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%spherical laser resonators: An analogy with quantum mechanics
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We develop an analogy between the transverse modes of a class of aspherical laser resonators and the

eigenstates of the stationary Schrodinger equation with a potential well directly related to the mirror
profile. Using a perturbation method, the equivalence is shown to be valid for a short cavity length in

comparison with the Rayleigh range of the fundamental mode, i.e., the most practical situation. Numer-

ical examples with mirror profiles corresponding to a Poschl-Teller potentia1 confirm the validity of the
model. The analysis also includes higher-order corrections for the case of a longer resonator length.
The analogy with quantum mechanics should be useful for designing laser resonators with a high
discrimination against higher-order transverse modes.

PACS number(s): 42.60.Da, 03.65.Ge, 42.25.—p, 03.40.Kf

I. INTRODUCTION

Optical laser resonators generally consist of open cavi-
ties formed with two spherical mirrors enclosing gain and
modulation elements. The analysis of the spherical reso-
nator is now standard [1—3] and leads to a classification
of the resonators as "stable" or "unstable" cavities. To
be of good quality, a laser beam must oscillate in only one
transverse mode which should cover a large fraction of
the gain section of the amphfying medium. Owing to its
geometrical magnification factor, the unstable resonator
offers the advantage of providing a large mode volume as
well as a high discrimination against the perturbing
higher-order transverse modes. However, the magni-
fication factor also implies an important geometrical loss
for the fundamental mode. This is usually compensated
for by using this loss as external coupling. Therefore, the
unstable resonator is convenient for lasers with a very
high gain in which case the high loss of the fundamental
mode may correspond to the optimum coupling for an
efficient operation [4].

On the other hand, lasers with medium or low gain are
usually stable resonators with an optimized coupler
reflectivity. The stable cavity has a low-loss confined
mode but its beam size is rather small for typical experi-
mental conditions where the stability against misalign-
rnent is always important. Moreover, this resonator
presents a poor modal selectivity since the higher-order
modes are also confined and nearly lossless.

In the past, workers have tried to combine the advan-
tages of both types of resonator in the same cavity. Most
of these efforts consisted in reducing the hard-edged
diffraction of the unstable resonator by, for example,
changing locally the mirror curvature near the edges or
by introducing phase shifts near the edges or on the
Fresnel zones [5]. Over the past few years, it has been
widely recognized that the hard-edged diffraction in an
unstable resonator can be best controlled by the use of a
graded-refiectivity mirror (GRM) [6]. This confines the
beam as in a stable cavity but the beam waist can be ad-
justed to the size of the gain medium. However, the feed-

back in a GRM unstable resonator is usually rather small
and this technique is still mostly suitable to high-gain
laser medium.

For the important class of medium- and low-gain
lasers, a different solution for increasing the beam size
still has to be demonstrated. If properly designed, the op-
tical resonator formed with an aspherical mirror and a
plane output coupler seems to us to be able to meet these
specifications. In the past, only a few analyses (that we
know of) of this type of resonator have been published
[7—9]. The absence of exhaustive conclusions on the
properties of aspherical resonators is largely due to the
fact that such an investigation would imply numerical
solution of coupled integral equations with a large num-
ber of parameters needed for specifying a sufficiently wide
class of aspherical mirrors and the resonator dimensions.
Along those lines, one must point out the work of Smith-
ers and Ferguson [10] who introduced the idea of a local-
ly varying magnification factor. Their analysis is based
on geometrical optics and is applicable to unstable cavi-
ties, limiting the use again to high-gain laser systems.

More recently, we have proposed [11,12] a wide class
of aspherical resonators which have the property of yield-
ing a fundamental mode of prescribed shape and of the
stable type. Our ultimate goal is a systematic
specification of an aspherical resonator with (i) a
predetermined fundamental mode of the stable type (low
loss), and (ii) highly discriminated higher-order trans-
verse modes. Our recent analysis of resonators with a
super-Gaussian intensity output [11,12] indicates that
this is possible for a broad band of resonator parameters;
this has also been recently confirmed in the laboratory
[13].

