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We study recently proposed algebraic models [F. Iachello, Chem. Phys. Lett. 78, 581 (1981);
F. Iachello and R. D. Levine, J. Chem. Phys. 77, 3046 (1982); F. Iachello, S. Oss, and R. Lemus,
J. Mol. Spectrosc. 148, 56 (1ggl); F. Iachello and S. Oss, ibid. 149, 132 (1991)] for diatomic
and linear polyatomic molecules in the mean-field approximation. In this approach, we recover the
harmonic molecular spectra efficiently and accurately and, more importantly, we are able to explore
the geometrical meaning of boson operators and to suggest boson Hamiltonians that have closer
links to molecular geometries.

PACS number(s): 33.10.Cs, 03.65.Fd

I. INTRODUCTION

Recently Iachello and co-workers [1] have demon-
strated the great power of algebraic approaches to molec-
ular dynamics. These methods have been applied with
success to the spectra and transition intensities in di-
atomic molecules [2], bent and linear triatomic molecules
[3, 4], linear four-atom molecules [5], and even complex
polyatomic molecules [6]. The algebraic method has been
shown to be a rich starting point for studies of electron
scattering from molecules [7, 8), and promises to be a fer-
tile starting point for other reaction studies [9]. The prin-
ciple disadvantage of the vibron model, as this approach
is called, is that the molecular dynamics is expressed in
terms of boson operators that are not easily interpreted
in terms of the atomic position coordinates of traditional
molecular physics. The standard way of extracting geo-
metric meaning from boson models is through the use of
coherent-state mean-field techniques [10—20].

In this paper we show that by applying mean-field
methods to the algebraic description, we not only greatly
simplify the algebra, but also make a connection between
the algebraic degrees of freedom and the coordinate de-
grees of freedom. The mean-field approximation is basi-
cally an expansion in 1/N and is particularly appropriate
in a discussion of the algebraic treatment of molecular dy-
namics since the number of bosons (N) is normally quite
large. In this limit we have both the simplification of the
mean-field approximation and the fact that the operators
approach classical values. It is these two features that we
exploit.

This paper is meant to be an introduction to the mean-
field approximation (MFA) for algebraic descriptions of
molecules. As such the paper is partly pedagogic. We
will show how the MFA comes out of the vibron model
and how the correct dynamical and zero modes emerge.
We will show how the molecular equilibrium shape (in
the intrinsic frame) comes out and how it depends on
the input parameters. We will stress the connection be-
tween the equilibrium shape, the dynamical modes, and
the zero modes. We will compare our results with those
obtained from the full vibron model. We will see that

II. U(2) VIBRON MODEL

The U(2) vibron model can be used to describe a single
vibrational degree of freedom [16, 15]. The u(2) algebra
is expressed in terms of two bosons, o and r, with the
usual commutation relations. The algebra is generated
by the number operator

and a set of operators that satisfy the commutation re-
lations of angular momentum, SU(2),

J = (oto —rtv. )/2,

J„= i(rto —crtr)/2,

J, = —(r to + o t~)/2.

(2)

(4)

the spectra are not quite so accurately given as in the
full model, since we omit both 1/N corrections and an-
harmonicities. These can be included, but that is not the
point of the approach. For many purposes, such as elec-
tron scattering, reactions, and the description of complex
molecules, the accuracy we obtain is sufficient, and the
simplicity of the description a boon. It is that descrip-
tion and its direct contact to molecular shape that is the
strongest appeal of the method.

In Sec. II we introduce the method in a "toy" model
based on the vibron model for the group U(2). In
Sec. III we treat a diatomic molecule using group U(4).
In Sec. IV we discuss the MFA treatment of linear tri-
atomic molecules, that are described in the vibron model
with U(4)xU(4). Here we compare our results for en-
ergies and discuss the use of the MFA for transition in-
tensities. In Sec. V we treat linear four-atom molecules.
In Sec. VI we present some discussion, a summary, and
a plan for further work, which includes the treatment
of bent molecules. In Appendix A we show an equiva-
lent formulation in terms of complex classical variables
[random-phase approximation (RPA)]. In Appendix B we
discuss the bond length of a diatomic molecule in the
MFA of the vibron model.
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A simple "vibron" model is given by the pairing Hamil-
tonian

H = AP2 = —(r r —o cT )(rr —ocT'),
A

This is a harmonic-oscillator Hamiltonian with frequency
u = AN, and is completely equivalent to the full U(2)
solution in the large-N limit. In the MFA the vibrational
states are given by the normal mode harmonic states

with A ) 0. This Hamiltonian clearly conserves total
boson number, N. In the symmetric representation, the
eigenstates of H are

l
[N]v) with v = 0, 1, . . . , N, where v

is the vibrational quantum number and the system has
N + 1 vibrational states. Equivalently, these states can
be written with the SU(2) labels in the form

l
JM) with

J = N/2 and M = v —N/2.
Using group theory, we obtain the energy eigenvalues

ofH as

These replace the exact quantum states
l
JM).

We can also use the MFA to calculate transition matrix
elements. Let us take the transition operator in this toy
model to be a function of J„ in the vibron model. We
take the operator to be e'eJ&. Then a transition matrix
element between the ground state M = —N/2 and some

excited state M = n —N/2 is given by
E(v) = Av(N —v). (6)

When v « N, (6) reduces to a harmonic spectrum
E(v) —uv with frequency u = A¹ This approxima-
tion is good if N is very large, and v is far from ¹ We
now show how one can obtain the same large N result
using the MFA. In this method one takes as variational
ansatz a mean field or boson condensate state. In this
state there are N identical bosons which are formed from
a particular linear combination of the dynamical bosons.
The correct combination is found variationally. The state
associated with this combination is then treated as a clas-
sical mean field, the condensate, and we study quantum
fiuctuations around it. Because the mean field is a vari-
ational solution to the dynamics, the Huctuations must
be orthogonal to that field. The variational state can be
written as

1 tN
l0)

N!

with the condensate boson given by

(rt + rot),1+r2
where r is a variational parameter. The expectation value
of H in the condensate is

1 2

T„p ——(JM
l exp( —i8J„)lJM) = d~ ~(8)

N! f 81 "(, 8i"
cos — —sin-

n!(N —n)! ( 2) ( 2)

In the MFA, J& ——2~N(a —at) and so the transition
matrix element is simply

T p = (nl exp
l

MN(a ——a ) l l0)
/8

r1 2

(13)

It can be seen that when 8 & 1 and n « N, (13) is a
good approximation to (12).

