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Atom cooling by time-dependent potentials
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Using the concept of information entropy, it is shown that it is impossible to increase the phase-space

density of atoms with time-dependent potentials or other time-dependent terms in the Hamiltonian, even

if the motion is nonclassical.

PACS number(s): 32.80.Pj

It has recently become possible to cool atoms to mi-
crokelvin temperatures by using laser cooling [1—3] or
evaporative cooling [4,5]. With these cooling methods
dense samp1es of ultracold atoms are obtained which al-
low high-resolution spectroscopy [6], the study of cold
collisions [7], and hopefully in the future the observation
of collective effects such as Bose-Einstein condensation.

The excitement about these techniques is due to the
combination of low temperatures and high densities at-
tained. Older techniques, like adiabatic expansion or
selection of cold atoms out of a higher-temperature sarn-

ple do not produce interesting densities. High-density
samples of ultracold atoms can only be obtained if the de-
crease in temperature is accompanied by an increase in
phase-space density pz which is defined as the number of
atoms N per volume V and volume Vz in momentum
space, pn=X/VV~.

The concept of phase-space density is useful because by
Liouville s theorem it is a constant of the motion for con-
servative systems. A related quantity which is often used
to characterize atomic beams is the brightness B which is
the atom flux per unit area and unit solid angle
8 =(N/V)u~~(vt/uj ), where ut~ and ut are the longitudi-
na1 and transverse velocity components, respectively. B
is expressed in terms of pz by introducing the speed ratio
s = v

i
/b v and using V~

=m v f Au (b u is the spread in v
~~

and m the mass of the atom): 8 =pn m v~~ /s. For two-
dimensional atom optics (which leave the longitudinal ve-

locity unaffected}, Liouville's theorem is equivalent to
constant brightness of an atom beam. This is similar to
the theorem in light optics stating that an image cannot
be brighter than the original object [8].

For many experiments such as atom interferometry or
the achievement of Bose-Einstein condensation, an im-
portant figure of merit of an atomic sample is phase-space
density or brightness. Fortunately (in contrast to conven-
tional light optics} the phase-space density of a sample of
atoms can be increased by violating the assumptions of
Liouville s theorem using dissipation in the form of
scattering of laser light and/or evaporation of particles.
This is sometimes called "brightening" or more colloqui-
ally "real cooling" to distinguish it from lowering the
temperature at constant phase-space density (e.g., adia-
batic cooling).

Since Liouville's theorem is purely classical, the ques-

S'= —k( lnp), (la)

where the brackets ( A ) denote the average value
( A ) = Tr(pA ) of an operator A. Equation (la) should,
for the moment, only be regarded as a mathematical
definition —the relation to the thermodynamic entropy
will be discussed further below. Viewed in the basis
which diagonalizes p, this becomes

S'= —k gp, ln(p, ), (lb)

where p; are the eigenvalues of p. In the simplest case of
n states with equal probability of occupation, one has

p, = 1/n and obtains the familiar expression

S'=k ln(n) . (2)

The relation to information theory is obvious, S'/k ln2
being the number of bits to label n states. For N parti-
cles, n in Eq. (2) has to be interpreted as nN, the number

tion remains if phase-space density can be enhanced by
schemes relying on quantum-mechanical aspects of
motion like quantum-mechanical wave packets, coherent
superpositions of momentum states, or projection of
quantum states by nonadiabatic switching of potentials.
In this paper we use the concept of information entropy
to show that brightening by time-dependent conservative
forces is impossible even for nonclassical motion of the
particles. Although it is very straightforward to obtain
this result, our general proof seems to rule out recent sug-
gestions of cooling schemes relying solely on conservative
forces [9—11] (these suggestions were the stimulation for
this work).

We begin with a review of the relevant definitions of
quantum statistics. Although we mainly speak of atoms,
our arguments apply also to ions or any other particles
being cooled. Phase-space density is a classical quantity
and cannot be readily used in quantum mechanics be-
cause of the noncommutativity of position and mornen-
tum operators. If one divides pz by h, the phase-space
volume of a quantum state, one obtains the number of
atoms per quantum state, called quantum density or oc-
cupancy ratio. To obtain a related quantity for a system
described by an arbitrary statistical operator (density ma-
trix) p, one defines information entropy S' as [12,13].
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of populated N-particle states. For N indistinguishable
noninteracting particles occupying n& one-particle states
with occupation ratios much smaller than unity (i.e.,
negligible effects of quantum statistics) one can use
nz=n

&
/N| and Stirling's formula lnNI=N lnN —N to

obtain

S'=Nk[ In(n, /N)+1] . (3)

Thus S'/N is directly related to the quantum density
N/n ).

In thermal equilibrium at temperature T, p is a canoni-
cal distribution and S is given by the (N-particle) parti-
tion function Zz and energy Ez.