The analysis presented in this paper represents a fur-
ther step toward this objective. In Sec. II, we first recall
the main characteristics of this class of aspherical resona-
tors and their design procedure. Then, using a perturba-
tion method, we show that the confined transverse modes
of a resonator of short cavity length obey a Schrodinger
differential equation with a potential directly related to
the mirror profile. This establishes a close relationship
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between the confined modes of this resonator and the
bound states of the corresponding potential. The analogy
with quantum mechanics proves fruitful when we consid-
er potential wells supporting only a limited number of
bound states, which correspond to optical resonators
having a limited number of confined modes. Here, we
limit the analysis to the well-known Poschl-Teller poten-
tial. The study of longer cavity resonators is also under-
taken by including higher-order terms in the perturbation
expansion.

In Sec. III, in order to assess the validity of our model,
the modal properties of two different aspherical resona-
tors are determined by solving the exact problem (in-
tegral equation) numerically. It is then shown that the
reduction to a Schrodinger equation correctly predicts
the main characteristics of these resonators. The higher-
order corrections are also confirmed when a longer cavity
is also considered. Finally, in conclusion, we return to
the basic assumptions of the model and give an outline of
its possible extensions and applications.

@(x)

FIG. 1. (a) Schematic configuration of a symmetric aspheri-
cal resonator of length L =2D, with a mirror of radius a and
phase profile C&(X). 1(„represents the modal distribution on the
mirrors; (b) half-symmetric aspherical resonator of length D.

II. ANALYSIS

A. Statement of the problem

l

A,L X& exp 'i 4 X& +4 X2—a

(Xq —Xi ) 'dXi

=y„f„(X2), (2.1)

where g represents the field distribution on the mirrors of
width 2a, A, is the wavelength, and y is the eigenvalue
containing information on the diffraction loss and the ax-
ial phase shift.

Unfortunately, only the spherical mirror profiles 4(X)
(for which, in the paraxial approximation, 4=kX /2RM,
where k =2m /Rand R~ is t, he radius of the mirror) allow
an exact solution of Eq. (2.1). In that particular case, if
one neglects hard-edged diffraction, i.e., in the limit
a~~, then the integral equation admits the set of
Hermite-Gauss functions as exact solutions. For g (1,
where g =1—L/RM is the so-called "geometric parame-
ter, " the wave front of these modes matches the surface
of the mirror. The modes are then said to be "conjugat-
ed, " in the sense that the reflected field is a phase-
conjugate replica of the incoming distribution. This
property implies the absence of geometrical loss (

~ y ~

= 1).
Such a resonator is said to be stable. In contrast, the
solutions of an unstable resonator (g & 1) are uniform

We consider the symmetric one-dimensional strip reso-
nator depicted in Fig. 1(a) and formed with two identical
graded-phase mirrors separated by a distance L =2D.
(The extension to a cylindrical geometry is straightfor-
ward and will be discussed later in the Conclusion. ) The
phase profile 4(X) of the mirror is, for now, unspecified.
In the Huygens-Fresnel approximation, it can easily be
shown that the transverse modes g„(X)of this symmetric
optical cavity obey the following integral equation:

1/2

spherical waves that are not conjugated and then suffer
an important geometrical loss (

~ y ~
( 1).

In this paper, we limit the analysis to the class of stable
resonators, for which the transverse eigenmodes are con-
jugated in the limit a~ Do. In the case where spherical
mirrors are used, the width wo (at 1/e in amplitude) of
the fundamental Gaussian mode at the center of the cavi-
ty is given by [14].

Wo= 1+g
1 —g

1/4

wconf & (2.2)

where w„„&=&A,L /2n. is the width of the so-called "con-
focal resonator" (g =0, i.e., RM =L) and usually serves as
a reference. For typical experimental conditions, this
represents a small laser-beam width. This can be
remedied by operating near the stability limit g~1,
which is the Fabry-Perot geometry. However, such a
cavity is very sensitive to misalignment and, as a
compromise, one rather chooses to operate at g =0.9 or
so. Another serious drawback of the spherical stable cav-
ity is its multirnode property. Indeed, besides the funda-
mental Gaussian mode, the higher-order Hermite-Gauss
modes can also oscillate. This limits the quality of the
output laser beam. In practice, modal selectivity is en-
sured by the use of small apertures. The fundamental
mode is, however, also affected by this and its near-field
pattern may show the familiar Fresnel ripples associated
with hard-edged truncation.

