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Landau-Zener transition to a decaying level
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Exact analytical solutions for the problem of term crossing are obtained for decaying levels with
the help of the Laplace contour-integral method. For the case of fast passage through resonance and
for the case of slow decay, simple asymptotic expressions are found from the exact solution in terms
of Whittaker functions.
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Consider a two-level quantum particle in an intense
laser field. Let the detuning between the laser and the
transition frequency depend linearly on time. What is
the probability of finding the particle in the upper state
after a single passage through the resonance? We im-
mediately recognize here the well-known Landau-Zener
problem [1, 2], which has been the subject of intensive
study during the past 60 years. This problem appears
in atomic collisions and physical chemistry when nona-
diabatic transitions are of importance [3—6, in semicon-
ductors [7], in particle and nuclear physics [8], in atomic
interferometry [9, 10], and in the interaction of atoms and
molecules with laser fields [11—14]. Moreover, a particle
with the spin 2 moving in an inhomogeneous magnetic
field [15], and regular above-barrier scattering, are de-
scribed by the Schrodinger equation of the same type
and allow the same semiclassical approach [16—21]. One
can also apply this model to describe resonance-enhanced
multiphoton ionization (REMPI) of atoms by a laser in
the case when the laser field has a fixed frequency but the
intensity is time dependent [22]. Time-dependent detun-
ing results then from the second-order Stark shift of the
atomic levels.

For an atom initially in the lower level, the Landau-
Zener model suggests the expression for the population of
the upper level after a single passage through resonance,
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Here n is the slope of the time-dependent detuning
6 = nt, and V denotes the interaction amplitude di-
vided by h. But what happens if the upper level can
decay? The present paper answers this question for two
types of decay: (i) irreversible decay of the upper level
to a continuum, and (ii) longitudinal relaxation of the
upper level to the lower state.

These problems become important in the context of
laser-induced level crossing [19,23, 24, 26, 11—13], that is,
crossing of dressed states of atoms or quasienergy terms
of molecules. Photoinduced decomposition of particles
and spontaneous emission of photons are the physical
processes responsible for the decay in the above cases (i)
and (ii), respectively.

The main tool of our analysis is the Laplace contour
integral method [1]. It enables us to obtain exact ana-
lytical solutions of the problems (i) and (ii) in terms of
integrals that in fact correspond to special functions: the

parabolic cylinder function in case (i) and the Whittaker
function in case (ii). We evaluate the integrals using the
stationary phase method and get the asymptotics of these
functions.

We consider case (i) first. The Schrodinger equation
for the probability amplitudes Qi and g2 for the lower
and upper level reads

i/2 = ntQz —ipgz + Vgi.
(2)

(3)

Here 2V is the Rabi frequency and p is the relaxation
rate. The initial condition is

gi(oo) = 1.

Substitution of Eq. (2) into Eq. (3) yields

gi+intgi —7@i+V Qi =0. (5)

The Laplace contour-integral method suggests a solution
of Eq. (5) in the form
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Note that this result is the analytical continuation of the
exact solution of the Landau-Zener problem for nonde-
caying levels [8, 18] with t ~ t + ip/n. We find the
constant A in Eq. (6) from the initial condition Eq. (4)
and the asymptotic expression of the integral Eq. (6): At
the extreme t = tp ~ —oo we tak—e 7. 1/tp in the
integrant, neglect the first and the second term in the
exponent, rotate the contour C by the angle n/4, and
thereby reduce the integral to the integral representation
of the I' function. Finally we get

where A is a normalization constant. The contour C,
which allows us to satisfy in the simplest way the initial
condition, Eq. (4), comes in from infinity along the direc-
tion (1 —i) and returns back to infinity after the circum-
vention around the point r = 0. Equation (6) resembles
the integral representation of the parabolic cylinder func-
tions D„(z) [25], and indeed, the exact time-dependent
solution of Eqs. (2) and (3) reads
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(8)
i(uZ = 2V'P —pZ,

icuP = —2VZ + in Q —p'P + 4vr Vb(u)), (14)

that is,
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The population of the ground state is identical to that
given by the Landau-Zener formula, Eq. (1), which does
not take into account the relaxation process. In other
words, irreversible decay of the upper level does not affect
the probability of a Landau-Zener transition.

