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Semiclassical theory of collision-induced loss i'rom optical traps
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A semiclassical analysis of the losses in an optical trap due to radiative collisions is presented. We use
WKB theory to calculate the overlap between the ground- and excited-state wave functions. The results
may be written as an absorption line shape and a survival on the excited state, with an excited-state ve-
locity determined by energy conservation. In the region around resonance for the transition, the results
reduce to those presented in previous analyses.
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I. INTRODUCTION

The study of collisions that cause the escape of atoms
from optical traps is an important part of the new field of
ultracold atom collisions (for an overview of research in
this area see Julienne, Smith, and Burnett [1]). Investiga-
tions of trap-loss processes have been conducted both ex-
perimentally and theoretically. The two basic mecha-
nisms by which kinetic energy may be gained are

A (S)+ A (S)+fico~ A z (e,P3&z+ S)

~ A (S)+ A (S)+A' c+osa,E(1)
~ A (2P, q2)+ A (S)+sFs . (2)

The mechanism in Eq. (1) is called radiative escape and
transfers an energy sRE=R(co —co') to the ground-state
atoms. The second mechanism results from fine-structure
splitting of the molecular potentials and transfers an
amount of kinetic energy c„s equal to the P3i2- P, &2

splitting. Experiments have been performed for a cesium
trap by Sesko et al. [2] and for a sodium trap by Prentiss
et al. [3],which observe these mechanisms.

The first analytical treatment of trap loss was made by
Gallagher and Pritchard [4]. Their analysis was entirely
classical, but it did contain the essential physics of the
trap-loss process. Essentially, they showed how atoms
moving along varying molecular potentials during a col-
lision could give rise to the mechanisms Eqs. (1) and (2).
The physics was modelled in terms of an absorption
profile into an excited state and a survival along this state
into the center of the collision.

This theory was then improved by Julienne and Vigue
[5], who included the effect of a discrete sum over allow-
able angular momenta and who developed the multichan-
nel quantutn-defect theory (MCDT) to treat the close-
range problem quantum mechanically. This new theory
now agreed with ordinary collision theory at high tem-
peratures. However, it still treated the longer range
problem classically in terms of a survival and an absorp-

tion line shape. There also remained an ambiguity as to
whether the initial velocity on the excited state should be
specified according to energy conservation or according
to the Franck-Condon principle (i.e., the local velocity
does not change on making the transition to the excited
state). For absorption of photons off resonance, these
two choices give rise to diferent results. Inside the classi-
cal framework there is no way to justify a priori which
choice is correct. More recently, Band and Julienne [6]
have introduced an optical Bloch equation method to
model the preparation of the atoms at long range. How-
ever, there is still an ambiguity in determining the veloci-
ty of the incoming atom along the excited-state potential.

The purpose of this paper is to address this problem
and develop a semiclassical derivation that justifies the
models used by Gallagher and Pritchard and by Julienne
and Vigue. In doing this we can resolve the question of
energy conservation versus the Franck-Condon principle.

We begin in Sec. II by considering the problem of radi-
ative escape [Eq. (1)] in a one-dimensional optical trap.
We do not include the complication of angular momen-
tum, as in the complete analysis of Julienne and Vigue.
However, this may be added to our basic method without
difficulty. To determine the overlap between ground- and
excited-state wave functions we use WKB wave functions
and the principle of stationary phase. This allows us to
determine the energy distribution of the excited state as
well as the emission rate into final momentum states.
The final expression can be written as an integral (over
the point of excitation) of a line shape and a survival
term, as in Gallagher and Pritchard [4] and Julienne and
Vigue [5]. However, unless the excitation is close to the
resonance for the transition (where the interatomic po-
tential matches the laser detuning), the form of these
terms does not reduce to those used by Julienne and Vi-
gue. In general, they are more complicated but they
clearly show that energy conservation is the more funda-
mental principle in determining excited-state survival.
The only regime where both energy conservation and the
Franck-Condon principle apply is around resonance, in
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which case neither is preferred and we return to the am-
biguity discussed above.

In Sec. III to ascertain the impact of our expressions,
we perform a numerical study of trap loss for cesium
atoms. Julienne and Vigue have shown that significant
loss occurs in the far wing of the absorption linewidth,
where our theory suggests their expressions are perhaps
inaccurate. The numerical results indicate that there is a
difference of about 25%%uo between the methods, which
makes the energy-conserving result more compatible with
the experiment of Sesko et al. [2].