Another way to increase the discrimination might con-
sist in using aspherical mirrors. However, as mentioned
above, in such a case the integral equation (2.1) cannot be
solved analytically even in the limit a ~ ao. Bergstein and
Schachter [15] have derived an approximate differential
equation where the modal properties are described in
terms of an equivalent potential related to the shape of
the mirror. For the spherical mirror resonator, the po-
tential is parabolic and their derivation is exact only for
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B. Schrodinger differential equation
for the transverse modes

Our model is based mainly on two approximations.
First, we neglect edge diffraction (a ~ ~ ). This assump-
tion is further discussed below. Second, because a wide
fundamental mode is desirable, we consider a situation
where the resonator length is much shorter than the
diffraction length ("Rayleigh range") of this mode, i.e.,
L «kwp'. For instance, a spherical cavity with a resona-
tor parameter g ~0.9 is such that the dimensionless pa-
rameter d, defined as

d= D
2kw ()

(2.3)

is ~0.06 and can then be viewed as a perturbation pa-
rameter.

Bergstein and Schachter [15] based their analysis on
the integral equation (2.1). However, they were unable to
find a differential operator that would commute with the
integral one. We then decided to attack the problem by
instead using the paraxial wave equation

this particular case. For any other profile, it seems im-
possible to assess a priori the error introduced by their
approximation [see Eq. (8) of Ref. [15]] because it de-
pends on the eigenmode itself. (Formally, it can be
shown that this error vanishes for an infinitely long reso-
nator, but this situation is not a practical one. )

The class of aspherical mirror resonator that we have
recently introduced wi11 be referred to here as "custom
resonator" because the basic procedure for the design of
the aspherical mirror starts with the specification by the
users, of the intensity distribution on the output coupler.
In this approach, the desired fundamental mode distribu-
tion is first propagated up to the mirror position; to limit
the losses of this particular mode, the mirror is then
made to conjugate this propagated field, i.e, that the mir-
ror profile is chosen to correspond to the wave front of
this mode at this position. In the limit a ~~, it has been
shown [12] that the desired mode is indeed a solution of
the integral equation. A numerical analysis is still neces-
sary, however, if one wants to determine the higher-order
modes and, hence, possibly improve the modal selectivity.
It would thus be desirable to develop a theory that would
give simple analytical information about the higher-order
modes of this new class of resonators. This represents the
aim of this paper. In the following we develop a pertur-
bative analysis which shows that, asymptotically, the
transverse modes obey a Schrodinger equation for which
the potential-well corresponds to the mirror profile. In
contrast with the work of Bergstein and Schachter [15],
the limits of validity of the present model are clearly stat-
ed. Moreover, in Sec. III, the relevance of the approxi-
mations will be demonstrated for practical situations on
the basis of numerical solutions of the exact problem
(2. 1).

electric field U =exp[ —ikZ ]f and Z corresponds to the
propagation axis. To proceed, we now consider the
equivalent half-symmetric resonator illustrated in Fig.
1(b), where the output coupler is a plane mirror [assum-
ing unbounded mirrors, the mode on the coupler is then
identical to the mode at the center of the symmetric cavi-
ty of Fig. 1(a)]. The eigenvalue problem (to be formulat-
ed as a differential eigenvalue equation) is now derived by
following a mode for a complete round-trip. To allow a
perturbative treatment, the paraxial wave equation is re-
normalized; the transverse dimension X is scaled as
x =X/wp and the longitudinal coordinate Z is expressed
as z —=Z/2ktiio, so that the free-space propagation is now
described by

ig—,=0 . (2.5)

This equation can be formally integrated. In particu-
lar, the field ql' incident on the graded-phase mirror [Fig.
1(b)] is related to ip [—:p(x, z =0)] by

4"=exp —id
dx

—:8(d)iP,
(2.6a)

where 8(d) is the standard evolution operator in classical
quantum mechanics [16]. This field is then reflected by
the phase mirror to yield [Fig. 1(b)]

ql" =exp[i24]%' . (2.6b)

illlll 8(d )i'll (2.6c)

Finally, we close the loop by imposing the resonance con-
dition

gal
I I (2.6d)

where the eigenvalue v is directly related to y [Eq. (2.1)]
when a~Do. The result of Eqs. (2.6) is an operatorial
differential equation for the field distribution on the plane
mirror [or, equivalently, at the center of the symmetric
resonator of Fig. 1(a)] in terms of the mirror profile 4:

8(d)exp[i24]8(d)~P„= v„%„. (2.7a)

