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The influence of center-of-mass corrections on transition probabilities in the hydrogen spectrum is
studied in a homogeneous magnetic field with the help of canonical transformations. To a good approxi-
mation, only energy differences are modified but in an unexpected way for electric quadrupole transi-
tions. Center-of-mass corrections mainly affect the lifetimes of the tightly bound states with m <0. Di-
pole transitions remain dominant for reduced fields ¥ up to at least 1000. Quadrupole transitions should
dominate the lifetimes of even-parity m =0 states at higher fields.

PACS number(s): 32.60.+1, 32.70.Fw, 31.30.—i

I. INTRODUCTION

In a magnetic field, the center-of-mass (c.m.) separation
is not a trivial problem, even for the hydrogen atom. The
separation can be performed analytically when the field is
uniform [1-5], but its physical consequences are not fully
understood yet. Except in the unlikely case where the
hydrogen-atom motion is perfectly parallel to the field,
the internal properties of the atom depend on a collective
constant of motion, the total pseudomomentum [1]. The
most spectacular effect of the coupling between internal
and collective motions is that binding energies may
significantly be modified in strong fields [4,5]. States may
even become unstable because of c.m. effects [4,6]. The
strong-field regime is characterized by values larger than
unity of the parameter

y=+*#eB/2m R , (1)

where B is the magnetic field strength, m, is the electron
mass, and 7 is the Rydberg energy.

How does c.m. separation affect electromagnetic tran-
sitions? To answer this question, we apply the linear-
canonical-transformation formalism described in Refs. [4]
and [5] to the calculation of transition probabilities. We
assume that the collective motion of the atom in a direc-
tion transverse to the field is initially weak. The study of
important transverse motions is rather delicate but is in
progress.

Electric dipole transitions in the hydrogen spectrum
are studied with high accuracy from weak to very strong
fields by Forster et al. [7] (see also Ref. [8] for a physical
discussion in the adiabatic approximation). These au-
thors assume that the effect of the finite proton mass can
be taken into account by a simple scaling law [9]. As
shown below, this assumption is correct but its correct-
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ness is rather fortuitous, since c¢.m. corrections on quad-
rupole transitions are counterintuitive.

Here, we calculate transition probabilities with the
simple variational basis of Ref. [10]. Since extensive data
already exist for low-lying states [7], we concentrate on
the influence of c.m. corrections. The validity of the elec-
tric dipole approximation is also discussed, since energy
differences are much larger in very strong fields.

In Sec. II, formulas for dipole and electric quadrupole
transition probabilities are derived with a correct account
of c.m. separation. In Sec. III, some transition probabili-
ties are displayed and discussed. Concluding remarks are
presented in Sec. IV.

II. CENTER-OF-MASS CORRECTIONS
IN TRANSITION PROBABILITIES

In a homogeneous magnetic field B, the Hamiltonian of
the hydrogen atom reads [4]
w5 m e’

H= + - ’ 2
2m, 2m; |rg—r| @

where m is the proton mass. With the arbitrary gauge
A(r) for the external field, the kinetic momenta m; are
given by

m;=p; —q; Alr;) , 3)

where r;, p;, and g; are, respectively, the coordinate,
momentum, and charge of particle i (go=—¢q,;=e). The
Hamiltonian describing the interaction with the radiation
field reads in the Coulomb gauge [11]

H,':_(qo/mo)ﬂo'A,(ro)_'(ql/ml)ﬂ'l'A,—(r]) , (4)

with the vector potential

4055 ©1992 The American Physical Society



4056 C. CUVELLIEZ, D. BAYE, AND M. VINCKE 46

A, (r)=Aqeexp(—ikT), (5)

where k is the photon wave vector, € its polarization with
the property e-k=0, and A ,=(#/2€kc) /2.

The Hamiltonian (2) possesses the exact constant of
motion [1]

K=k,+k,, (6)
where the pseudomomenta k; are given by
k,=m +¢,BXr; . (N

For a neutral system, the components of K commute
with each other. With the total pseudomomentum K,
one defines the canonical transformation [4]

—-1 -
rp=M ‘(mgryt+m ), ri=r,—r,

(8)
po=K, mi=m—(m, /M)XK,

where M =my+m,. In (8), we display the physical vari-
ables r and p; for the neutral global system, and rj and
m} for the charged light pseudoparticle. The Hamiltoni-
an becomes

H'=2M) 'pit+eM YpyXB)-ri+Hi, , 9)
with the internal Hamiltonian
2 2
™ k 2
H,=—+——- (10)
2m, 2m0 r'1

In (9), the second term of H' corresponds to the motional
Stark effect [12] and couples the internal and collective
motions. This term modifies the binding energies of the
atomic states [4,5]. The second term in H|, provides an
intrinsic correction to the internal energies [2,3]. The
operator

=B X () + k)= —(2eB) TNk —7?) (D)

is a constant of motion of H;,, which reduces to the
parallel component of the orbital momentum in the sym-
metric gauge [4].