Hence calculation in terms of normal mode states is
accurate at large N. In the MFA we replace the conden-
sate boson by ~N and expand in the FB's, a and at. The
u(2) algebra then collapses into an algebra generated by
at, a, ata, and I (unit operator). This new algebra is
the Heisenberg algebra h4 and our prescription describes
the process of contraction of the Lie algebra u(2) to h4.
Contractions of Lie algebras are discussed in detail by
Gilmore [21] and have been used in a different context
by Alhassid and Levine [22].

III. U(4) VIBRON MODEL

a = ANata. (10)

and is minimal at r = +1. The fact that we have two
minima reHects that states with kM are degenerate. For
simplicity we concentrate on the minimum r = 1, but
a similar analysis can be made for the case r = —1.
The real eigenstates are the symmetric and antisymmet-
ric combination of the states built on either minimum

[13].
The condensate boson becomes ct = —(ri + ot)

The Huctuations are then generated by the orthogo-
nal fluctuation boson (FB) which can be taken to be
at = ( r~+o!'). We rewrit—e the Hamiltonian in terms

Q2
of the c and a bosons. The condensate bosons c and ct
can be replaced by their classical mean-field value v N.
We then get to leading order in the FB

In the vibron model the appropriate group for a di-
atomic molecule is group U(4). It is realized in terms
of four bosons, p, p„, p„and s, where the three com-
ponents of p form a vector. A general Hamiltonian that
conserves angular momentum and is at most quadratic in
the generators of the u(4) algebra has two possible group
chains where we can solve for the eigenvalues anaytically
[1]. One is the so-called U(3) limit with the group chain

U(4)ZU(3)DO(3). This describes a harmonic oscillator.
The other one is the O(4) limit with the group chain

U(4)DO(4)DO(3) and can be shown to correspond to
the Morse potential [1]. Most diatomic molecules are
well described by the O(4) limit and hereafter we shall
concentrate on this case.

We express the Hamiltonian in terms of the Casimir
invariants in the group chain U(4) DO(4)DO(3) by
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H = —AC2(O(4)) + BCs(O(3)), (14)

where, of course, Cz(O(3)) is the square of the angular
momentum. In terms of the bosons the angular momen-
tum is given by L = —ip x p. The Casimir invariant for
O(4), C2(O(4)), is given in terms of the dipole operator
D and the angular momentum operator by

Cs(O(4)) = D D+L L,

where

(15)

D = stp+p~s. (16)
The Hamiltonian commutes with the total boson number
operator N = si's+ pt p, which is the Casimir invariant
of group U(4).

Using group theoretical methods we find for the eigen-
values of H

E(v, L) = —Ao (o + 2) + BL(L + 1), (17)

where o can be written in terms of the vibrational quan-
tum number v as o = N —2v. In the large-N limit,
(N )) 1, v « N), we have

E A(N +—2N) +4ANv+ BL(L+ 1). (18)

Once again this is a harmonic spectrum with u = +4AN
To solve the problem in the MFA we must find the

optimal boson condensate. As in the U(2) case, we
parametrize the condensate boson as

1
b, = (s+r p)1+ rz

and write the mean-field state as

(19)

I»r) =,(b')" I0) (20)

where r is the variational parameter. Minimizing K in
the condensate state gives r = 1, but does not fix the
direction of r. We are free to pick that direction, so we
take r = z. This breaking of the rotational invariance
of the Hamiltonian by the intrinsic state is familiar in
many branches of physics. For our case it corresponds to
the fact that the dipolar molecule has an intrinsic orien-
tation, which we take here to be along z. The optimal
condensate boson is then

(21)

The orthogonal FB's are then b~ = ~(—st+p!), b~t = pt

and b&t ——p~. We rewrite the Hamiltonian in terms of the
condensate and fluctuation bosons. We then make the
following replacement as often as possible:

(22)

The remaining terms that still contain condensate bosons
are then replaced by ~N,

(23)

These rules are an algebraic equivalent of deriving the
standard RPA Hamiltonian in the large-N limit [17).

Neglecting terms which contain more than two FB's as
well as constant terms, we obtain for the Hamiltonian in
the MFA

H —4ANbtb, — [(bt —b~) + (bt —b„) ].
2 (24)

This shows that we have a harmonic term in the b, boson
and zero modes in the b~ and b„bosons. If we replace
the boson operators by the standard combination of co-
ordinates and momenta, the last two terms are clearly
pure momentum operators. They can be shown to corre-
spond to the mean-field limit of L~~ and I2. The angular
momentum term [the second term in (24lt, hes expecta-
tion value proportional to N in the condensate for any
r, and in the large-N limit does not contribute to the
energy of the condensate. It contributes only to the ki-
netic energy of the molecule. Its energy is in the two zero
modes (Goldstone modes) associated with the breaking
of rotational invariance. We note that the MFA with the
prescription given in (22) and (23) gives the correct num-
ber of modes, one stretching vibration and two rotational
zero modes. The four original bosons lead to only three
modes because the condensate boson has been promoted
to a classical variable and given its classical expectation
value [18]. In Appendix A we show that these same re-
sults can be obtained by using the RPA.