Finally, in the conclusion, we discuss the assumptions
made in our model and the impact our results have on
the theory of Julienne and Vigue. Essentially, we consid-
er that their theory is valid for far off-resonant absorption
if they incorporate our expression for the line shape. We
also discuss quantum-mechanical methods for the trap-
loss process, which would fully resolve this problem.

II. WKB METHOD FOR RADIATIVE TRAP LOSS

In this section we develop a quantum theory for one-
dimensional trap loss. The trap is specified by a
standing-wave laser field tuned to the red of the frequen-
cy of the atomic transition. The intensity of the laser
field is assumed suSciently small that the atoms are not
saturated. This is true if a standard optical molasses
configuration is in operation.

We consider the loss from the trap as resulting from a
series of two-body collisions causing the mechanism in
Eq. (I). For each binary collision, one atom is fixed as the
origin and the other atom moves directly towards this
center at the relative velocity of the two atoms. There is
now a two-step process for atoms initially in the ground
state. First, at some interatomic separation, the moving
atom absorbs a photon and moves into the excited state
of the atom pair. This atom is then accelerated towards
the other atom as it moves along the molecular potential,
which describes the interaction between the atoms.
Eventually, the excited atom will spontaneously emit and
return to the ground state for the pair. The entire pro-
cess is represented diagrammatically in Fig. 1. If the
atom survives in the excited state suSciently close into
the collision, then the final momentum pf is given enough
extra energy [ERE in Eq. (I)] to escape from the trap. In
Fig. 1 we have assumed that, over the range of interatom-
ic separation where the process occurs, the ground-state
potential V (R) is flat. This is justified for the long-range
collisions we are considering. At short range there are the
usual strong repulsive interactions, which we consider
only to reAect the final rnomenturn pf. The excited
molecular potential is assumed to be the 1/R resonant
dipole-dipole potential, as in the theory of Julienne and
Vigue. This means that the problem of long-range retar-
dation is avoided. The effect of the retarded 1/R and
1/R potentials in collisions between laser-cooled atoms
is discussed in Smith and Burnett [7].

At any time the wave function representing the collid-
ing atoms can be described as a superposition of ground-
and excited-state wave functions. Therefore, the complete
wave function may be expanded as

lg&+le&

Ve (R)

t, (R) lg&+lg&

where

) = f dp ~p ) C~(t) exp —iE(p)— (4)

~%, ) = f dc. ~E)C, (t) exp i (E+A—'coo)—t

We have assumed that we are only looking at an excita-
tion of continuum states so there are no bound states.
The form of Eqs. (4) and (5) is written for a one-
dimensional analysis but could be extended to three di-
mensions. We would, however, have to consider explicit-
ly the role of the relative angular momentum of the pair.
This relative angular momentum alters the effective po-
tential experienced in the relative motion of the pair.
This in turn will effect the velocity on the excited poten-
tial and the survival of excited atoms to small separa-
tions. For clarity in explaining our method we shall look
in detail at the I =0 case. Our method is, however, appl-
icable to the general case.

Continuing with the derivation, the equations of
motion for the excited-state modes can be written

+i f dp Qe ' (Eip)C (t)

X exp i [c.+ficoo —c,(p)]—

At this stage we have explicitly added in the damping
rate from the excited state I „assumed independent of R
and t. This is a good assumption, for example, for the 0„+

excited state, which is the dominant potential for the RE

Interatomic Separation — R

FIG. 1. Diagram showing the radiative escape (RE) mecha-
nism for collisional trap loss. The kinetic energy gained is
c«=Pi(e —co'). The asymptotic ground- and excited-state ener-

gy levels are displayed. These energy levels are perturbed by the
interatomic potentials V, (R) and Vg(R). col is the frequency of
the standing wave trapping field, p; is the relative momentum
before the collision, and pf is the relative momentum after the
collision.
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mechanism in cesium. The Rabi frequency 0 is propor-
tional to the amplitude of the laser field and the dipole
moment of the transition. We assume, as mentioned
above, that 0 is suKciently small for saturation not to be
a problem.