Now let us consider a Landau-Zener transition in a
two-level system with longitudinal relaxation, that is,
case (ii). The population of the upper level does not
leave the system after the relaxation but returns to the
ground state. This is a non-Hamiltonian system, and
hence for its description we have to employ the density-
matrix equation or the equivalent set of Bloch equations
[27]. The Bloch equations for polarization 'P = piz+ p2i,
dispersion Q = piz —pzi, and population of the upper
level pzz =—zZ reads

Z = 2VP —pZ,
'P = —2VZ + nt Q —pP + 2V,

Q = —nt'P —pQ.

Here we have assumed that the constant p is identical for
the transverse and longitudinal relaxation. The initial
conditions are

Z( —oo) = P(—oo) = Q(—oo) = 0. (12)

At large positive times the two-level system is out of res-
onance, and hence the population returns to the lower
level as a result of the longitudinal relaxation. This gives
the boundary condition

Z(oo) = P(oo) = Q(oo) = 0,

which, together with Eqs. (12), allows us to perform a
Fourier transformation of Eq. (11),

We now ask what is the population p2z =
~Qz~ of

the upper level as t —+ oo? Due to the decay of the
level it is apparently zero. Now, what is the population
pii = ~gi~ of the lower level in this limit? Expression
(6) provides the answer to this question when we evaluate
the integral using the method of stationary phase. There
are two stationary phase points: One at w = —p+ ink
that brings in a contribution of the order of i which is
negligible for large t, and another that is close to r = 0.
Hence we can neglect the 7 ~ term in the exponent. After
a rotation of the contour by 3~/4, the integral reduces to
the integral representation of the I' function and yields

iu)Q = —in P'—pQ.
(d

Now we express Z and Q in terms of 'P with the help
of the first and the third equation of Eqs. (14) and sub-
stitute them into the second equation of this set. This
yields

n B 1 B 4V~ V'P+'P — . z'P = 4x—8(~).
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The Dirac 6 function at the right-hand side of the equa-
tion implies that at the point cu = 0 the Fourier trans-
form of polarization P(u) has a discontinuity in the first
derivative. When we integrate Eq. (15) over a small vicin-
ity e of u = 0 we find

B'P BP pV
B~ ~=o+e B~ ~=o-.

Thus, we have to find the solution of the homoge-
neous equation (15) that satisfies the boundary condi-
tion, Eq. (16), and corresponds to a real 'P(t), that is,

(16)

'P(~) = 'P'( —u)).

We now may obtain the exact analytical solution of
Eq. (15) in terms of Whittaker functions. In order to
simplify the notations, we scale all frequencies with the
Rabi frequency, that is, we set 2V = 1, p = p/(2V), n =
n/(2V)z, cu = u/(2V), and introduce the new variable

(iur+ )~x = '
z+ . Then we come to

B2 1
z z'P+ 'P+z'P = 0. (18)

The Laplace contour-integral method gives the solution
of this equation,

A' exp(ex)
2in (~ + i)1—i/4a(~ i)1+i/4a

The contour C~ comes in from 7 = ioo, goes around the
point ~ = i, and goes back along the direction 7 = ioo.
This integration path ensures convergence of the integral
for u ) 0. The integral representation for u ( 0 follows
from the condition Eq. (17) [29].

The substitution 7. = i + i2z transforms the integral,
Eq. (19), to the integral representation of the Whittaker
function [28],

ui(~) = ~'/4, i/~ (

—i-(icu +p)'l.
) (20)

Here, we have made use of the explicit expression for
z. Hence, the Whittaker function ui(~) is a solution of
Eq. (18) for u ) 0, that is, P(u)~~&p = Aui(u). The
other linearly independent solution of Eq. (15),

'P(u)) = A*up(~) = A"W, /4~ i/z ~

i
~

(21)
/' (i~ + p)zl.
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accounts for the case u ( 0.
Now, we can find the proportionality constant A with

the help of the condition given in Eq. (17) at ~ = 0
and the condition Eq. (16). We come then to the set of
equations

Aur(0) —A'uz(0) = 0,

(22)
BuI ~ Bu2

=o ~~ =o

The determinant D of this set is proportional to the
Wronskian W(uI, uz) = (uI g-, uz —u2g-, uI) of the Whit-
taker functions [30] and reads

Landau-Zener dependence Eq. (1). It changes with the
increase of the quenching parameter p /n, as the num-
ber of spontaneously emitted photons per atom increases
with increasing relaxation rate. This implies that laser
photons get transformed into the spontaneously emitted
photons during passage through the resonance.