When applied to the interaction Hamiltonian (4), the
canonical transformation (8) yields

H!=eAexp[ —ik-(rp—M 'm1})]
Xe{—M [1—exp(—ik-1))]py+mg 'k}
+m Texp(—ik-ry)mi] . (12)

The transformed interaction Hamiltonian H, appears in
transition matrix elements involving initial and final wave
functions of the two-body system. Since pg is an exact
constant of motion of (9), the eigenfunctions of H' factor-
ize into an internal wave function \llKl(r'l) and a factor

exp(ifi 'K ry), where K is an eigenvalue of the total
pseudomomentum p;. Notice that the internal function
only depends on the transverse part of K. In a perturba-
tion expansion with respect to K|, the zeroth-order ap-
proximation of Wy is given by the common eigenfunc-
tions of H;,, and .L}, [4].

Together with the c.m. factors of the initial and final

wave functions, the factor exp(—ik-ry) in (12) provides
the conservation law [1]

K,=K,—7k . (13)

The photon wave vector is proportional to the difference
between the initial and final pseudomomenta. From now
on, we consider effective transition operators without the
factor exp( —ik-r,) and with p; replaced by its eigenvalue
K; (or equivalently K/), in matrix elements involving
only internal states.

In the long-wavelength approximation, k-rj is small
and H/ provides the electric dipole Hamiltonian

Hp =eAye(my 'kj+m; ) (14)
=ieti 'A JH., €eT1)]. (15)

The apparently small term m, 'k cannot be neglected in
(14). Indeed, (14) and (15) lead, respectively, to the
equivalent velocity and length forms of the electric dipole
approximation. Neglecting m, 'k| would correspond to
replacing H, in (15) by its infinite-mass approximation.
In strong fields, such a replacement would lead to smaller
energy differences and would significantly modify the
transition probabilities.

From (14) and (15), one deduces electric dipole transi-
tion probabilities per unit time, since 1/1,(1 is to an excel-
lent approximation an eigenfunction of H,
ITID). For example, the length version reads

(see also Sec.

W=1a*(c/ag)AE; )’ 3 (W [r, W )P, (16)
q

where a is the fine-structure constant, a, is the Bohr ra-
dius and r,; =(1/V2)(x*iy), ry=z, and where energies
are expressed in Ry and lengths in a,. In (16), the photon
wave number is eliminated by using

ﬁck:E,—Ef’:E _Eint,f:AEinl N (17)

int, i
where the approximation [4] is valid for K; <<mc. The
most important feature in (16) is the occurrence of the
third power of AE,,,. Let us recall that [2]

int
where we have neglected a small scaling correction. Only
AmF0 transitions are affected. Employing in that case
the infinite-mass approximation would lead to an impor-
tant error (see Sec. III). Expression (16) is correctly
guessed in Ref. [9], and employed in Ref. [7]. However,
one should not believe that any energy difference in tran-
sition probabilities is of the form AE; . We illustrate this
point on quadrupole transitions.

By assuming that K|, is small enough and by neglecting
a term proportional to (m,/m,)’k}, one obtains after
symmetrization [13] the electric quadrupole operator

Hp,=—lieAgm ' [(em) (k1)) +(e1))(k )] (19)

=letim\AJH', ,(e1)k1))] . (20)
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In spite of the fact that the magnetic field enhances ener-
gy differences, when K, is small, the final pseudomomen-
tum K, also remains small. Notice the occurrence in
(20) of the infinite-mass internal Hamiltonian obtained
from (10) with my= . In the quadrupole case, c.m.
corrections to (19) are proportional to (m,/mg)?y and
remain negligible even when the correction (m, /mg)y to
the dipole term plays an important role.