In the steady-state limit, assuming that C, (0)=0 and
that C (t)=5(p —p;), the solution of Eq. (6) is easily
found to be

t
exp i [e—A'b, —E(p, )]—

c,(t)=&alp, &en .—~~—.(p )+—'er
The detuning 6 is specified as A=co& —coo. If we substi-
tute Eq. (7) into Eq. (5) then we may construct the
excited-state density matrix

p„=lq, & &q',
I

=&'lfll'f«, f«',
l.,

—es —.(p, ) ——rr, e —A'b —E(p; ) +—A'r,l

We now use WKB theory to evaluate the double overlap integral &p;le, &&e2lp; &. We shall assume that it is only
necessary to use the part of the WKB wave function that contributes in the stationary phase limit. With this assump-
tion the overlap takes the form

dR, R dRb l Rb
&p le&&e2lp&= f ', exp ——f '[p, (R)—p]dR f, exp —f [p, (R)—p)dR

t

where R, is the classical turning point, v; is the ground-state velocity, and v (R) is the excited-state velocity. To calcu-
late these integrals we treat their product as a double integral. We then expect the largest contribution to this overlap
to come from the region in phase space about the line R, =Rb. This is only strictly valid when c.

&
=c2, but is should be

a good approximation for small damping. We therefore make a change of variables to reAect this,

rl, =Rb —R„R,=R, (or Rb) .

Using these new variables the overlap may be written as

(10)

f exp ——f [p, (R)—p, (R)]dR f drl,
I

exp —fz' '[p, (R)—p;]dR

[v (R, )v (R
& +g, ))'~

If we expand p, (R ) about p, (R, ) using a Taylor expansion
2 2

d dV,
p (R)=p (R )+ p (R )(R —R )+ =p (R )

— (R —R )+
dR 1 v(R&) dR 1

l

then the exponential inside the g, integral takes the formR)+n), 1 dV,
exp — [p, (R)—p;]dR = exp —[p, (R&)—p;]rl, — rid+

fi '& ' ' ' 2v(R, ) dR

(12)

(13)

In our later analysis we shall assume that the main contribution to the density matrix occurs when g, is small, so that
we can truncate the expansion in Eq. (13). For the moment, however, we may define without approximation a function
F, (R „p, ) such that

2

dR,
&p;le, & &E2lp,. &

= f exp ——f [p, (R)—p, (R)]dR F, (R, ,p;) .
I

(14)

Now, if we have defined R, =Rb in Eq. (10) then we would still have obtained Eq. (14), except with F, (R, ,p, ).
1

Therefore, in general, we have

F,(R, ,p, )=f dpi

i ) dV
exp

&
[p,«i) —p;]ni —(+)

d l~=~ ni+
2v(R&) dR

[v (R, )v [R,(+)g, ]]' (15)

where (+ ) refers to e2, (
—

) to E, . The choice of e, and e2 as e is made to ensure the convergence of the integrals in Eq.
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(14) as they tend towards their limits. Hence the excited-state distribution has the form

x'fn['
p«= d& d

[e2& & e) [ fdR, exp ——f [p, (R)—p, (R })dR F,(R (,p, )

(16)

u; c.,
—A'b —E(p;) — fi—r, E fib ——E(p;)+ —Ar,

This equation will describe the energy distribution as the atom accelerates towards the other atom on the excited state.
We now want to calculate the rate of scattering into final momentum states after the excited atom has spontaneously
emitted a photon. This is given by

=&pqlp„lpI &

A' [n[
&pI[e~&&e)lpg & f dR, exp ——„f~'[p, (R)—p, (R}]dR F,(R(,p;)

u, e, —&&—E(p, )
——'&r, E, —es —E(p, )+—'ar,

(17)

The second overlap integral & p& [e2 & & e) [p& & may be determined in exactly the same fashion as above to give

dR2 i R

&p&[Ez& &E)[p& &
=f exp —f [p, (R)—p, (R)]dR F,'(Rz, p&) . (18)

The complex-conjugate sign (asterisk) indicates that we have a minus sign in the F integral given by Eq. (15). Hence

e'[nl'
T = dE'1 dE2

4m.

fdR, fdR, S(R„R,)F,(R, ,p, )F,*(R,,p~)

u, u~ s, —ea —E(p, ) ——'er, E, —XS—E(p, )+—'er,
(19)

where we have defined

S(Rz,R) )= exp —f [p, (R)—p, (R))dR (20)

At this stage we perform the c,
&

and c,2 integrations by defining complex contours and by using the residue theorem.
For c, we choose a semicircular contour in the upper-half plane and for 82 we choose the same contour in the lower-half

plane. In both cases we have a simple pole so that

a' [n['T= f dR, f dR2S(R2, R, )F„~+,(p )+(, )~)qr (R „p, )Fr~+,(p )+(;)2)~„(R2,p~) .
U] UI

