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Effect of the dynamic Stark shift on dipole squeezing in two-photon processes
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Atomic-dipole squeezing in the presence of the Stark shift in two-photon Jaynes-Cummings model for
an atom initially prepared in a coherent superposition of states, interacting with the coherent- or
squeezed-vacuum-state field, is studied. Closed expressions for dispersive and absorptive components of
the dipole for the coherent-field input under the large-n approximation are derived. It is shown that
atomic-dipole squeezing is sensitive to both the phase of the initial field and the relative phase between
the two atomic levels. Our results show that, for certain choices of these phases, permanent dipole
squeezing can be obtained.

PACS number(s): 42.50.Dv, 32.80.—t

I. INTRODUCTION

Squeezing of the radiation field due to its potential ap-
plications in optical communication [1], high-precision
interferometry for gravitational-wave detection [2], and
laser spectroscopy [3] has attracted a great deal of in-
terest over the years. Although the Heisenberg uncer-
tainty principle is inviolate, in squeezed states fluctua-
tions in one of the quadratures are reduced below the
standard quantum limit at the expense of increased fluc-
tuations in the other quadrature. This idea of reduction
of quantum fluctuations in a dynamic observable at the
expense of enlarged fluctuations in its canonical conju-
gate variable can be extended to the atomic variables,
termed atomic-dipole squeezing. Production of such
states in resonance fluorescence has been predicted by
Walls and Zoller [4]. Wodkiewicz [5], W6dkiewicz and
Eberly [6], and Arvind [7] have considered squeezing in
the elements of su(2) algebra. Recently, the Jaynes-
Cummings model has been analyzed for dipole squeezing
[8,9]. A relationship between the field squeezing and the
dipole squeezing has also been established by some au-
thors. The dipole squeezing is shown to produce reduced
fluctuations in the radiated light [4,8, 10].

The linear superposition principle, which is one of the
most fundamental features of quantum mechanics, has
led to a new class of squeezed states, called superposition
squeezed states of field and atoms [8,11—13]. The idea of
preparing atoms in the coherent superposition of states
has become very popular, particularly due to its applica-
tions to the noise quenching by correlated emission [14],
quantum beats [15],and noise-free amplifiers [16]. It has
been shown that the superposition of atomic states has a
dramatic effect on pure quantum-mechanical effects in
atom-field interaction [17,18]. The phenomenon of
coherent trapping for certain choices of the relative phase
of the field and the atomic dipole is observed [18].
Phase-sensitive noise-free amplification has also been
studied [16].

We devoted this paper to an investigation of the
atomic-dipole squeezing in the two-photon Jaynes-
Cummings model. We consider the interaction of both

coherent and squeezed-vacuum field inputs with an atom
initially prepared in coherent superposition of ground
and excited states. To make the model closer to the ex-
perimental realization, we include the effect of the dy-
namic Stark shift. When the two atomic levels are cou-
pled with comparable strength to the intermediate relay
level, the Stark shift becomes significant and cannot be
ignored [19-21]. We show that the atomic-dipole squeez-
ing exhibits a phase sensitivity and undergoes dramatic
changes with a variation in the phase of the field or the
relative phase of the two atomic levels. The results for
dipole squeezing incorporating Stark shift are radically
different from the results obtained in the absence of Stark
shift. Hence, the inclusion of Stark shift is very crucial
for the validity of the effective Hamiltonian.

The present paper is organized as follows. In Sec. II
we define the model and derive analytic expressions for
atomic-dipole squeezing. In Sec. III numerical results are
presented for both coherent and squeezed-vacuum input
fields for various initial conditions.

II. TWO-PHOTON JAYNES-CUMMINGS MODEL
IN THE PRESENCE OF STARK SHIFT

We consider on-resonance interaction of a single-mode
field of frequency co with an effective two-level atom of
transition frequency mo through two-photon transitions
in a lossless cavity. The intermediate relay level is so lo-
cated as to give rise to a significant Stark shift. The
effective Hamiltonian describing such a system (with
ii)= 1) is given by

H, tt=toa a+cooo3+a a(P2~a )(a~+P, ~b )(b~)

+g(a o +a o+),
where co0=2co. a and a are the usual photon destruction
and creation operators, and o 3= ~a ) (a~ —

~b ) (b~,
cr+ = ~a ) (b ~, and o = ~b )(a

~
are the atomic flopping

operators expressed in terms of the excited ( ~a ) ) and
ground (~b )) states of the atom. P, and P2 are the pa-
rameters describing the intensity-dependent Stark shifts
of the two levels due to the virtual transitions to the in-
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termediate relay level and g is the effective two-photon
coupling constant.

