascading on pair correlations.

The susceptibility formalism is investigated by compar-
ing expansions of the polarization with respect to the
external, macroscopic, and linearly modified fields. Each
of these expansions is particularly relevant for different
applications and examples are given in each case. The
identifications of cascading and local-field effects are
shown to depend significantly on the choice of expansion
of the polarization.

Cascading in its simplest context is investigated by
means of the model of P media in which there is no linear
molecular polarizability and only second-order hyperpo-
larizabilities. This leads to the identification of irreduc-
ible cascading coefficients that depend only on the one-
and two-particle distribution functions along with vari-
ous singularity-regulated electromagnetic propagators.
The detailed numerical investigation of these coefficients
should provide valuable insight as to the magnitudes of
cascading in various materials and its dependence on pair
correlations, the near- and far-zone electric fields, the
density, and the temperature.

General media are studied using a microscopic model
for calculating the macroscopic polarization in terms of
the microscopic hyperpolarizabilities from first to third

order. A systematic approach is developed for calculat-
ing the lowest-order pair-correlation effects on the sus-
ceptibilities, and, in particular, on the cascading. The
modifications due to pair correlations of the usual linear
local-field corrections are found.

The connection of cascading to the method of local-
field corrections is established. This is done by recogniz-
ing that cascading consists of the terms that are usually
ignored in correcting the third- and higher-order hyper-
polarizabilities for local-field effects. When this correc-
tion procedure is carried out consistently, cascading
terms appear naturally.

The relative contribution of the correlative cascading
terms is most easily seen by considering the results of Sec.
IV dealing with P media. One need compare the value of
the intrinsic (scalar) y( ) with those of both the correlated
and uncorrelated contributions. We can roughly approx-
imate these as:

(+(3)) ( /II )&(3)

(y'") -(P/&)'((3.'"')'

(g,'„')„,= —(p/&) (a ') g, h .

For a typical organic molecule possessing a large value of
a of 10 esu and an a' of 10 esu at a density of
10 /cm, all three terms will be of comparable magni-
tude. The propagator h will be of order unity, and in ma-
terials of interest, so too will g2. Both cascading contri-
butions will be most apparent at high density due to the
(p/0) dependence. This dependence, of course, could
be employed to separate the cascading contributions to
third-order processes. The sign difference implies that
the correlated and uncorrelated parts tend to cancel.
This can be explored by measuring a dense, large-a' ' ma-
terial in temperature regimes where the correlations are
rapidly varying.

The results of this paper provide a basis for the quanti-
tative numerical and experimental study of pair-
correlation contributions to linear and nonlinear suscepti-
bilities including cascaded processes in the third-order
susceptibility. Pair-correlated cascaded processes may
make significant contributions to third-order nonlineari-
ties in dense dipolar material. Since such materials are
already of interest due to enhanced intrinsic third-order
nonlinearities, these studies may have important practical
implications. Work in this direction is now in progress
and is planned to be reported elsewhere. Additionally,
experimental work to study pair-correlations contribu-
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tions to cascaded nonlinearities is in progress and is also
planned to be reported elsewhere.
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which with (A4) and (A6) yields (5.4a). Equation (5.7) is
obtained in much the same manner from Eqs. (2.16) and
(3.20), but the recovery of Eqs. (5.8)—(5.10) requires the
identity

H, —= (F,)„„,—G,
APPENDIX =(f, )

' (Ko)„„,(Hir)„„, (Ko)„„,(f,) (A8)
We establish how the g„'"„,"s follow directly from the

uncorrelated limit of the ensemble-averaged susceptibili-
ties. To do this we require the identities

where (Hx }„„,is the uncorrelated limit of (3.19).
We note that an important consequence of (Al) and

(AS) is the consistency condition

and

(r)„„,~ (K.,)„„,=(K,')„„,~ (r')„„,= f, ,

(Ko)„„,—:(U+ (p)a"'H)

(Ko)„„,:—(U+H (p)a"')

(r)„„,—= (U —r.".'. F} '

(&')„„,—:(U —F y'„'„', )

(Al)

(A2)

(A3)

(A4)

(A5)

(A9)

where (y'„„),)„, is defined by Eq. (5.10) and the second
term on the right-hand side is the uncorrelated part of
y,'„,' that can be identified with cascading. This should be
contrasted with the consistency condition (5.71).
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