The simple condensate with r = 1 presented
here reflects our choice of a Hamiltonian in the
U(4) DO(4) DO(3) group chain. An alternate choice
would be the dynamical symmetry group chain
U(4) DU(3) DO(3). The Casimir invariant of U(3),
C2(U(3)), equals N„(N„+ 2). Where N„ is the num-
ber operator of p bosons. A Hamiltonian with Cs(U(3))
alone would lead, in the MFA, to r = 0. Clearly a Hamil-
tonian containing terms in both C2(O(4)) and C2(U(3))
would, in the MFA, lead to some r between 0 and 1. The
eigenvalues of such a Hamiltonian cannot be derived in
closed form using group theoretic methods, but are eas-
ily found in the MFA. Since most diatomic molecules,
although close to the O(4) limit, do not have the ex-
act dynamical symmetry, realistic Hamiltonians can have
minima at r slightly different from 1. The ease of solu-
tion in the MFA of the mixed Hamiltonian should make
this physically attractive solution more accessible.

To connect the algebraic degrees of freedom studied in
the MFA with the coordinate degrees of freedom of the
diatomic molecule, we need an expression for the expec-
tation value of the bond length B. We take

(25)

where m is the reduced mass of the atomic pair and u is
the stretching frequency. A discussion of this formula is
given in Appendix B. In Table I we show some results of
formula (25) for the expected value of the bond length
compared with known experimental values. To use (25)
we take the reduced masses and stretching frequencies
from experiment and we take r and N from the vibron
model, where they are determined by 6tting the spectra
[3,4]. We see in Table I that the results are surprisingly



BIN SHAO, NIELS R. VALET, AND R. D. AMADO

Molecule

CO
CN
CS
NO
N2

HS
LiF
HF
HC1
K2

1.06
1.16
1.55
1.15
1.09
1.35
1.56
0.917
1.27
3.92

B (A)

1.07
1 ~ 10
1.36
1.00
1.02
1.34
1.59
1.11
1.43
3.90

TABLE I. Bond lengths of diatomic molecules.

Error

0.9%
5.1'
12.3%
12.8%
6.4%
0.74%
1.9%%uo

21.0%
12.6%
0.51%

where the Casimir invariants of the combined O(4) and
O(3) groups are given in terms of the combined dipole
operator D12 = Di + D2 and total angular momentum
operator L12 = Li + L2. In terms of the bosons, the
Majorana operator M12 is given by

~12 (Pis2 —siP2) ' (Pl s2 s1P2) + (Pi x P2) (Pi x P2) ~

(27)

Note that the Hamiltonian commutes separately with the
number operator for each boson type, N, = s, s, + p, p, .
For future reference we prefer to rewrite the O(3) parts
of the Hamiltonian as

good considering that this harmonic mean field estimate
is only correct to order ~.

Transitions can be treated in the same way as for the
U(2) model discussed in the preceding section [20].

IV. U(4) x U(4) VIBRON MODEL:
LINEAR MOLECULES

A. Energy spectra

A triatomic molecule is described in the vibron model
by the combined groups U(4) x U(4). The picture is
that each U(4) group describes the properties of a single
bond, and that terms involving operators drawn from
both U(4) groups describe the coupling between the
bonds. In this paper we consider parameter choices for
this description appropriate to linear triatomic molecules
in the U(4) x U(4) aO(4) x O(4) F012 (4)o012(3) group
chain. We will return to bent molecules in a later pa-
per [23]. The U(4) groups are realized with two sets of
commuting bosons, si, pi and s2, p2. The Hamiltonian
for the triatomic molecule is taken to be

H = —A1C2(01(4)) + B1C2(01(3))—A2C2(02(4))
+B2C2(O1(3)) A12C2(O12(4))
+~~12 + BC2 (O12 (3))

A1C2(O1(4)) A2C2(O2(4)) A12C2(O12(4))
+AJH12+ BI.L + B~A + BI.~L Lh. , (28)

where L = L~ + L2 and A =
~NLRB

— ~NL2. TheNI Nz

operator created by A is not a spin, but rather is the
kinetic part of the bending mode. It is analogous to a
similar operator in the description of the scissors mode
in nuclear physics [24].

We now wish to solve this Hamiltonian using the MFA.
Because each boson number is separately conserved, we
introduce a condensate boson for each boson type by

b„=,(s, +r, p )1+r,

and use a product of mean-field states as a variational
estimate,

(30)

where rq and r2 are the variational parameters. We take
the expectation value of the Hamiltonian in the conden-
sate and find (noting that the angular momentum oper-
ators always have zero expectation value in the conden-
sate)

4Nj~r~~ 4N2~2 g NyN2rl ' r2
(Ni ri N2 r2iHiNi ri N2 r2) =-(Ai+Ai2) "'- (A2+Ai2) 2)2

— Ai' 2)( 2)1+Tg)

+ & 2 2 [(ri —r2) + (ri x r2) ].Ni N2 2

(1 + ri 1 + r2

The expectation value of the Hamiltonian in the con-
densate depends on the angle between r~ and r2, which
we call 8. Solving for the minimum energy with re-
spect to that angle we find two roots, sin8 = 0 and
cos 8 = —(4A12+A)/Arir2. For a linear molecule one typ-
ically uses [4] parameters where

~

—(4A12+A)/Arirq~ ) 1,
which shows that we should only have a solution 8 = 0 or
0 = vr, which corresponds to a linear molecule. One can

also show that for the parameters considered here, the
mean-field minimum comes at vq ——r2 ——1 and 8 = 0.
To make the r's diferent requires some combination of
a large A (strong Majorana term) and additional terms
proportional to C2(U(3)) in one or both of the bosons.
We do not introduce such terms here, since we restrict
ourselves to the O(4) x O(4) limit where r, = 1.

To study quantum Buctuations around the condensate,
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we introduce the orthogonal fluctuation bosons. As be-
fore we take the molecular symmetry axis along z. For
the r = 1 case, the FB's are just as in the single U(4) case.
Explicitly~ bzz ~( sz+ pzz)& bzz pzz& alld by& = pyz.