The time evolution of a Heisenberg operator in terms
of the well-known time-dependent unitary transformation
operator U(t} can be written as

e(t) = U'(t)e(O) U(t), (2)

where

U(t)=e

By proceeding in the standard fashion we obtain the fol-
lowing expression for U( t):

U(t)=

—iE„+t tEn t
sin H„e " +cos H„e

—iE t —iE t
sin8„cos8„(e " —e "

)

—iE„ t —iE„ t
sin8„cos8„(e " —e "

)

—iE t —iE„+t
sin H„e " +cos O„e

(4)

where

sin8„=(1/&2)(1+rt„/0„)'i

E„+=co(n +—1)+A,„,
n(1+r )+2r

~n =

Q„=[g (n +1)(n +2) +r„i]'i

and

[n(1 —r ) —2r ],
2T

(p /p )1/2

We consider the situation in which the atom is initially

in a coherent superposition of excited and ground states
and that the initial field is an arbitrary superposition of
Fock states, so that

p(0)= g C„[cos(8/2)la;n )+sin(8/2)e '~Ib;n )]
n, m

X [c os( 8/2)( n; al +si n( 8/2)e'~(n;bl], (7)

where C„=C„C* and C„are the coefficients in the
Fock-state expansion of the initial field. 8 is the degree of
excitation and ())) is the relative phase of the two atomic
levels.

From Eqs. (2)—(7) the combined atom-field density ma-
trix can be calculated in a straightforward manner, which
when traced over the field variables gives rise to the fol-
lowing atomic density matrix:

p„(t)= g {cos (8/2)[C„„IUI)'I la)(al+C„„2UI)'Uzi ' la)(bl+C„2„Uzi 'U)", ' lb)(al

+c„,. 2IU(2) "I'Ib&&bl]

+cos(8/2)sin(8/2}e'~[C„„+OUI)'UIz' Ia )(al+C„„U()))Uz~ ' Ia )(bl

+C„2„+2Uz) 'UIz' Ib )(a I+C„2 „U2", 'Uzz Ib &(bl]

+cos(8/2)sin(8/2)e '~[C„+,„U')2'UI)' la &(al+C. +p, —2U]2 Upi
" la &&bl

+( U(n —2)U(n) lb )( I+( U(n —2)U(n —2) lb ) (t ]

+sin'(8/2) [c„+,„+,I
U', ",'

I la & & a I+C„+2 „UIz'Uzz "
la & & b

I

+C.,.+»zz "U')z' Ib &&al+C. .IU~z "I'Ib &&b1]] .

The above result can be used to obtain expectation values of the atomic operators

(o )e ' '= g [cos (8/2)C„„2U)i'Uz( ' +cos(8/2)sin(8/2)e'~C„„U))'Uzz

+cos(8/2)sin(8/2)e ' C„+z „2UI2'Uz) ' +sin (8/2)C„+2 „UI~'Uzz ' ],
(o 3) =2 g [cos (8/2)C„„ I

U() )'
I +cos(8/2)sin(8/2)e'~C„„+z U()i) U()~)

+cos(8/2)sin(8/2)e '~C„+2 „U~Pz) U((")) +sin (8/2)C„+z „+zl UI~) I ] . (10)
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If the field is in a coherent state ia ), then

C„=a"a' exp( —
t'ai )/(n!rn!)'i

with a= iaie'~ and t'ai =n, where g'is the initial phase of
the input field and n is the mean number of photons in
the coherent state.

In general the sums in Eqs. (9) and (10}are computed
numerically, however, these summations can be per-
formed analytically for n &&1. This is because for large
n, the dispersion in the Poissonian distribution of the
coherent state in the in ) representations is much smaller
than the mean number of photons n. Hence, for n ))1,
only large n values contribute to the sum over n. Conse-

quently, one can get closed-form expressions for (9) and
(10) by expanding Q„and sin8„ in powers of n '. Re-
taining terms of order n

Q„ i=nf y—, y=g/r(1+r ),
tP =g ( 1+r ) l2r, sin(28„z ) =2r /( I +r ~) .