We now restrict the analysis to the class of custom
resonators described above. This means that the mirror
profile 4 corresponds to the phase of the desired field dis-
tribution %p propagated over the distance D, i.e., from
(2.6a),

+=tan '

d
sin d

2
' Pp

dx
(2.7b)

d2
cos d

dx
4p

Similar to (2.6a), the return transit to the plane mirror is
given by

(2.4)

where i)'j represents the slowly varying envelope of the

The differential eigenvalue equation (2.7) is, in fact, a
reformulation of the integral equation (2.1) in the limit
a ~ ao. It contains the same information concerning the
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4&(x) =( V Eo)—d ———V„„„„+2(V„) +2( V—Eo) V„„
1 1

4p+2V„„„d+O(d ), (2.8)ZXZ
qy

where

%p
V(x)= "" +Eo .

0'p
(2.9)

Relation (2.9) is the stationary Schrodinger equation
which univocally associates a potential V(x) to the
prescribed fundamental mode distribution 'kp. The con-
stant Ep is the corresponding energy level of the funda-
mental bound state (Eo could be set to zero since the
phase 4 is defined up to a constant. Here, it is chosen so
that the eigenvalue vp of the fundamental mode is purely
real. In Sec. II C, this choice also implies that the sta-
tionary solutions of (2.9}have negative-energy levels).

The eigenvalue equation (2.7) is now solved using a reg-
ular perturbation method. The field 4 and the eigenvalue
v are then expanded in powers of d:

%'=4'' '+de"'+d 4' '+
v= v'"+ d v"'+d'v"'+ ~

(2.10)

(2.11)

From (2.7)—(2.11), one obtains, by identifying each term
up to O(d ), the following.

For O(1),
v"'=1 (2.12)

For O(d),

e„"„'+(E—V)q "'=0,
v'"=i2(E E).o— (2.13)

(2.14)

modal properties of custom resonators. For an arbitrary
resonator length, this certainly does not constitute an im-
provement over the original formulation. However, (2.7)
has the serious advantage of allowing a simple perturba-
tive approach in terms of the (here assumed) small pa-
rameter d. Indeed, Taylor expansions in d of the evolu-
tion operator (2.6a) and the mirror profile (2.7b) are then
possible. In the following, we limit the expansion to
O(d ). Then, from (2.7b) one finds

iP„"„'+(E —V)qj"'=0,

v' '= i—4(E E—o) i—4C(E —Eo) .
3 p

(2.19)

(2.20)

The above equations represent the main result of this
paper. Through Eq. (2.14), which identifies the energy
level E to the eigenvalue v, Eqs. (2.13)—(2.16) reveal a
close relationship between the confined transverse modes
of a custom resonator and the bound eigenstates of the
stationary Schrodinger equation in quantum mechanics.
Moreover, at this order, the associated potential corre-
sponds exactly to the mirror profile. If the potential well
V(x} is sufficiently deep, it can support more than one
bound state with energy levels Ep, E„E2,. . . , which im-
plies that more than one confined mode could oscillate in
the laser cavity. This equivalence was, of course, well
known for the spherical resonator whose transverse
modes, the Hermite-Gauss functions, are indeed the solu-
tions of the corresponding harmonic oscillator. But it
could only be conjectured for arbitrary mirror profiles.
The now-established relationship is valid for L &&kwp
and applies to the congned modes of a stable custom reso-
nator.

For higher-order corrections, one has to solve the
nonhomegenous Schrodinger equation (2.17). The partic-
ular case of the fundamental mode is trivial; a compar-
ison with Eq. (2.13) indicates that %z '=%& ', which is
equivalent to setting %p

' =—0 by a renormalization of %p '.
In physical terms, this means that the fundamental mode
remains unchanged if the distance D between the mirrors
is increased. This makes sense since by hypothesis, the
graded-phase mirror is constructed from this mode; as
defined above, the custom resonator is such that the fun-
damental mode is preserved whatever the length L is.
The higher-order modes, however, will be modified (an
example is given in Sec. II C). As suggested by Eqs. (2.19)
and (2.20), the spherical resonator turns out to be an ex-
ception to this. Indeed, Eq. (2.19) indicates that, through
a renormalization, all the modes remain unchanged at the
next order. In fact, this particular case can be solved at
any order with the correct conclusion that the Hermite-
Gauss functions are indeed the transverse modes of the
stable spherical cavity for any mirror separation. Equa-
tion (2.20) is then the third-order term of the expansion
of the exact expression

v=exp[i&(2/C)(E Eo)tan '(v—'2CQ}] .
For O(d ),

+'"=0,
v' '= —2(E —Eo)