(21)

The + notation refers to the choice for s as explained after Eq. (15).
Equation (21) is a general expression involving four integrations that describe the rate of transition into final momen-

tum states pI. The only approximations we have made are connected with the use of the WKB wave functions. Since it
would be very diScult to obtain a solution for this equation we shall now make an approximation by truncating the
Taylor series expansion in Eq. (13). This is justified by assuming that the main contributions to the overlap in Eq. (9)
occur when q, is small. In the absence of damping it is possible to show that the result of this approximation is
equivalent to the quasistatic profile that is obtained by making a stationary phase approximation. Provided the damp-
ing is small [defined precisely in Eq. (23) below] we would expect the result with damping to be a convolution of a line
width with the quasistatic (stationary phase) result. However, this is diIIicult to demonstrate rigorously, and we do not
discount the presence of other contributions to the overlap.

Continuing with this approximation, we must now calculate each of the components in Eq. (21). First, S(R2,R ~
) is

expanded as

S(R2,R, ) = exp —f 2p s(p, )+Ah, +—Ar, —V, (R)
I

1/2

2p E(p;)+Ah, —A'r, —V,(R)—1/2

.dR

(22)
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The constant p is the reduced mass for the two-atom system. If we assume that the complex energy is a small perturba-
tion on the real energy where c.,

= c.2, that is

—,
) )ril, ~

—,
' [E(p; )+()ib, —V, (R)],

then, using a binomial expansion, we find that

(23)

S (R2, R ) ) = exp —f dR
u R)

(24)

The velocity on the excited state u (R ) is given by

{2)(l[s(p;)+()ib,—V, (R)]j'i
u(R)= (25)

p
We now clearly see that Eq. (24) represents the survival of the incoming atom on the excited state. The approximation
in Eq. (23) limits our derivation to atom temperatures around the Doppler limit and well above the recoil limit.

To determine the form of F,(z )+&&+(;&2)l)r we shall assume initially that only the linear term in Eq. (15) is imPortant.

If we again assume Eq. (23) and also that to first order

[ U(R ))U(R +))7)(]' =u(R, ), (26)

then we find the result

Fsz+, ( )+(;&2)i)r (R»p; ) =f exp —( {2)(i[E(p;)+A'5 —V, (R, )] j
' —[2ps(p; )]' )2))

—(+)
u(R) 2U R)

(27)

The (+) sign is now chosen (corresponding to choosing s2 or E, for E) so that Eq. (27) converges as 2)) ~+0(), which is
equivalent to writing

T

d "71 l
Fsi)+,(~ )+(,&2)sr (R i,p, )= exp —( {2((l[E(p,. )+A'b, —V, (R, )]j

—[2ps(p;)] )2))—
1 2U Rl

(28)

This integral produces a Lorentzian, which may be written

Fbi)+ (p, )+('i2)sr (R),p; )=.
4r,

2U(R, )
( {2(M[s(p; )+A'b, —V, (R, )] j

' —[2)(ls(p, ) ]'~ )

(29)

This equation may be interpreted as the width in energy of excitation about the resonance point for the photon being
absorbed. Similarly, for the region where the spontaneous emission occurs we find

r

d92 l 1/2
Fsl+~(p )+(il2)sr (R2. ,pf ) = exp —( {2p[s(p;)+A'b, —V, (R2)] j

—
[ )(is(pf )] )r12

—
2

c p,. u R2 fi ' '
2u R2

(30)

Now, because of the acceleration of the atom in the excited state due to the potential V, (R), we can drop the decay
term in Eq. (30). This means the integral will reduce to a delta function

Fsz+, (i )+(,&2)zr (R2,pf ) = 5( {2)M[s(p, )+fib V, (R2)] j
' —[2)ME(pf )—]' ) .

u(R) )
(31)

Of course, strictly speaking this corresponds to a Lorentzian function with very small width.
The delta function in Eq. (31) can then be used to perform the R2 integration in Eq. (21). Making a change of vari-

ables from p [in Eq. (31)] to R2 we have an extra factor

p(R2) =u(R2) V, (R2)
dRz dR2

(32)

The value of R 2 is therefore constrained to satisfy

V, (R2 ) =A'6 —[c.(pf )—s(p; )] .