(12)

According to Ref. [20] the corresponding results in the
absence of the Stark shift for the large-n approximation
follow by setting r =1 in Eq. (12).

By substituting Eq. (11) and relations given by (12) in
Eqs. (9}and (10) we get

(o )e~' '=e ~'&' i s—in2gt (n —
—,
' )+ie +"[n sine(t) —

—,'sina(t)]z;, z;, r cos (8/2)e '~

(1+r )t'ai

1 —r+ I cos2—ft(n —
—,
' )+e '"[n cose(t) —

—,'cosa(t)]]
1+r

2p g, ] 1+I4 4

+cos(8/2)sin(8/2)e' cos2gt +e
z z

cosa(t)+i sina(t)
1 —r

(1+r ) (1+r ) (1+r )

+ r cos(8/2)sin(8/2);(4g y)[2 m2ft[K —2 +( —1} "+1]
(1+r ) t'ai

—e @"[2n cosa(t) 4n co—sP(t)+2cosy(t)]

+2[n cos2yt cos2{g+—y}t]e

sin (8/2)e '&

[
—2 sin2gt[n —

—,
' —

—,'(n —1)e "]
2(1+r)

+e +"[ 2n sinP—(t)—siny(t)]

+ [sin2(f+y)t nsin2y—t]e

+ (2cos2gt j n —
—,
' [1+(n 1)e "—]}

r (1 r)—
2(1+r )

—e @"[2n cosP(t) —cosy(t)]

+[n cos2yt —cos2(g+y)t]e ") (13a)

1+r 2r( o 3 ) =2 cos (8/2) + e +"cosa(t)
(1+r ) (1+r )

+sin (8/2) [
—[I+n cos2yt nc—os2(g y)t]e—"+1——e +"cosP(t}j2 2E'

(1+r )
T

cos(8/ )sin(8/2) r(1 r)—
(1+r )

—
[ —,

' [ ncos2(1( ——y)t +cos2yt]e

+e +"[n cosa{t} ,'cosP(t)—]]—)

+ sin(2$ —P)( ——'[n sin2(f —y)t +sin2yt )]e1+r

—e @"[-,'sinP(t) —n sina(t)]) —1, (13b)
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and

ct(t) =n sin2gt +2(t(t —y)t,
P( t }=n sin2ft 2y—t,
y ( t ) =n sin 2gt 2(—g+ y )t,
e(t ) = n sin2ft +2(2g y—)t,
5(t)=2n sin 1(tt .

(14a)

(14b)

(14c)

(14d)

(14e)
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The third term in both Eqs. (13a) and (13b) is the "&n-

ter erence ermf " term and depends on the relative phase be-
h t tomic levels and the coherent state. ntween t e two a om' ''

ll in thethe case of 0=m, i.e., when the atom is initia y in e
state E s. (13) reduce to the results obtained in

R f. [9]. The corresponding expressions in the a sence o
the Stark shift are obtained by setting exp(2i1(t ) =1 in
E (13a) and letting r =1 in the rest of the expression inEq. aan e m
Eqs.E s. 13.

The dispersive and absorptive componen s onents of the slow-
ly varying atomic-dipole operator can be written as [9]

+ —I ~Ot — —I ~01o'~= ,'(cr —e +cr e ),
+ I~O' — I~Oo' = (cr+e—. —o e ) .2 2l

They obey the commutation relation

l
[o, , cr, ]=—o, (16}

(19)Si 2(1,
with the corresponding squeezing parameterameters defined as

1 —4(Re&o )e' '}

1 —4(Im&o )e' ')
(20)

Substituting Eqs. (12)—(14) in Eq. (20) the closed expres-
sions for S, and S2 are obtained.

III. RESULTS AND DISCUSSION

A. Coherent-state input

In this section we present the result!ts for S (t) and
t for 0=2m/3, /=0 and for various choices of P and

the Stark-shift parameter r. Figures (1) and ( )

or ~&=0 and for r =0 andtime evolution of S, and S2 for ~&—

0.5. It is evident from the figures that only one quadra-

The corresponding Heisenberg uncertainty relation is

—„&,) .2 2 l 2 (17)

The atomic dipole is said to be squeezed if the variances
in o. , and o.