S' =k (lnZ~+PE~ ), (4)

where P= 1/kT. For noninteracting particles and negli-
gible effects of quantum statistics, Zz and E~ can be ex-
pressed by the respective one-particle quantities
Z& =Z P /N! and E~ =NE, . Equation (4) is then
equivalent to Eqs. (2) and (3) because the effective number
of populated states n~ is given by Z~. The second term
PE~ in Eq. (4) is in most cases an unimportant constant
on the order of N. It is due to the use of a canonical dis-
tribution and represents the logarithm of the number of
states of the heat reservoir.

If a classical phase-space volume p& can be defined, the
number of populated states is (p„/h ) /N! yielding

S'=Nk[ ln(pn/h N)+o, ], . (5)

where 0. , is constant.
Let us verify Eq. (5) for the important cases of particles

confined to a volume V and bound by a harmonic poten-
tial. For noninteracting particles in volume V at a tem-
perature Tone has [14]

S'=Nk [ ln( V/N)+ —,
' lnT+o0], (6)

with o.o= —', ln(2m mk/h )+—', . The volume in momentum

space is approximately a sphere with radius p =&2mkT
yielding Eq. (4) with 0

&
=( inn)/2 —ln( —', )+—,'.

For a three-dimensional harmonic oscillator with fre-

quency co the information entropy is

S'=Nk 3g —31n(1 —e ")—lnN+11

e"—1

with g=hco/kT. In the case of kT &&A~ one has

S'=k[3N+ ln([kT/fico] /N!) I .

The argument of the logarithm is the number of popu-
lated states. By introducing the mean momentum
p=&2mkT and amplitude x=(2kT/mes )' one can
rewrite Eq. (7) in the form of Eq. (5) with
cr, =4+ 1n(9'/16).

These examples show that for free or weakly bound
particles in thermal equilibrium S is related to phase-
space density by Eq. (5).

The information entropy S' has two important proper-
ties. First, it is a constant of motion for conservative po-
tentials. For an arbitrary time-dependent Hamiltonian

H(t) the time evolution of the statistical operator is given
by the von Neumann equation [13]

Because of this and the cyclic invariance of the trace, the
expectation value (f(p) ) of any operator that is a func-
tion of the statistical operator is constant in time; in par-
ticular dS'( t ) /dt =0 [13].

The physical reason for the time invariance of S' can
be best understood by using the approximate relation
with the number of occupied states [Eq. (2)]. Adiabatic
changes do not alter occupation numbers; for example, a
~ pulse of resonance radiation simply swaps the popula-
tion of states. For arbitrary changes of potentials there is
still a unitary transformation between initial and final
state. Therefore the number n of incoherently populated
states remains the same.

The second important property of S' is the relation to
the thermodynamic entropy S,

S = maxS'(p; ) . (9)

The maximum is taken over all statistical operators p;
satisfying certain macroscopic conditions (i.e., N parti-
cles, volume V, energy E). It can be rigorously shown
[12] that the canonical distribution has the largest infor-
mation entropy of all statistical operators with the same
average energy E.

It is now straightforward to show that it is impossible
to increase phase-space density by time-dependent exter-
nal fields: If at t =0 the system is in thermal equilibrium,
and described by a canonical distribution, one has

S'(0)=S(0)=Nk Iin[pn(0)/h N)+cr&] . (10)

which gives

(12)

The argument above is analogous to the derivation of the
increase of entropy S, which involves the step from the
exact statistical operator to the coarse-grained operator
of quasistatic equilibrium which is accompanied by loss
of information [13].

We want to emphasize that there is no assumption on
the classical or quantum-mechanical nature of the final
state of the system. The above proof is indirect: the as-
sumption that the final state has a higher phase-space
density leads to a contradiction because this requires a
smaller information entropy or (equivalently) a smaller
number of incoherently populated states.

We have so far neglected the internal structure of

p(t) is generally not an equilibrium distribution. Howev-
er, in all cases of brightening of atoms one ends up in a
situation where at the final time ~, one can approximately
assign a phase-space volume pn(r) to the atoms by
characterizing them by a confinement volume V and rms
momentum p. Because of Eq. (9), S'(r) is smaller than or
equal to the thermodynamic entropy S(r) of an equilibri-
um distribution confined to the same phase-space volume:

S(r) ~ S'(r) =S'(0)=S(0),
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atoms. In the simplest case of negligible correlation be-
tween internal and external degrees of freedom, S'(t) can
be decomposed in two terms S,'„,+S,'„, resulting in

S,„,(r) ~S,„,(0)+ [S,'„,(0)—S „,(r)] .

In this case, external phase-space density can be in-
creased, but at most by a factor which is equal to the ra-
tio of populated internal states at times t =~ and 0. Since
the information entropy of the internal degrees of free-
dorn increases, "dissipation" occurs in the internal vari-
ables.