Finally, putting together all the pieces, we have

(33)
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2W'[n)'
1

v-vf dR2
exp — dR

R~ U(R)

41,5( V, (R, )
—A'b, +e(pf )—E(p;))

2U(R, )
I ~+ ([2p[E(p, )+fib, V—,(R, )]' —[2ps(p;)]' )

2

{2p[E(p;)+V, (R, )
—V, (R)]]'

v„c(R)=
p

(35)

which maintains U„c(R, )=U;. We see that U„c(R) is
only equal to U(R) if V, (R, )=fib, i.e., we are at reso-
nance for the transition. The question whether to use
v„,c(R) or v(R) remains an ambiguity in the classical

I

This is the most general form of our WKB solution.
At this stage we should make a few comments. First of
all, the delta-function condition on Rz in Eq. (34) is con-
sistent with energy conservation. However, it does not
satisfy the Franck-Condon principle for all points of exci-
tation because the velocity on the excited-state potential
is given by Eq. (25), rather than the Franck-Condon value

(34)
I

method of Julienne and Vigue [5]. However, it is clear
from our WKB method that energy conservation is the
more fundamental principle in the theories of Gallagher
and Pritchard [4] and Julienne and Vigue and that v (R)
defined in Eq. (25) is the more natural choice to describe
the excited-state velocity of the incoming atom.

Nevertheless, it is possible to show that, for a range of
excitation points, the Franck-Condon principle and the
principle of energy conservation can be simultaneously
satisfied. If we limit the range of R, to be around reso-
nance so that

~aS —V, (R, ) ~

& -,'e(p, ), (36)

then we may expand the survival term S(Rz,R, ) in Eq.
(22) as

UFC(R )

r fib, V(R )+——RI
l

R2 e 1 2 e

S(R2,R, )= exp —f
1

Ab —V (R ) ——A'I
l

e 1 2 e

uF&(R)
dR (37)

which simplifies to an equation corresponding to Eq. (24)

R,
S(R2,R, )= exp —f dR

UFC(R )
(3g)

F,(R „p;)=
f' +4

fib V, (R,)—
fi

(39)

Similarly, if the approximation in Eq. (36) is valid then
we may expand Eq. (29) using the binomial theorem, to
obtain the line-shape function

I

tic term in Eq. (15) and/or taken the next order of the ex-
pansion in Eq. (26), then we would obtain a general solu-
tion for F,(R, ,p; ) of the form

F,(R, ,p, )= f dg, [i(ag, —be, )
—clg, I] .

This integral corresponds to adding both a Gaussian and
Lorentzian width broadening the delta function. We
would expect the Gaussian component to be a small per-
turbation on the line shape given in Eq. (30) because
V„(R) is slowly varying (i.e., reasonably fiat) at the point
of excitation.

Hence, for the range of R1 where the approximation are
valid we obtain

T=constX f dR& exp —f '
dR

UFC

1+4

1

fih —V, (R, )

AI,

This is exactly the form of the Julienne and Vigue expres-
sion obtained using classical methods. Because this ex-
pression is still consistent with Eq. (33), we see that in
this limit it is possible to satisfy the Franck-Condon prin-
ciple and have energy conservation. It is now completely
arbitrary as to whether v„c(R) or U(R) is used to track
the excited-state velocity, because they both may be used
to define the survival when Eq. (36) is valid.

As a final comment, if we had maintained the quadra-

III. TRAP-LOSS PROCESS FOR CESIUM

In this section, we shall use the results of our WKB
derivation to check the theory of Julienne and Vigue [5]
and Gallagher and Pritchard [4]. For the case of trap
loss in atomic sodium, we do not expect Eq. (34) to give
significantly different results from those stated by Juli-
enne and Vigue, because most of the contribution comes
from around the resonance point, where approximation
Eq. (36) is valid. As we have already shown, in this range
the two methods are equivalent.