We rewrite the Hamiltonian (up to constant terms) in
terms of the condensate bosons and the FB's and make
the substitutions of (22) and (23) for each boson type to
find

H = [4(Ai + Aiz)Ni + (4Ai2+ A)N2] b„bgi + [4(A2+ Aig)Ng+ (4Ai2+ A)Ni] b,~b,2

—AQNiN2(b„biz+ b,2b, i) + (2Ai2+ A)(Ni+Nz) b~Bb,~ + b„~bye + Br, 6~+ 6„
+BI, L'. + L„' + Bl,~ [L.b,.+ Ly d „], (32)

QNsb„—QNib 2

QNi + N2
(33)

with a similar expression for the y bending mode. These
are closely related to 6:

(34)

Finally we also introduce the intrinsic components of the
angular momentum

I„= QNi(b~, —b, i) + QNs(b~2 —b~g) (35)

and similarly for L„Even tho. ugh the rotational and the

TABI E II. A comparison of the exact vibron model cal-
culation to the harmonic approximation: linear triatomic
molecules.

V1Vg V3
lg Exact MFA Error

01'0
10'0
00 1

HCN (Ni ——140,
¹

= 47)
712.4 707.8
2095.8 2092.1
3312.6 3318.0

0.65%%uo

0.18%
0.16'%%uo

01 0
10 0
00 1

OCS ( ¹

= 190, N2 = 159)
519.4 518.3
860.2 861.8
2062.2 2064.9

0.21%%uo

0.19%
0.13%

where we have introduced the bosons that create and
destroy the bending modes. In terms of the b„ they are
given by

I

vibrational modes are not decoupled in the Hamiltonian

(32), we can do so by making a canonical transformation
[23]. Clearly there are two degenerate bending modes,
one in the yz plane generated by b~ z and another in the
zz plane generated by bt

& The e. xplicit form of the bend-
ing modes is completely determined from the geometry.
The bending modes have frequency (2Ai2+ A)(Ni +Ns),
so that they are generated from a mixture of the mixed
O(4) term (Ai2) and the Majorana term. In the same
part of the Hamiltonian we also find the rotational zero
modes, corresponding to a rotation around the z or y
axis. There is a dynamical coupling between the bend-
ing and rotational modes, BL,~. This term is well known
in the mean-field limit of the nuclear analog of the vi-
bron model [24]. We also see that there are two stretching
modes carried by the b, bosons. Only the Majorana term
mixes the stretching modes of the two types. The result-
ing 2x2 matrix can be diagonalized. Thus in total we
have six harmonic modes of a linear triatomic molecule.

The same result could be obtained using RPA matrices
discussed in Appendix A. Here one introduces complex
classical variables for each U(4) bosons. Since this pro-
cedure is straightforward, we do not go into more detail.

In order to show the power of the discussion given
above let us compare our results for linear triatomic
molecules with those obtained in [4]. The Hamilto-
nian used in that paper contains terms quadratic in the
Casimir operators, beyond the terms used in (28). Fortu-
nately these terms are constructed in such a way that the
higher-order terms vanish in the harmonic limit. In Ta-
ble II we compare the harmonic energies with the exact
vibrational levels using the parameters in Table I from
Fit III in [4].

01 0
10 0
00 1

01 0
10 0
00 1

N20 ( ¹

= 163, N2 = 134)
588.9 586.9
1284.9 1270.7
2223.6 2224.9

C' 02 (Ni = N2 = 153)
666.8 664.0
1388.4 1339.1
2348.3 2350.7

0.34%
1.1%
0.06%%uo

0.42%
3.5%
0.10%

L2
V1V2 V3

01 0
10'0
00'1

Exact MFA
C' Og (Ni = Ng = 153)

666.8 664.0
1388.4 1384.0
2348.3 2350.7

Error

0.42%
0.32%
0.10%

TABLE III. A comparison of the exact vibron model cal-
culation to the harmonic approximation plus Fermi coupling.

01 0
10 0
00 1

C 02 (Ni = N2 = 154)
648.6 645.0
1370.1 1333.6
2283.2 2284.7

0.56%
2.6%
0.07%

01 0
10'0
00 1

C' 02 (Ni = N2 = 154)
648.6 645.0
1370.1 1362.7
2283.2 2284.7

0.56%
0.53%
0.07%
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Our boson expansion results agree very well with
the exact calculation. The only large errors appear in
the (vlvz'vs) = (10 0) states of the two isotopic CO2
molecules. These are due to the well-known Fermi reso-
nances which arise from the coupling between the nearly

degenerate (02o0) and (10o0) states. When the oper-
ator effecting this coupling is included [as defined in
Eq. (2.14) of [4], it has strength (z12 —1)A], the stretch-
ing modes are given by the following matrix for the states
(02 0), (10 0), (00 0).

( (4A12 + 2~) (Nl + N2) P N1+N2212 P N1+N2
X12

p Ng+Na

p Ni+Ng
&12

4(A1 + A12)Nl + 4A12N2 + AN2

Ay'N—l N2

AQN—1N2

4(A2 + A12)N2 + 4A12N1 + Nl f

(36)

The improved results for CO2 molecules are shown in
Table III. From these two tables we see that the MFA
(equivalently the RPA) gives excellent results for the
transition energies, particularly if the Fermi term is in-
cluded. The agreement between the exact and MFA re-
sults is at least as good as one would expect for a 1/N
expansion.