We now consider the asymptotic behavior of Eq. (25).
We start with the case of slow passage through the reso-
nance, that is, a —+ 0. We use the integral representation
[30] of the Whittaker function and find with the help of
the method of stationary phase the following expression:

( ip)
4a ' 2 Q

= 2'y . = 21
W(uI j uz) = —exp 4a (23)

The factor ~ results from the derivative of the argu-
rnents &*. Solving Eq. (22) we obtain the constant A
and find for the polarization

expii~t —iv ln ' }Cl Cl 1+4

t(t+1)

(26)

(24)

Now, we are able to calculate the number of photons
I = p fpzz(t)dt = ppzz(~ = 0) emitted per atom after
the passage through the resonance. Since, according to
Eq. (14), we have pzz(sr=0) = 2Z(a=0) = (2p) 'P(u=
0) we find from Eqs. (20), (21), and (24) for a = 0

Vz .v~ (I = 2Ir e - W'v2
A n )

Here we have used the original dimensional variables.
This expression is the final result of the exact analyti-
cal consideration.

In Fig. 1, we show the dependence of the yield I on
g2

the Landau-Zener parameter —and on the quenching
2

parameter ~. At p = 0, the yield is given by the regular
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pVz 1 —exp( )
(p2 + 4V2)1/2 (27)

where we have made use of the formula ~I'(iy)~
Ir(ysinhxy) I. The exponential term reminiscent of the
Landau-Zener expression arises from the I' function and
not from the stationary phase analysis of Eq. (26). How-
ever, in order to be consistent within the order of ap-
proximation it should be neglected. Note that this re-
sult also follows from the rate equation [31]. The limit
of weak interaction, Vz/n ~ 0, follows from the condi-
tion ~Wo I/2(x)~ = ~e'*~ = 1, and Eq. (25) simplifies to
I 2IrV /n. This implies that the asymptotic formula
Eq. (27) is also valid for weak interactions.

2

We now consider the limit of slow decay, ~ (( 1, with
the help of the asymptotic expression for Whittaker func-
tion [30],

1
lim W, i(z) = 1

iaI (ia)' (28)

where 4 is a phase factor that does not effect the 6nal
result, Eq. (25). Here, we have taken into account that in
the limit n —+ 0 the only stationary point on the integra-

tion path is t = —2+ 2 1 +, . We also have assumed

V2pz/nz )& 1, allowing us to neglect derivatives higher
than second order at the stationary phase point and thus
satisfy the requirement of the stationary phase method.
Substitution of Eq. (26) into Eq. (25) results in

$2
a

T
p

which, after substitution into Ea. (25), results in

FIG. l. Expectation value of the number of photons emit-
ted per atom given by Eq. (25) as a function of Landau-Zener
parameter V /n and quenching parameter p /a. The Whit-
taker function was calculated numerically with the help of the
integral representation Eq. (26) after the substitution t = e .
[Numerical solution of the set of Bloch equations Eq. (11)
gives the same result. ]

( 27rVz&I = 1 —exp /—
) (29)

We hence recover the probability of the Landau-Zener
transition, Eq. (1), which indeed is identical to the prob-
ability of emission of a spontaneous photon in the case
of a small decay rate. We note that a simple expression
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for the limit V2pz/az (( 1 is difficult to obtain due to
the nonanalytical behavior of the Whittaker function at
small values of the argument, shown in Fig. 1.

We conclude by summarizing the main results of the
present paper that follow from exact analytical solutions
of the I andau-Zener problem obtained for the case of re-
laxation of the upper level to a continuum, and for the
case of longitudinal relaxation of the upper level to the
lower state. Rabi oscillations of population between the
upper and the lower states, which take place while the
levels are in resonance [21], do not manifest themselves
in any oscillations of the regular Landau-Zener transi-
tion probability. At first sight, one might think that the
relaxation would bring them to light since it interrupts
the population oscillations in the middle of the Rabi cy-
cle, that is, before the passage through the resonance
is complete. However, they remain hidden even in the

case when relaxation processes are taken into account:
The irreversible decay of the upper state does not affect
the probability of the transition at all. The longitudinal
relaxation of the upper level accounts for the multiple
returns of the particle to the lower state "ach of which
is accompanied by the emission of a spontaneous pho-
ton. In this case, the two-level system also comes back
to the ground state in the middle of the Rabi cycle. But,
these returns also do not bring any oscillations to the
expectation value of the number of photons emitted per
one atom. Gradual change of the quenching parameter
results instead in the gradual transformation of Landau-
Zener dependence to the smooth dependence given by
the rate equation.
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