However, in the investigation of trap loss in cesium,
Julienne and Vigue have suggested that most of the sur-
vival originates in the far wing of the absorption line
shape. In this regime, where Eq. (36) is no longer valid,
we cannot justify the use of equation Eq. (40), using ei-
ther v Fc{R ) or v (R ). We would therefore like to discov-
er if there is a significant difference between using Eq.
(34) and Eq. (40).
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To make our analysis we shall use exactly the same ex-
perimental parameters as Julienne and Vigue [5]. For the
cesium O„state, the excited-state line width is
I,= 4@=4.30107X10 s ', and we shall assume that the
laser field is tuned one atomic linewidth to the red of the
atomic resonance, i.e., 5= —y. At this detuning, the
excited-state potential causes the ground-excited transi-
tion to come into resonance at R„=2928ap ( = K) so that

C

R,
=glal =f)Iy~c=gy(2928ap)' . (42)

The initial temperature of the incoming atom on the

ground state is T, =1 mK, with p, =+2iuk&T; Juli.enne
and Vigue suppose that the trap depth is of the order 1

K, which corresponds to a final temperature of Tf =2 K
for the incoming atom, if there is to be suScient energy
for each atom to escape from the trap.

Finally, it is not necessary to specify the Rabi frequen-
cy 0 as it forms a constant in Eq. (34). However, if we
assume that lQl &I „ then we are certainly in a non-
saturated regime where or theory is justified.

We are now ready to numerically integrate an expres-
sion of the form

is given by Eq. (39) as in the classical theory, but the sur-
vival is determined using energy-conserving principles,
Eq. (24).

The integral over R, in Eq. (43) can be limited to
R„„„=200ap and R„„,„=4000ap, because T(R, ) is
effectively zero outside this range. The value of dR, is
chosen suSciently small that a simple trapezoidal rule
may be used for the integration. For Tf =2 K the delta-
function condition in Eq. (34) specifies that R p

= 146ap.
The results for the various choices are displayed in

Figs. 2-4, where to make comparisons easier we plot
choice 1 versus choice 2 in Fig. 2, choice 1 versus choice
3 in Fig. 3, and choice 2 versus choice 3 in Fig. 4. In or-
der that S(Rt), F(R, ), and T(R, ) may be compared on
the same plot we have multiplied T(R, ) by an extra fac-
tor of 100. Figure 4 is similar to that depicted in Fig. 6 of
Julienne and Uigue [5], except that our treatment does
not consider the decrease in the survival at small R due
to angular momentum effects. With the same constant
factor used in Eq. (43) for each choice, the integrated rate
T has the values

T,„.;„,=O.7097,

T=constX JdR, T(R, ),
where

(43)
(45)

T(Rt)=S(Rp, Rt)F(Rt) . (44)

The various choices for S and Fare given by the choice of
theory used. We shall label choice 1 as our theory
presented in Sec. II which gives Eq. (24) for S and Eq.
(29) for F. The classical theory of Julienne and Vigue,
while maintaining the Franck-Condon principle we shall
designate as choice 2, involves Eq. (38) for S and Eq. (39)
for E. Finally, choice 3 is defined as where the lineshape

Now, Julienne and Vigue also find a ratio of approxi-
mately 60% between choice 2 and choice 3. When they
used these values in an expression for the collision rate
coeScient, the energy-conserving result was found to be
too high to agree with the experimental results, which
gave some justification for the choice that satisfies the
Franck-Condon principle. However, our new energy-
conserving choice (choice 1) gives a value for T which is
approximately 25% smaller than with choice 3, so that

'10:
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FIG. 2. Graph of survival S(R, ), line shape F(R
& ), and rate

T(R, ) (small dashes) vs R, (interatomic separation at excita-
tion) for choice 1 {semiclassical result with energy conservation,
solid lines) and choice 2 (JV result with Franck-Condon princi-
ple, small dashes). Parameters: dRI =2ao, T; =1 mK, Tf =2 K,
y = —6=3.2258 X 10 s

FIG. 3. Graph of survival S(R I ), line shape F(R I ) and rate
T(R

& ) vs R I (interatomic separation at excitation) for choice 1

(semiclassical result with energy conservation, solid lines) and
choice 3 (JV result with energy conservation, small dashes). Pa-
rameters: dRI=2ao, T;=1 mK, Tf=2 K, y= —5=3.2258
X10' s
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means that the velocity on the excited state is determined
in order to satisfy overall energy conservation rather than
conserve velocity during a photon transition. Second, the
best results for trap-loss coefficients will be obtained by
using Eq. (29) for the absorption line shape and Eq. (24)
to describe the survival on the excited state. If the princi-
ple excitation occurs around resonance we have shown
that the result is identical to that obtained using the Juli-
enne and Vigue theory. However, for cesium traps, the
main contribution to the trap loss arises from excitation
in the inner far wing of the absorption line shape, and the
results are significantly different.