B. Transitions

%'hile we can obtain the energy spectra accurately and
easily by using the MFA, the application of the same tech-
nique to transitions is less satisfactory. There are two
reasons for this. First, calculation of transition intensi-
ties requires accurate knowledge of the wave functions of
the molecules. In the MFA, the error for the wave func-
tion is I/~N. For a typical polyatomic molecule, this is
about 10%. Therefore we make a much larger error for
transition intensities than for energy spectra by using the
MFA. Second, the transition intensities associated with
different modes of a molecule may have very disparate
strengths. This signals strong cancellations and a rather
special transition operator. Take HCN, for example, the
intensity (in units of cm/molecule) for the transition from
(100) to the ground state is about 0.5 while that for (001)
is 988. Moreover the intensity for (002) is 9.9, which is
about two orders of magnitude less than (001). The error
arising from the use of the MFA far exceeds the accuracy
required for calculations of these weak transitions. Nev-
ertheless, as the transition intensities provide important
and more stringent conditions on a model Hamiltonian,
we would like to study the transition intensities in the
MFA of the vibron model so as to gain some qualitative
insights for the model from transition measurements. In
view of the difficulties we mentioned above, we limit our-
selves to transitions involving at most two quanta since
higher transitions are strongly affected by anharmonici-
ties of the wave functions.

As an example, we shall study the vibrational transi-
tions associated with the stretching modes of HCN. These
transitions have been exposed to detailed theoretical and
experimental scrutiny [25]. Of special interest is the sur-
prisingly slow decrease of transition strength with the
vibrational quantum number.

For each vibron u(4) algebra, we take the vibrational
dipole operator to be

T = T1+T2. (38)

This form, although often used [26], is almost certainly
too simple since we neglect the cross polarizability of the
bonds [25]. Let the creation operators for the two stretch-

ing modes be al and a2, we have

b"„= (cos p)atl + (sin(b)a2t,

b, 2 = —(sing)al + (cosy)a2,

where (t is the mixing angle between normal and local
modes. The transition intensities are given by

8'
I(o) ( )

=
3&

~l(vl&10)I (4o)

where (0) is the ground state and (v) = (vlv2vs) is the
excited vibrational state.

Since we shall only consider excited stretching states
with v2 = 0, we can simplify (38) in the MFA to get
(since we are considering the case r = 1 the operator D
does not contribute to the transitions)

1

v1!v3!

+F2p2'+"' (—sin p)"' cos"' (b], (41)

where T„,„, = ((v)lT, l(0)) is the matrix element of the
dipole operator and

n2

F = 2N le —+Ny++Ny

~2
F 2N 1 —+Ng++Ng

Ay 2 r
p1 = +N1) p2 = —g N2.

2 2

We can determine the four parameters in the dipole oper-
ator as well as the mixing angle (t by using the transition
intensities of (100), (001), (200), (101), and (002). Of
course one can also determine P from the Hamiltonian;

T, = p, D+p, (De * '*'+ e ' &*'D) (i = 1, 2), (37)

where the first term contributes only to the static dipole
moment in the O(4) limit and the second term induces
vibrational dipole transitions. The total dipole operator
is assumed to be the sum
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we would like to consider the value obtained from the
transition operators as a constraint on the Hamiltonian,
as discussed below.

Due to the sign ambiguity for the matrix elements, we
can have many sets of solutions. Since the mixing angle
is a more important quantity for the wave function, we
will concentrate on P. After some algebra, we can show
that one of solutions is given by

where M = my+ms+ms is the mass of the molecule and
pg = my(ms+ms)/M, ps = ms(my+ms)/M, and pyz =
mqms/M are the reduced masses. The first term in (46)
is the c.m. kinetic energy and will not be considered
from now on. Adding a harmonic potential energy, we
have the Hamiltonian

H =
2 P 1T1 + 2 P2T2 +P'12T1T2 + 2 klr1 + 2 k2T2 + k12T1T2

tang = B+QBs+ 1 (42) (47)

with B = (Tos —Tso)/(v2Tyy). Choosing signs for the
matrix elements such that B = —1.229, we find $0 = 20'.
Other possible solutions for P are P = +Pp+As /2, where
n is an integer. Using this solution with Ps = 20', we
calculate the transition intensities for higher vibrational
levels and the results are given in Table IV, which do not
reproduce the slow decrease of intensities in the data.

When we diagonalize the mean-field Hamiltonian (32)
using the parameters in Table I from Fit III in [4], we
find P = 0.59', which is very difFerent from Pc. Since
the transition data are less accurate and we have used a
very simple dipole operator, this discrepancy needs fur-
ther examination.

For this purpose, we use an old-fashioned mechanical
model for polyatomic molecules [26] to study the wave
function of the HCN stretching modes. Let us label the
atoms in HCN in the order of 2-3-1. Then we define the
c.m. coordinate and bond-stretching coordinates as

We now make a change of dynamical variables from rq, rs
to pq, pz through the transformation

rq = ri(pq cosy+ ps sin&p),
r2 ———P1 Sing+ P2 COS&P,

(48)

where the parameters g, &p are chosen to be

k2P12 P2k12

kl @12 pl k12
(49)

and

tan2y = 2p, 12/

P2 —@19
(50)

The Hamiltonian H is thus reduced to a sum of the
Hamiltonians of two decoupled harmonic oscillators

+ = sMlpl + sK1pl + zM2P2 + sK2ps&
1 ~ 2 1 2 1 ~ 2 1 2 (51)

m1z1 + m2z2 + m3Z3

m1+ m2+ m3
(43) where the diagonal masses and force constants are

z3 LCN)

r2 ——z3 —z2 —LCH,

(44)

(45)

M1 ——

M2 ——

K1 ——

Ks ——

p1g cos p + p2 sin p —p12g sin 2y,
p, 1g sin y+ p,2cos p+ p12gsin2(p,
karl cos &p+ kssin y —kqsrlsin2y,
kyrI sin (p + ks cos (p + kysr) sin 2y.

(52)

T = 2MB + 2p1T1+ 2p2T2 + p12T1T2) (46)

TABLE IV. Transition intensities of HCN (in units of
cm/molecule). Numbers in brackets denote powers of 10.