For O(d ) and for V„„&const,

4'„'+(E—V)%' '+ —'V„(E—Eo)%' '

qp(p)

4p

v' '= i4, (E—Eo)—
and if V„„=C(const),

(2.15)

(2.16}

(2.18)

Similarly, for V„„%const, (2.11) corresponds to the first
terms of the expansion of exp[i2d(E Eo)]. In both—
cases, the confined modes are free of losses ( ~y~ =1), as
can be expected for this conservative system.

C. A worked example: the Poschl-Teller potential

The above analysis shows that by specifying the poten-
tial V or the fundamental mode %p, one can analytically
predict the number of confined modes in the cavity as
well as their field profiles. In contrast with the spherical
case discussed above, one can now imagine a particular
shape of mirror (potential) which would allow the oscilla-
tion of only a lixnited number of confined transverse
modes. The interest of this is that in a practical situation
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where the mirrors have a finite width, a mode which is
not confined will lose more energy (in comparison with a
confined mode) beyond the mirror edges at each round-
trip in the cavity. Such a nonconfined mode is then highly
discriminated in comparison with a confined one and this
improves the quality of the output beam. As an example,
here we consider the Poschl-Teller potential [17,18]

(2m+1) ir
~oaa=

Q 2

~p

a —1
Rp

(2.25a)

(2.25b)

v= —JV sech x, (2.21)

4'p '=sechx, Ep= —1 . (2.22)

where JV is a positive number. We recall that, at first or-
der in d, V(x) also corresponds to the mirror profile [see
Eq. (2.8)]. In a first analysis, we will present the modal
solutions of (2.13) for %=2 and 6 which predict 1 and 2
confined modes, respectively. The effects of higher-order
terms [O(d )] will be considered subsequently for the
case JV=6. The results will confirm that the phase profile
of all the confined modes do match the mirror profile.

For IV=2, the unique (unnormalized) bound mode of
(2.13) is 4p '=sech x, Ep = —4,

%", '=sechx tanhx, E& = —1,
(2.26a)

(2.26b)

(m =0, 1,2, . . . ), where a»8'0 has been assumed. We
must emphasize that the well-behaved functions (2.24)
are only approximate expressions for the nonconfined
modes when the mirrors are of finite width but edge
diffraction is not taken into account. In fact, the closed-
cavity approximation does not consider the unavoidable
edge-wave diffraction which makes the actual modes
severely rippled. This point will be further discussed in
Sec. III ~

For IV=6, there are two bound states, namely

Thus a laser cavity with a graded-phase mirror designed
for this fundamental mode should support only this par-
ticular confined mode. This will be checked in Sec. III.
In addition, (2.13) admits the following continuous spec-
trum of free eigenstates:

4, '= [tanhx +i (x 1)]e xp[—+i(ir 1)x—],

together with the following continuous spectrum:

O', I = [3 tanh x + 3i(v 2)ta—nh x —1

—(a.—2) ]exp[+i(x.—2)x ],
E=(v —2), Ic&2 .

(2.27)

(2.23)

E =(~—1), ~ & 1 .

The case le=i (4'i '=tanhx) corresponds to an energy
level that is just at the limit of the potential well. To find
the physical meaning of these solutions [Eq. (2.23)], one
can notice that far off axis 4', '-exp[+i(a1)x],.—i.e. ,

that these free modes, in that region, correspond to uni-
form plane waves propagating back and forth in the cavi-

ty, making negative and positive angles with the Z axis.
This makes sense because far from the axis the mirrors
are essentially plane parallel and the resonator is then
equivalent to a Fabry-Perot geometry whose transverse
modes (of the form cos x and sin x, if hard-edged
diffraction is neglected) can indeed be viewed as a super-
position of such plane waves. In the present case, a linear
combination of the free states (2.23) yields the following
odd and even stationary modes (with a uniform wave
front, as for the confined modes):

+Ii~' = [sech x tanh x ]S(x),
where

(2.28a)

The existence of the second confined mode (2.26b) in a
resonator adapted for the fundamental mode
=sech x will be verified in Sec. III. The free states (2.27)
have the same physical interpretation as discussed above
and can also be written in terms of odd and even real sta-
tionary modes.