The operator H', is identical to H,=H,
+(eB/m )L}, except for the replacement of m, by the
reduced mass p of the system. Replacing H', by H,, in
(20) scales H, by a negligible amount. Since to an excel-
lent approximation \I’Kl is an eigenfunction of H, an ei-

genvalue difference appears that can be accurately [4] ap-
proximated by AE . The length version of the transi-
tion probability then reads

W= LaSc/ag(AE, )((AEg,)*S |<wa|r;2>|wK‘_>|2 )
q

(1)
where  r@=(r.)? r3 =v2rir,, and
ri=v3/2(rd—r,,r_,). Here the energy difference ap-

pears in two different forms. Only photon energies pro-

vide AE;,. The commutator in (20) leads to energy

differences AE , of the infinite-mass approximation.
Finally, let us briefly discuss magnetic dipole transi-

tions. Replacing plus in (19) by minus provides the
operator
Hyp =LtieAom ' (eXk)-(ri X)) . (22)

Notice that r} X} differs in a magnetic field from the
operator L] appearing in (11). Hence, M1 transitions do
not vanish in this approximation as in the field-free case,
since the initial and final states are not eigenstates of the
interaction operator. The transition probability is given
by

W=1La%c/a,(AE;, )’ l<wa[(r;x1r'1)q|wK,_>|2 ,

2%
q
(23)

and does not show c.m. effects besides the modification of
the photon energy.

III. TRANSITION PROBABILITIES
IN A SIMPLE VARIATIONAL BASIS

Even when K;, =0, the orthogonal component K, of
the final pseudomomentum does not vanish because of
the conservation law (13). We have employed a first-
order perturbation expansion of \IJKfl as a function of K¢,

to evaluate the importance of the recoil effect. We have
found that the resulting corrections to the transition
probabilities satisfy the same selection rules as quadru-
pole transitions. However, between ¥ =1 and 1000, they
are at least two orders of magnitude smaller than quadru-
pole transition probabilities. Therefore, in the following,
we display our results without any recoil effect in the
wave functions. Center-of-mass effects only arise in the
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energy factors appearing in (16), (21), or (23).
When K| vanishes, the internal part le of the eigen-

states of H' possesses the same good quantum numbers as
the eigenstates of H|,, i.e., the magnetic quantum num-
ber m corresponding to .L;; and the z parity p. In Ref.
[10], we showed that simple approximations of these

states can be obtained with the variational expansion

N M
vrr)= ¢,,(r)3 Ci,,z" 7P %exp(—B;lz]) ,
v=0 j=1

(24)

where ¢, is a Landau state. The j3; are given for
M =18 in Eq. (A5) and Table 2 of Ref. [10] and the C/ ,,
are variational constants. Accurate results are already
obtained for N =5 in (24). The quantum number r labels
the energies and corresponds here to the total number of
nodes of the v=0 z component in (24). It is related to n,
in Ref. [10] by n =2n, — 1(1—p). The value of p is there-
fore uniquely given by (—)" in the present notation.

When both K;, and K,  remain small, m is approxi-
mately a good quantum number for both the initial and
final states, ¢ in (16), (21), and (23) then takes the value
Am=m;—m;, and one obtains the selection rule
[Am| <1 [8] for dipole transitions or |Am | <2 for quad-
rupole transitions.

Writing the operators ., as a function of creation and
annihilation operators [14] leads to simple expressions for
the matrix elements with the present basis. The calcula-
tions are very easy. However, dipole transitions are al-
ready studied in the literature [7]. Therefore, we focus
here on c.m. effects and on the validity of the dipole ap-
proximation. Obviously, the lifetimes of the tightly
bound states (which correspond to Am =1 transitions)
are modified by the c.m. corrections at very high fields
[see Eq. (18)]. For other states, the lifetimes will only be
affected if Am=0 transitions contribute significantly to
the total probability. As exemplified below, this is not
the case. Indeed, the Am =0 transitions are dominant
because of the elongation of the atom in the field direc-
tion.

Total E1 transition probabilities are displayed in Fig. 1
for different m =0 states. Even-n results are represented
as solid lines and odd-n results as dashed lines. The accu-
racy of the E1 transition probabilities can be checked by
comparing them with accurate results [7]. At y =1, the
poorest accuracy (15%) is observed for states that decay
towards the ground state (odd-n states). This is not
surprising because the symmetry of the tightly bound
ground state is not dominantly cylindrical below y =20
[15]. At y=10, the agreement is better than 1%.
Beyond y =100, the agreement is excellent. The wave
functions (24) become better than those of Ref. [15], as
suggested in Ref. [16]. Magnitudes as well as ¥ depen-
dences of the probabilities present a clear odd-even effect.
Transition probabilities from odd-n states are larger and
steadily increase with . The even-n probabilities reach a
maximum between ¥y =10 and 100. Indeed, Am =0 tran-
sitions require a z-parity change. Therefore, only odd-n
states can decay directly towards the tightly bound