2 satisfy the condition

&~],& -,
'

1 & ~, ) I
.

The above condition for squeezing in the dispersive and
absorptive components may be written as
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FIG. 1. Time evolution of the squeezing paramarameter S (t) for
coherent input in the absence of Stark shift for n ==50 8=2m. /3,
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FIG. 2. Time evolution of the squee
'

g pezin arameter for
coherent input in e pt

'
the presence of Stark shift for r =0.5, n =50,

0 = 2rr/3, and P =(=0. (a) S, ( t ) and (b) Sz ( t )

th absence of the Stark shift while bothtures squeezes in t e a sence
nce. We alsoS d S s ueeze alternatively in its presence. We a so

'
n ofsee that for the above-mentioned case the duration o

d
'

the presence of the Stark shift. Fig-
ures 3 and (4) show how the dipole squeezing is affected
by a variation in the relative phase of the two atomic lev-
els P from 0 to tr. It is interesting to note that the dipo e
squeezing s ows a weah k phase dependence in the absence
of Stark shift, but a strong phase dependence in its pres-
ence. This strong phase dependence in the presence of
the Stark shift is exhibited in terms of permanent ipo e
squeezing as s own inh in Fig. (4). We have also studied the
effect of varying the phase of the input field g on t e
pole squeezing, w ich' h is seen to have almost the same

mic leve s. Hereff t the relative phase of the two atomic leve s. ere
once again, we observe permanent dipole squeezing

'
in the

presence of the Stark shift.
We have also studied the effect of larger exciting
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FIG. 3. Same as in Fig. 1, but for P = tr. FIG. 5. S&(t) for the squeezed-vacuum input in the absence
of Stark shift for n = 10, 8=2m /3, and (=0. (a) (()=0 and (b) m.

strength or large n on the dipole squeezing, which results
in stronger squeezing and larger duration both in the
presence and absence of the Stark shift.

B. Squeezed-vacuum-state input

The probability amplitudes for the squeezed vacuum
are given by

and

Cq„+) =0, n =0, 1,2, 3, . .. . (21)

Since the field is super-Poissonian, large-n approximation
does not hold for this case; instead, we work directly with
the expressions (9) and (10) and make use of Eq. (21).

The results for dipole squeezing are obtained by nu-
merically computing the quantities in Eq. (20). Some of
the results calculated from (20) for 8=2@ /3, /=0 and for
various values of P and Stark-shift parameter r are

presented in Figs. 5 and 6. It is interesting to note that,
irrespective of the presence of the Stark shift, both S,
and S2 do not squeeze when the atom is initially in the
excited or ground state. Thus an atom initially in an in-
coherent state remains in it throughout its interaction
with the squeezed-vacuum field. However, when the
atom is initially prepared in the coherent superposition of
states (8=2m/2) one of the quadratures squeezes only for
a small duration. Hence, initial coherence of the atomic
states is destroyed during its interaction with the
squeezed-vacuum input field. The time evolution of S,
and Sz for 8=2m/3, (=0 and for two different values of
P is plotted in Figs. (5) and (6). An increase in (() from 0
to m. results in increased duration of squeezing in the ab-
sence of the Stark shift while an opposite effect is seen in
its presence. The phase of the input field g is seen to have
the same effect on the dipole as the relative phase of the
two atomic levels. The larger exciting strength has a
desqueezing effect and with n =50 and for certain choices
of (() and g, squeezing is completely destroyed.
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FIG. 4. Sl(t) for the coherent input in the presence of Stark
shift with all the parameters the same as in Fig. 2, but for P = sr

FIG. 6. S, (t) for the squeezed-vacuum input in the presence
of Stark shift for r =0.5, n =10, 8=2m. /3, and /=0. (a) /=0
and (b) m..
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IV. CONCLUSION

It can be seen that the Stark shift plays an important
role in the dynamics of the atom-field interaction. In par-
ticular, when the atom is considered initially in a
coherent superposition of states, the duration of atomic-
dipole squeezing is greatly enhanced for particular
choices of the phase. The most significant manifestation
of the Stark shift while taking the atom in coherent su-
perposition of states is that for coherent field input and

for a certain phase, permanent dipole squeezing is exhib-
ited.
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