Increasing the distance D between the mirrors will
modify the modal distributions of the higher-order
modes, as pointed out above. To describe this
modification, one has to carry out the calculations to next
order in d [Eqs. (2.17)—(2.20)]. Unfortunately, the
analysis rapidly becomes cumbersome. Here, we present
the results of an expansion to O(d ) for the second
confined mode of the case IV=6. From Eq. (2.17), one
finds the correction

4",~~
= tanh x cos(~ —1 )x + (~—1 )sin(& —1 )x,

0,'„,'„=tanh x sin(~ —1)x —(~—1)cos(~—1)x .

(2.24a)

(2.24b)

S(x)= g c„tanh "x,
n=1

(2.28b)
In principle, a. is arbitrary ( & 1) but, as for the Fabry-
Perot geometry, the boundary condition at the limit
X=a leads to a selection of discrete values for this pa-
rameter. As a crude (but sufficient for the purpose of this
paper) approximation, one can impose the condition cor-
responding to a closed cavity, i.e., %(X=a)=0 [19].
For the Fabry-Perot geometry, this leads to the
modes cos[m(i'/2a )] and sin[m(AX/2a )] with
m = 1,2, . . . . Similarly, from (2.24), one obtains

CI— 44 28 4n +6
3

' " 15 7n
(n =2, 3,4, . . . ),

(2.28c)

which can also be put in the closed form

S(x)=(c,——,'ci)tanh x+ —,'cz tanh x
sech x

7 cz ln( sech x )
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+992tanh x —552tanh x], (2.29)

which, up to a constant factor, turn out to be the same.
In physical terms, the wave front of each mode matches
the mirror surface so that these modes are indeed conju-
gated [at least to order O(d3)].

This last equation indicates that 4', ' diverges at x ~+ ao,

which means that the perturbation expansion of 4', at
this order, is not uniform in x. Strictly speaking, the re-
sult (2.28) is only valid for sufficiently small values of x,
i.e., close to the axis, to justify the expansion (2.10). This
correction will be compared with a numerical example in
Sec. III.

In contrast with the amplitude distribution, the pertur-
bation expansion gives uniform results for the phase
profile at O(d ). This is because higher-order terms in
the series (2.28b) cancel out in (2.7b). For instance, propa-
gation of %0 and 4, up to the mirror position gives, at
O(d ), the respective phases @o and 4& where the upper
(lower) value corresponds to 4o (4, ):

'I

4—6 sech 2x
=d'

2
1 —6 sech x

+d3[32—472 tanh x

confined modes and as demonstrated below, is largely due
to the off-axis flattening of their mirror profiles. To get
confident in the validity of the perturbative treatment,
Fig. 2(b} compares the exact mirror profile of the sech2
resonator (solid line} with the first-order term of the ex-
pansion (2.8) (i.e., an exact Poschl-Teller potential)
(dashed line). The agreement, which is already good, is
further improved if the third-order term is also included,
as indicated by the dotted line (almost indistinguishable
from the exact profile).

Figure 3 shows the amplitude distribution of the first
mode %'0 of each resonator at the center of the symmetric
cavity for N = 10. Because of the scaling factors f, , these
modes are very similar. At N =10, the mirrors are wide
enough to yield the expected Gaussian and sech' distri-
butions. The behavior is more interesting when one looks
at the second mode (odd parity) 4& (Fig. 4). Whereas the
spherical resonator nearly gives the x exp[ —(x }] nar-
row distribution (solid line), the custom resonators pro-
vide substantially wider beams, particularly in the case of
the sech' resonator (dashed line). This could be expected
from the model developed in the preceding section.
Indeed, this resonator is associated with a potential for
which only one bound mode is possible. According to

III. COMPARISON
WITH NUMERICAL RESULTS

To demonstrate the interest of the reduction of the in-

tegral equation to a Schrodinger differential equation for
the determination of the confined modes of an optical
resonator, this integral equation [Eq. (2.1)] has been
solved numerically using a Prony method [20]. In the fol-
lowing, we compare the predictions of our model with
the exact modal properties of various symmetric reso-
nators [Fig. 1(a)]: (i) a conventional spherical reso-
nator providing a Gaussian fundamental mode
+a=exp[ —(X/wo) ] at the center of the cavity, (ii) a
custom resonator designed to yield Vo=sech[f&X/wo],
and (iii) another one for which To=sech [f2X/wo]. In
order to make a fair comparison, scaling factors are in-
troduced and adjusted so that the rms width of the funda-
mental mode is the same in the three cases