Level

10 0
00 1
20 0
10 1
00 2
30 0
20 1
10'2
00 3
30 1
20'2
10'3
00'4

Energy (cm ~)

2096.9
3311.5
4173.1
5393.7
6519.6
6220.7
7441.6
8585.6
9627.0
9479.2
10618.9
11674.5
12635.9

Expt.

0.5
988
2.7[—3]
2.6
99
2.2[—3]
1.6[—3]
6.6[—2]
0.16

4]
4]

—3]
—3]

5.5[—
3.4[—
4.3[
6.6[

Gale.

0.5 (input)
988 (input)
2.7[—3] (input)
2.6 (input)
9.9 (input)
1.1[—5]
2.9[—3]
2.4[—2]
0.067
2.1[-6]
2.4[—5]
1.4[—4]
3.0[—4]

where LCH and LCN are the equilibrium bond lengths.
In terms of these new coordinates, the kinetic energy of
the molecule becomes

Using the values given in [26] for the force constants (in
10sdyn/cm)

ky
——18.6) kz = 5.7, kys = —0.22, (53)

We can make a connection between the mechanical model
and the vibron model by identifying the creation opera-
tors for the normal modes in these two models:

C1 = G1, C2 =G2. (55)

This then allows us to relate r1, r2 to the vibron bosons
as follows:

we find the normal mode frequencies to be ~p
/K'/Mq = 2109.6 cm and ~s = QKs/Ms = 3296.9
cm ~, in close agreement with experiment. We also find
&p = 15' and rl = -0.534.

Now let us introduce creation and annihilation opera-
tors for these modes (cq, c~) and (cs, cz). The coordinates
are related to them by

h
(Cl + Cy)) P2 = (C2 + CS).

h t
2M1u)1 2M2cu2
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cosrpcosp+ sin&psinp (b,1+ b, ~)
2Mgu)g

r2M2u)2

cos&psinp+ sin|pcosp l (b,2+ b,2),
2M'(up

)2M2u2

(56)

r2= sin &p cos P + cos p sin P (b, q + b, &)
2M'(up r2Mgu)2

+ sin Ip sin p + cos p cos p (b,2 + b,2)
r2M'(ug

(57)

It is easy to see that if the following condition is satisfied,

V Ml~1 /M2~2) (58)

we can eliminate the (b,2 + H.c.) term from (56) and
the (b, q + H.c.) term from (57) simultaneously by setting
tan P = tan Ip. The vibron model has a clear geometrical
relation to the mechanical model. Since Mqaq = v'Mr Kq
and M2a2 = v'M2K2, we could define the following ratio
R as a measure of the difference between vibron model
and the mechanical model,

MZ
(59)

For HCN, we have found that R = 1.197, which is close
to 1. This means that P should be close to 15'. This
agrees qualitatively with what we obtained from transi-
tions. From the mean-field Hamiltonian (33), we could
get such a relative large mixing by using the following set
of parameters (Nq = 140, N2 = 47):

Ag ———0.844, A2 = 4.947, Ag2 ——3.779, A = —3.75.

(60)

This set also produces correctly the harmonic spectra of
HCN and may be preferable to the parameters used in

(41
In general, R could be very different from 1 and then

it is not possible to relate the mean-field Hamiltonian in
the O(4) limit to that of the mechanical model. In order
to make such a connection, it is necessary that the mean-
field Hamiltonian of the vibron model have terms of the
type b, &b,2+bzqbz2. We could obtain such a Hamiltonian
by adding C2(U(3)) interactions.

C2(O, (4)) ~ N, —4N, bt, b„, (62)

~2(O12(4)) ~ C2(O1(4)) + C2(O2(4))
—(4Ng + 2N2)b,",bzg —(4N2+ 2')b, 2b, 2

QNg + N2(b gbzgy + b ~ByB) (63)

[in terms of the bending bosons of (33)],

JH q2 ~ N2b, qbz1 —Nib, 2bz2 '/N1N2(bzybz2 + bz2bzl)

+(Ng + N2)(b, ~bzg + b„~B„g)) (64)

TABLE V. A comparison of the exact vibron model cal-
culation to the harmonic approximation: linear four-atom
molecules.

&4 t5
VyV2V3j V4 V5 Exact MFA Error

bond. Our Hamiltonian will commute with the number
operator for each boson type, and the symmetry of the
molecule requires Nq = N2. We take for our Hamiltonian

Al+2(O1(4)) A2C2(O2(4))

A3C2(O3(4)) A12+2(O12(4))

A123C2(O123(4)) + ~~12 + B+2(O123(3))~

(61)

where the symmetry of the molecule will require that
Aq ——A2 and where C2(0/23(3)) = L with L = Lq +
L2 + L3. We take parameters such that the molecule is
linear and the condensate has rq = r2 ——rs ——1. As usual
we take the axis of the molecule in the z direction. We
introduce the orthogonal fluctuation bosons and find

V. U(4) xU(4) xU(4) VIBRON MODEL:
LINEAR FOUR-ATOM MOLECULES

For four-atom molecules the appropriate group struc-
ture is U(4) xU(4) xU(4). Again the picture is that each
U(4) group describes the properties of a single bond, and
that bond coupling is realized in terms of operators drawn
from different U(4) groups. The U(4) groups are realized
in terms of three sets of commuting bosons, s, , p, . In
this work we will only consider parameters appropriate to
linear four-atom molecules of the structure ABBA, e.g. ,

acetylene (HCCH). In terms of the boson labels we take
i = 1, 2 for the two A—B bonds and i = 3 for the B—B

100 0 0
001.0 0
010;0 0
000 1'0
000. 0 1

1OO;O'O'

001;0 0
01000
000;1 0
OOO O'1'

HCCH (Ng ——N2 = 43) Ns = 137)
3286.93 3286.73
3366.88 3368.42
1975.80 1983.68
617.12 611.20
724.50 717.21

DCCD (Ng = N2 = 61, N3 = 137)
2435.58 2430.44
2706.35 2704.44
1769.57 1769.18
513.55 510.80
534.08 528.79

0.00%
0.05%
0.40%
0.96%
1.00%

0.21%
0.07%
0.02%
0.05%
0.99%
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and finally for C2 (Ozzs(4)) in what is an obvious notation

C]23 = Cgz + C23 + C13 —Cg —Cz —Cs) (65)

I = QNg(b, —b, g)+ QNz(b z
—b z)

2

+QNs(bts —b s) (67)

and similarly for L„
From the MFA, we find three stretching modes, two

doubly degenerate bending modes, and two zero modes.
In Table V, we compare our results with the exact ones
given in [5] (the parameters are taken from Table II in

[5]). Again we find excellent agreement.