4058 C. CUVELLIEZ, D. BAYE, AND M. VINCKE 46

10" | PPt 01
a/"”
--03
10" e
5
7
9 -
~ 10 9
b 2
E 3
108
04
107
06
. 08
1 10 100 1000

4

FIG. 1. Total electric dipole transition probabilities from O n
states (in s”') as a function of the reduced magnetic field y:
even z parity (solid lines) and odd z parity (dashed lines).

ground state and be enhanced by large energy differences.
For even-n states, Am =0 transitions still dominate but
Am = —1 transitions represent 20-50% of the total
probability at y=1, 4-10% at y=10 and 1-5% at
Y =100 and 1000. The shape of the curves arises from
the fact that the increase due to energy differences is
counterbalanced by a decrease of the matrix elements.

Three electric quadrupole transitions to the ground
state corresponding to different Am values are displayed
in Fig. 2 and are compared with the total E1 transition
probabilities from the initial state. Let us first comment
on the E1 curves. The 02 probability is already
displayed in Fig. 1. The —1 1 probability is much larger
because of the large decay probability to the tightly
bound —10 state. The — 11 state becomes unstable with
respect to dissociation near y =880 [4]. The —20 state
can only decay to the —10 state and has therefore a
small transition probability. Its rise at large fields is due
to a c.m. effect as shown by the dashed curve, where
(AE;,)® is replaced by (AEy.)’. Let us now consider
the quadrupole transitions. The —2—0 transition prob-
ability is very weak and decreases with increasing . The
Am =1 transition is much stronger and increases with y.
The dominant transition probability again corresponds to
Am =0 and displays a fast increase with . At y =1000,
it represents a 3.5% correction to the total transition
probability of the 02 state. Since E 1 transition probabili-
ties of even-n states decrease when y increases, quadru-
pole transitions should become the dominant mode at
higher fields. As shown by Fig. 1, only even-n lifetimes
will be affected.

10
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= 1001
=11 —00 (E2)
104 11 —00 (M1)

-20—00 (E2)

02 | 02 —00 (M)
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FIG. 2. E2 and M1 transition probabilities from m n to
m’n’ (ins”") as a function of the reduced magnetic field ¥ com-
pared with total E1 transition probabilities from the initial
state. The dashed line represents a calculation where c.m.
effects are neglected.

In a magnetic field, M1 transitions are not forbidden at
lowest order. However, they remain small with respect
to E2 transitions. For Am =0, they vanish in the adia-
batic approximation. Therefore, the E2-to-M1 ratio
strongly increases with the field for ¥ > 1 (see Fig. 2). For
Am =1, M1 transition probabilities are about one order
of magnitude smaller than E2 probabilities and are thus
negligible.

IV. CONCLUSION

Linear canonical transformations provide a simple for-
malism for establishing rigorous formulas for electromag-
netic transition probabilities. This simplicity is illustrat-
ed here in the dipole and electric quadrupole cases.
Whereas the E 1 formula takes the form assumed and em-
ployed by Wunner, Ruder, and Herold [9] and Forster
et al. [7], the quadrupole formula shows that intuitive
transpositions might be unsafe. The (AEg,)* factor
reflects the fact that c.m. effects are almost negligible in
the transition operator and only show up in the energy of
the emitted photon. The same comment can be made for
magnetic transitions. Anyway, the expressions for the
transition probabilities remain very simple as long as the
atom does not present an important motion in the direc-
tion transverse to the magnetic field.
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From a practical point of view, transition probabilities
are affected by c.m. corrections only through a
modification of energy differences. However, the correc-
tion to the c.m energy differences is proportional to Am,
and Am =0 transitions are favored. Therefore, the life-
times of most states are not affected. The only states for
which the correction is not negligible are the physically
important tightly bound states with » =0 and m <O0.

In the field range considered here, electric dipole tran-

sitions are dominant. The total decay probabilities
strongly depend on the z parity of the state. States with
even z parity have much longer lifetimes than odd z-
parity states. Quadrupole transitions are in general negli-
gible but Am =0 transitions exhibit a fast increase with
the magnetic field. The lifetime of even z-parity states
should be dominated by quadrupole transitions at higher
fields. Magnetic transitions remain negligible at large
fields.
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