One example of cooling by internal degrees of freedom
is adiabatic demagnetization. The number of populated
internal states is increased by a factor which is at most
2s+1, s being the spin of the particles. Since at very low
temperatures external degrees of freedom (lattice vibra-
tions) contribute very little to the entropy, the tempera-
ture of the whole system can be decreased by several or-
ders of magnitude.

However, in atom cooling, the external degrees of free-
dorn are not frozen out and contribute to the entropy ac-
cording to Eq. (6) or (7). If twice as many internal states
are populated by an adiabatic process, the temperature
drops only by at most a factor of 2 . Strong cooling can
be achieved only if the initial population of internal states
is restored (e.g. , by optical pumping) and the system is cy-
cled many times through these processes. This is similar
to the idea of cyclic cooling which was proposed for
atoms in a magnetic trap [15].

Collisions with other atoms in the system have so far
been neglected. Their only role was to ensure equilibrium
at t =0, e.g. , by using an effusive atomic beam which is in
thermal equilibrium due to the collisions inside the oven.
In the general case of interacting particles, phase space is
6N dimensional (we assume for the moment a fixed atom
number N and exclude evaporation where atoms are lost
from the system). However, in the case of atom cooling,
one starts and ends up in a situation where collisions are
negligible except that they redistribute the atoms over all
accessible states. One can therefore use one-particle wave
functions and six-dimensional phase space at t =0 and w

implying that S(0) and S(r) are given by Eq. (5). Since
information entropy is a constant of motion also for in-
teracting particles, Eqs. (11)and (12) are unchanged.

We want to point out that the assumption of thermal
equilibrium at t =0 [or equivalently S'(0)=S(0)] is
essential. If this is not the case, the system has a lower
information entropy than the thermodynamic entropy
computed using the macroscopic boundary conditions.
This can be used to change the boundary conditions and
to achieve a higher phase-space density. For example, if
one has N particles in a box and knows that, at some mo-
ment, there are no particles close to a wall element, one
can move this part of the wall inward and confine the
particles in a smaller volume. This is the principle of sto-
chastic cooling, where dissipation occurs in the process of
obtaining the additional information on the system. Sto-
chastic cooling works well for charged particle beams;
however, there is no suggestion so far as to how to apply
it to cool neutral atoms.

Finally, we want to discuss cooling schemes using the
selection of particles. This can be achieved by putting
particles into a special internal state or by discarding par-
ticles. Since entropy is an extensive quantity, the quanti-
ties to be regarded are S'/N or quantum density. In the
general case where the population is distributed over
many states, the quantum density is the ratio of the parti-
cle number N and an effective number of states n, given
by inn, = —gp, lnp, (p, are the eigenvalues of the one
particle statistical operator). S'/N contains a weighted
average over the occupancy numbers Np;: S'/N
=k [—gp;ln(Np;)+1]. If one discards particles in
weakly populated states, S'/N decreases.

However, the more important quantity is the max-
imum occupation number Np ax in any quantum state
where p,„=max(p, ). The quantum density obtained by
selecting particles in the most probable states is Np, „.
For noninteracting particles, p ax is a constant of motion
because the time evolution of the statistical operator p is
a unitary transformation leaving the eigenvalues invari-
ant. It is therefore impossible to increase the maximum
occupation number Np, „by any combination of selec-
tion processes and arbitrary time-dependent terms in the
(one-particle) Hamiltonian.

This conclusion is not valid if one allows for collisions
between the particles of the system. Such processes can
increase or decrease p,„because p ax is a one-particle
probability whereas the constant eigenvalues of the (N
particle) statistical operator are occupation numbers for
N-particle states. For example, if the initial distribution
is a truncated Boltzmann distribution, collisions will in-
crease the occupation number in the states with the
lowest energy. Although collisions do not change S' (as
discussed above), they can change p,„. This is exploited
in evaporative cooling where the system is first cycled
through selection processes (evaporation) which decrease
S'/N but leave Np, „constant and then subjected to col-
lision processes which increase Np, „but leave S'/N
constant. The result is a sample of atoms with both de-
creased entropy S'/N and increased quantum density
N max'

Although not immediately obvious, information entro-
py and phase-space density are important quantities even
for cooling a single particle (i.e., an ion in a trap). Usual-
ly, the particle is initially in some unknown state in a
larger phase-space volume. The cooling process reduces
the occupied phase-space volume. Information entropy
has decreased because there are now fewer states popu-
lated with a correspondingly higher probability (increase
of knowledge). If one had exact knowledge of the initial
state of the particle, one could just transfer it into the
lowest state by appropriate fields without any dissipation,
leaving the information entropy unchanged. This ern-
phasizes the one-to-one correspondence between bright-
ening and increase of knowledge on the system.

In conclusion, we have used the well-established for-
malism of quantum statistics to show that "brightening"
of atoms is impossible without dissipation or loss of
atoms from the system. Cooling schemes which rely sole-
ly on resonance transitions or time-dependent potentials
(both adiabatic and sudden changes) or on selection pro-
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cedures do not increase phase-space density.
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