VI. DISCUSSION AND SUMMARY

Mean-field methods have been employed to study alge-
braic models by a number of groups [10—20). In this work
we apply the mean-field approximation (MFA) to the vi-
bron model, an algebraic model for molecular dynamics.
We show that the MFA gives a very accurate description
of the molecular spectra and provides a closer geometri-
cal picture of the molecular modes. The success of the
MFA is ensured by the large-N values in vibron models
(on the order of 100).

Our boson expansion method is similar to that used in

[17] in a nuclear physics context. However, our prescrip-
tion (22) and (23) allows us to avoid calculating commu-
tators. This not only reduces the computational effort,
but also provides us with a direct way of obtaining the
MFA Hamiltonian quadratic in the fiuctuation bosons.
The use of the RPA ensures an automatic separation be-
tween intrinsic and zero modes.

The MFA also provides a convenient vehicle in which
to seek the link between the algebraic operators and the
geometrical molecular coordinates. By studying this con-
nection, we can obtain valuable insights into the vibron
models. In Sec. IVB, we showed that under a certain
condition [see (59)), we can indeed identify the vibron
model bosons with the underlying geometrical coordi-
nates. These conditions can serve as a guide to select
interactions terms for the full vibron Hamiltonian. In the
future we will also investigate the role of Cz(U(3)) that
can shift the minimum from the O(4) limit r = 1. Infor-
mation of molecular structures is contained not only in
the spectra of molecules but also in their wave functions.
The most detailed knowledge on wave functions comes
mainly from transition intensities. We have attempted
to study the transitions of HGN in the MFA. Although
the result is plagued by the large error in the transition
calculation, we have found that the mixing of two local
vibron stretching modes is large. While a better under-
standing of transition intensities is clearly called for, in
the future we will study the anharmonic corrections to

where Czs (C&s) can be obtained from Ciz by making the
proper replacements. For the rotational energy we have

Cz(Ogzs(3)) ~ L + I„, (66)

with

the MFA calculation of transition intensities.
We here proposed in this work a relation [see (25)]

involving the bond length and the anharmonic constant
of a molecule that seems to work well for many diatomic
molecules. A plausible argument leading to this relation
is provided with the aid of the MFA.

We have concentrated in this work on linear molecules.
We will apply the techniques developed here to bent tri-
atomic molecules and more complex molecules in a future
presentation [23]. There we also intend to study the bond
length and moments of inertia using the MFA of vibron
model in greater detail.
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APPENDIX A: RPA MATRICES

(A1)

with

I't = Ql —IPIzbt + P . bt (A2)

By construction, the expectation value of the Hamil-
tonian

E(» &") = ([N]» &"
I N IO &') (A3)

has a minimum at P = P' = 0 and an expansion in P
and P' around it is thus very easy.

We obtain E(P, P*) by substituting in (14) the follow-
ing relations:

v'1 —I&I' —&*)

p. (v'1 —III'+ P.),
p*~ v&P*,
p„~ ~NP„

(A4)

In the boson expansion method we have used so far, we
first determine the optimal condensate boson by minimiz-

ing the expectation value of the Hamiltonian in the con-
densate and construct its orthogonal fiuctuation bosons.
With the prescription (22) and (23), we then obtain the
MFA Hamiltonian which is quadratic in the fiuctuation
bosons. Its spectra is harmonic and, as we have shown,
reproduces accurately the energy levels of the full Hamil-
tonian when the boson numbers N are large. In this
appendix, we briefiy outline an equivalent formulation in
terms of complex classical variables and demonstrate how
it is related to the boson expansion method.

We use the case of the U(4) model given by (14) in
Sec. III as an example. We start again with determining
the optimal condensate boson and a set of orthogonal
fiuctuation bosons. We then take a general trial wave
function
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(for creation operators, we take the complex conjugate of
the right side). Keeping only quadratic terms in P and
P*, we find

E(P, P') = 4~NP:P. — [(P:—P*)' (Py Pi—l)'].

(A5)

This is equivalent to (24). In fact, we could obtain
(A5) by rewriting (14) in terms of the condensate and
fluctuation bosons and then making the appropriate sub-
stitutions. For fluctuation bosons, we simply use

I~) =.-"'~ze""Io). (Bl)

rectly. The classical state grows out of the quantum co-
herent state in the large-N limit, but to discuss displace-
ments in states of finite N the quantum states must have
a distribution in N. As N grows this distribution is more
and more strongly peaked, but it must never be precise
if we wish to discuss quantities such as displacements.
States with just this property of being both displaced and
having a distribution in N are the Geld coherent states.
For a simple oscillator with a single boson type (a, at),
the field coherent state is given by

b -+ P, bt ~ P'.

For condensate bosons, we use

b.(t.t) v'N(I —I@I')

( 6)

(at + a) = zo(at + a),
2fAGP

(B2)

If one defines the displacement operator for the system
in the normal way by

This last equation is equivalent to the prescription (22)
and (23) in the MFA.