(f ~
=m/&3—= 1.81 and f2 =+m/3 —2—= 1. 14. ). The

length L of the resonator is such that the geometric pa-
rameter of the spherical cavity g is equal to 0.9, a practi-
cal example. According to (2.2), the width wo of the
Gaussian mode, at the center of the resonator, is then
equal to 2.09w„„f so that the parameter d is found equal
to 0.057. This example should represent a good test of the
usefulness of the present approximate model.

Figure 2(a) illustrates the exact phase profile of the
three mirrors for a mirror width corresponding to a
Fresnel number N=a /A, L =10. The vertical dashed
lines refer to the width w, of the Gaussian mode on
the spherical mirror [wo~w, =(1/mN)(1/1 —g )' a
=0.27a]. This serves to indicate that the effective sec-
tion of the mirror has roughly the same phase amplitude
in the three cases. The higher selectivity of the sech'
resonators, expectable from their reduced number of

(a)

'd
7r/8—

lgl

~ y ~ ~ ~ ~ ~ ~
~ ~

0
—1.0 -0.5 0.0

X a
0.5 1.0

(b) :exact profile
- --:first order approximation
~ ". third order approximation

05
W

n/8—

-1.0 -0.5 0.0
X a

0.5 1.0

FIG. 2. (a) Exact mirror profile of the spherical resonator
(solid line), the sech' resonator (dashed line) and the sech reso-
nator (dotted line). The X axis is normalized to the mirror ra-
dius. The vertical dashed lines represent the width of the
Gaussian mode on the spherical mirror. d =0.057 and N = 10.
(b) Comparison between the exact mirror profile (solid line) of
the sech resonator and (i) its first-order approximation, i.e., the
Poschl-Teller potential (dashed line), (ii) its third-order approxi-
mation (dotted line).
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:spherical resonator

1 0 -- - . sech' resonator
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(a)

: exact —--:approximation

~/wconf

—12 -9 —6 —3 0 3

X Wconf

6 9 12

FIG. 3. Normalized amplitude profile of the fundamental
mode at the center of the symmetric spherical resonator (solid
line), the sech' resonator (dashed line) and the sech' resonator
(dotted line) for N = 10. The transverse coordinate X is normal-
ized to the confocal spot size.

1.0

0.8—

0.6—

1.0
—:spherical resonator - -:sech resonator ~ I'. sech resonator

1 2

N= 10

Eq. (2.23), the next eigenstate is III
t
=tanh( f,x ), which

does not vanish at infinity [the approximation (2.24) is
discussed below]. In the resonator, this mode would then
be affected by edge diffraction and this explains the rip-
ples observed in Fig. 4 (dashed line). This mode is not a
confined mode and, as discussed in Sec. II C, round-trip
power losses will discriminate against it in favor of the
fundamental mode.

In contrast, the sech resonator is expected to have two
confined modes (as discussed in Sec. II), namely
IIlo=sech [flax] and %&=sech[fzx]tanh[fzx]. Far off
axis, the second mode decays as exp[ f2x ] and —a wide
mirror is then necessary in order to avoid edge diffraction
and obtain the exact distribution. This is clearly demon-
strated in Fig. 5 where 4', is shown for two different
Fresnel numbers: N = 10 [Fig. 5(a)] and N = 18
[Fig. 5(b)]. The dashed line represents the
sech[fzx]tanh[fzx] distribution. Figure 5(b) appears as
a strong confirmation of the validity of the analogy with
quantum mechanics. If the latter is correct, one could
also predict that the third mode +2 of the sech resona-

0.4

0.2—

0.0
—12 -9 -6 -3 0 3 6

X/ conf

9 12

FIG. 5. Comparison between the exact amplitude distribu-
tion (solid line) of the second mode of the sech' resonator and
the predicted sech(f2x)tanh(f2x) profile (dashed line) for (a)

N =10and (b) N=18.