To determine the reason for the reduction in the line
shape it is useful to write F, from Eq. (29), as

2000
R

&

('units o t cj
400 '

FIG. 4. Graph of survival S(R l ), line shape F(R
& ), and rate

T(R, ) vs R
&

(interatomic separation at excitation) for choice 2

(JV result with Franck-Condon principle, solid lines) and choice
3 (JV result with energy conservation, small dashes) ~ Parame-
ters: dRl =2ap T.=1 mK Tf =2 K p= 5=3 2258X10
s

—
1

the fit with experiment is much better. The reason for
this reduction can be seen by looking at Fig. 3. The sur-
vival function is the same in both cases, but the lineshape
F(R, ) tails off more quickly on the inner far wing for
choice 1. Since this is where a considerable proportion of
T(R

&
) occurs, a significant reduction in overall T can be

achieved.
Comparing choices 1 and 2 in Fig. 2, the survival in

the inner wing for the energy-conserving choice is larger,
as the incoming atom is given a greater initial velocity on
the excited state for small R

&
~ However, this is again bal-

anced by the smaller value for the lineshape at these
values of R.

IV. CONCLUSION

In this paper we have produced a semiclassical WKB
theory for the excited-state potential absorption and
spontaneous emission process which forms part of the
loss mechanism for atoms in an optical trap. Our inten-
tion was to provide a firmer justification for the classical
models of trap loss developed by Gallagher and Pritchard
[4] and Julienne and Vigue [5]. We have explicitly per-
formed our calculation for the radiative escape mecha-
nism, Eq. (1). However, because the fine-structure mech-
anism also involves an absorption profile and a survival
to small separations (where now a fine-structure change
occurs), our results also apply for Eq. (2).

In our analysis we have only treated part of the total
problem considered by Julienne and Vigue and have ig-
nored angular momentum effects and the physics of the
short-range collisions. Therefore the theory we have
presented is not intended to replace the existing trap-loss
theory. Instead we consider we have achieved two main
results. First, the semiclassical analysis clearly demon-
strates that the principle of energy conservation is more
fundamental than the Franck-Condon principle. This

F, (R I,p, ) =
4r,

2u (R, ) A'6 —V, (R, )r,'+4
v(R, )+u; fi

(46)

Comparing this expression with Eq. (39), we see that our
new form of the line shape is the Julienne and Vigue re-
sult with the addition of a factor

2u(R, )x=
u(R, )+u;

(47)

At the Franck-Condon point v (R, ) = u, , so that y = l.
However, for off-resonant absorption in the inner wing of
the line shape, u (R, ) ) v, and so the line shape is reduced
by a factor g . The upper limit of y is 2 so that the max-
imum reduction in the line shape is a factor of 4. We can
interpret this reduction as resulting from oscillations in
the overlap between ground and excited states if the ve-
locity on each level is significantly different.

It is also significant that g is similar to the "correc-
tion" factor used by Band and Julienne [6] in their
optical-Bloch-equation method. We have generalized our
method to include angular momentum and compared the
results of the averaged survival and excitation results
with their calculations. We find a close comparison with
the results in Ref. [6], and our method also appears to
give half the reduction obtained using the new form of
their equations [8]. We will continue to investigate this
relationship.

In developing our semiclassical WKB theory we have
had to make several assumptions. First, it was necessary
to assume that the atoms were not saturated by the effect
of the laser field. This would affect the way the popula-
tion in the excited state is created as the atom moves
through the resonance for the transition. In addition, our
method is based on a WKB wave function and the princi-
ple of stationary phase. It is possible, therefore, that
there are extra contributions to the integral away from
the point of stationary phase. Any extra terms should be
revealed by solving numerically the integrals contained in
the full expression Eq. (21). This method should also pro-
vide a low-intensity justification of the assumptions made
in the optical-Bloch-equation calculation.

To act as a final check on the results of this paper we
are developing a quantum-mechanical treatment of the
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RE trap-loss mechanism (Holland, Smith, and Burnett
[9]). This approach will go one step further than the
optical-Bloch technique of Band and Julienne [6] and ex-
plicitly solve the Schrodinger equation describing the

evolution of the ground- and excited-state wave func-
tions. The effect of the spontaneous emission is the in-
cluded using the quantum Monte Carlo method of Dali-
bard, Castin, and Msllmer [10].
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