To calculate the harmonic spectrum of the classical
Hamiltonian (70), we define the RPA matrices as

BzE

&P &P p p=o'

it is easy to show that (AID]A) = 2Azo. Expanding IA) in
states of fixed boson number IN), it is seen that for large
A the most likely state in that expansion has ~N = A and
that there is very little dispersion. It is also well known
that the fractional dispersion in the expected value of D
is very small for large A. We have

82E
P'&P' p=p =o

Thus we obtain

(8N 0 0)
0 0 0

io 0 BNj
(Alo)

((&ID' —(D)'I&&)' 'ID =
v'2N

(B3)

in terms of the most likely N. Thus in the large-N limit
the expected value of the square of the displacement is
equal to the square of the average displacement. We
exploit this fact by exporting it to the coherent states of
fixed boson number of (20).

We define the z displacement for the diatomic molecule

(aN 0 0 )8= 0 4AN 0
0 0 -BN)

(AII)

APPENDIX B:THE BOND LENGTH

To define the classical bond length in a diatomic
molecule, one cannot use the coherent state of (20) di-

Diagonalizing the product matrix (8 —A)(8+ A),
we find two zero eigenvalues and one positive eigenvalue
(4AN)z. The two zero eigenvalues correspond to the two
rotational zero modes. The positive eigenvalue is equal
to the square of the stretching mode uz Thus we .find
a, = 4AN in agreement with the MFA result.

The above discussion can be extended to U(4) xU(4)
and U(4) x U(4) xU(4) vibron models straightforwardly.

D. = *o(p.t+ p. ) (B4)

where the m in xo is the reduced mass for the relative
motion and the cu vibrational frequency obtained in the
MFA. We find

2Nr2
(N, rID IN, r) = xo 1+r2

from which we take

D. = V'(D'. ) = hN r
me QI + r z '

which is the form for the bond length we use in Sec. III.
Other empirical relationships between bond length and

molecular parameters have been given before [27], but we
do not know any derivation of the relation suggested here.

[1] F. Iachello, Chem. Phys. Lett. 78, 581 (1981);F. Iachello
and R. D. Levine, J. Chem. Phys. 77, 3046 (1982).

[2] O. S. van Roosmalen, A. E. L. Dieperink, and F. Iachello,
Chem. Phys. Lett. 85, 32 (1985); O. S. van Roosmalen,
I". Iachello, R. D. Levine, and A. E. L. Dieperink, J.
Chem. Phys. 79, 2515 (1983).

[3] F. Iachello and S. Oss, J. Mol. Spectrosc. 142, 85 (1990).

[4] F. Iachello, S. Oss, and R. Lemus, J. Mol. Spectrosc. 146,
56 (1991).

[5] F. Iachello and S. Oss, J.Mol. Spectrosc. 149, 132 (1991).
[6] F. Iachello and S. Oss, Phys. Rev. Lett. 66, 2976 (1991).
[7] R. Bijker and R. D. Amado, Phys. Rev. A 34, 71 (1986);

R. Bijker, R. D. Amado, and D. A. Sparrow, ibid. 33,
871 (1986).



MEAN-FIELD APPROACH TO THE ALGEBRAIC TREATMENT. . .

[8] A. Mengoni and T. Shirai, Phys. Rev. A 44, 7258 (1991);
Y. Alhassid and B. Shao, ibid (t.o be published).

[9] R. D. Amado, J. A. McNeil, and D. A. Sparrow, Phys.
Rev. C 25, 13 (1982).

[10] For early work on the use of coherent states in the semi-
classical analysis of boson models see, e.g. , R. Gilmore
and D. H. Feng, Nucl. Phys. A 301, 189 (1978);
J. N. Ginocchio and M. W'. Kirson, Phys. Rev. Lett. 44,
1744 (1980); Nucl. Phys. A $50, 31 (1980); A. Dieperink,
O. Scholten, and F. Iachello, Phys. Rev. Lett. 44, 1747
(1980).

ll S. Levit and U. Smilansky, Nucl. Phys A.389, 56 (1982).
12 Q. S. van Roosmalen and A. E. L. Dieperink, Ann. Phys.

139, 198 (1982).
[13] O. S.van Roosmalen, Ph. D. thesis, University of Gronin-

gen (1982).
[14] I. Benjamin and R. D. Levine, Chem. Phys. Lett. 117,

314 (1985).
[15] O. S. van Roosmalen, R. D. Levine, and

A. E. L. Dieperink, Chem. Phys. Lett. 101, 512 (1983).
[16] O. S. van Roosmalen, I. Benjamin, and R. D. Levine,

J. Chem. Phys. 81, 5986 (1984).

[17] J. Dukelsky, G. G. Dussel, R. P. J. Perazzo, S. L. Reich,
and H. M. Sof/a, Nucl. Phys. A 425, 93 (1984).

[18] A. Leviatan and M. Kirson, Ann. Phys. 188, 142 (1988).
19] A. Leviatan, J. Chem. Phys. 91, 1706 (1989).
20] F. Iachello, A. Leviatan, and A. Mengoni, J. Chem. Phys.

95, 1449 (1991).
[21] R. Gilmore, Lie Groups, Lie A/gebms, and Some of Their

App/ications (Wiley, New York, 1974).
[22] Y. Alhassid snd R. D. Levine, Phys. Rev. A 18, 89

(1978).
23] Bin Shao, N. R. Walet, and R. D. Amado (unpublished).
24] N. R. Walet, P. J. Brussaard, and A. E. L. Dieperink,

Phys. Lett. 1BSB,1 (1985).
[25] P. Botschwina, Chem. Phys. 81, 73 (1983); K. K.

Lehmann and A. M. Smith, J. Chem. Phys. 93, 6140
(1990), and references therein.

[26] E. B. Wilson, Jr. , J. C. Decius, and P. C. Cross, Molec
ular Vibrations, The Theory of Infrared andRa, man Vi-

brational Spectm (Dover, New York, 1955).
[27] G. Herzberg, Mo/ecu/ar Spectra and Molecular Structure

I. Spectra and Diatomic Molecules (Van Nostrand, New

York, 1950).