1.0—
1 2—:spherical resonator - -:sech resonator .~ .. sech resonator

tor, like the second mode of the sech' resonator, will be
affected by the mirror edges. This is confirmed in Fig. 6
where the third mode of each resonator is presented
(N =10). The strongly rippled pattern of this mode for
the sech' and sech resonators (dashed and dotted lines,
respectively) is in sharp contrast with the well-confined
third mode (nearly exact third Hermite-Gauss function)
of the spherical resonator (solid line). To be further con-
vinced of the absence of a third confined mode for the
sech resonator, the mirror width has been increased to
N =18. In the conventional case [Fig. 7(a)], the confined

0.8— N=10

0.4

0.2

0.0

I

I

~ I

—12 —9 —6 —3 0 3

X Wcp„f

'I
'~

'~

I

t . 'I .JW~
6 9 12

FIG. 4. Normalized amplitude profile of the second mode
(odd parity) at the center of the symmetric spherical resonator
(solid line), the sech' resonator (dashed line) and the sech reso-
nator (dotted line) for N = 10. The transverse coordinate is nor-
malized to the confocal spot size.
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FIG. 6. Normalized amplitude profile of the third mode
(even parity) at the center of the symmetric spherical resonator
(solid line), the sech' resonator (dashed line), and the sech reso-
nator (dotted line) for N = 10.
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The dotted line in Fig. 11 corresponds to the third-order
correction [Eq. (2.28)]. As discussed in Sec. II, the
correction strictly applies near the axis where indee, as
can be seen in Fig. 11(b), it does improve the approxima-
tion. It also correctly predicts the "shrinking" o t e
mode here observed.

On the basis of these results, one might be tempted to
extrapolate and conclude that the sech' resonators
remain highly selective for any mirror separation. How-

have observed that the mirror profile of a sech' resonator
becomes almost perfectly parabolic (over a wide trans-
verse extent) at some particular finite distances so that, in
practice, in oseth cases the cavity would become mul-
timodal.
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FIG. 10. Same as Fig. 8, except that tthe resonator length is

increased to d =0.144.
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IV. CONCLUSION

In this paper, for simplicity, we have considered a
one-dimensional geometry. The analytical tractability of
the Poschl-Teller potential may then serve to demon-
strate the interest of the model. Besides this pedagogical
advantage, the strip geometry may also correspond to
practical laser systems. This is the case, for instance,
when a slab gain medium is used for the amplification, a
configuration for which there is now a growing interest.
Obviously, the analogy with quantum mechanics can be

FIG. 11. (a) Comparison between the exact amplitude distri-
bution (solid line) of the second mode of the sech resonator and
(i) the first-order prediction sech(f, x )tanh( f2x ) (dashed line);
(ii) the third-order prediction (dotted line) for N=18 and a
resonator length increased to d =0.144. (b) An enlargement of
the central region.

extended to the circular geometry. The azimuthal degree
of freedom may increase the difficulty (in the sense of re-
duced analytical possibilities), but the main physical
properties should be preserved.

For the most practical situation where the length of a
resonator can be considered as being short in comparison
with the Rayleigh range of the fundamental mode, it has
been shown that the transverse modes of a custom reso-
nator are directly linked to the eigenstates of the station-
ary Schrodinger equation with a potential corresponding
to the mirror profile. The demonstration relies on a
powerful approach based on the paraxial wave equation
rather than the Huygens-Fresnel integral which makes
possible the formulation of the eigenvalue problem as a
difFerential eigenvalue equation. Then, a perturbation
method based on Taylor expansions of the evolution
operator and the mirror profile leads to the analogy with
quantum mechanics. This method has the benefit of
clearly stating the limits of validity of the equivalence
and it allows the explicit evaluation of higher-order
corrections when a longer cavity is considered.

We believe that the same approach can be easily ap-
plied to other systems. In particular, we are presently in-
vestigating the possible advantages of adding a graded
reflectivity as a way to increase the modal selectivity. The
analysis of the influence of a misalignment is also under
progress. Similarly, the present work could be extended
by including a gain and/or a nonlinear medium in the
cavity. But, as it stands, the present model already
represents a valuable tool for designing custom resona-
tors whose higher-order modes would be either
nonconfined or much wider than the fundamental mode
so that they could be easily eliminated by using finite
apertures. In that sense, we have reached the objective
we had in mind at the beginning of this work which con-
sisted in getting simple analytical information on the na-
ture of the higher-order modes of a custom resonator.
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