
PHYSICAL REVIEW A VOLUME 46, NUMBER 7 1 OCTOBER }992

Excited states as resonances in the photon-atom continuum and the naturai-hne-shape problem
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A variational Hamiltonian method for quantum field theory is applied to the problem of natural line
shape. Within scalar quantum electrodynamics, coupled variational equations are derived for the
scattering of photons from a scalar (pionic) atom. It is shown that the coupled equations have a continu-
ous spectrum for all energies above the atomic ground state. Excited states of the atom appear as reso-
nances in particular partial-wave cross sections. The line center and shape are derived from the behavior
of the photon-atom scattering phase shifts.

PACS number(s): 32.70.—n, 31.50.+w

I. INTRODUCTION

In the elementary treatment of atomic bound states,
the energy levels of isolated atoms are obtained as
discrete eigenvalues of the Schrodinger equation. How-
ever, an atom does not have a true discrete spectrum of
bound-state energy levels, since an excited state will natu-
rally decay via photon emission. This means that an ex-
cited atom such as hydrogen should not be viewed as an
isolated two-body problem (nucleus plus electron with a
static potential interaction). Rather, the explicit presence
of the radiation field (photons) must be taken into ac-
count. Excited states, then, do not correspond to
infinitely sharp energy eigenvalues, and so the spectral
lines of the emitted or absorbed radiation that arise in the
excitation or decay process are themselves not infinitely
sharp, but have a broadening referred to as the natural
line shape.

The first correct calculation of the shape of atomic
lines was made by Weisskopf and Wigner [1] in 1930, us-

ing an approximation to the two-state emitter mode1. In
the lowest approximation, any line shape turns out to be
symmetric, but the effects of higher-order and non-
resonant terms distort the symmetry. An extensive study
of the line-shape problem was made by Arnous and co-
workers [2] around 1950. They mainly focused on the ra-
diative corrections of the resonant term to the line center
and shape, and the effects of nonresonant terms were not
considered. To study the distorting effects on the line
shape of a closely lying level near the upper level of a
transition pair, Morozov and Shorygin [3] and Bali and
Higgins [4] have respectively developed different ap-
proaches to the multistate emitter problem. From the
viewpoint of photon-atom scattering, Low [5] has
presented a completely different approach to the natural-
line-shape problem by using Feynman diagrams. This
so-called S-matrix approach provides more physical in-
sight and understanding of the higher-order corrections.
However, it is not easy in this approach to incorporate
the background effects of nonresonant terms to the line
shape.

In this paper, we present another approach for the
treatment of the natural-line-shape problem: an excited
state is viewed as a resonance in the photon-atom contin-
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FIG. 1. Lowest-order Feynman diagrams for elastic resonant
photon-atom scattering.

uum. This idea itself is not new. The connection be-
tween the lifetime of (compound) excited states that de-
cay by particle emission and the resonating behavior of
appropriate particle-bound system scattering phase shifts
is discussed in detail by Goldberger and Watson [6].
What we do obtain is the fact that the photon-atom
scattering equations are derived directly from quantum
electrodynamics (QED). To illustrate the method, we
consider a hydrogenlike atom consisting of two scalar
particles coupled to a photon field. We use the Hamil-
tonian formalism of scalar QED (SQED) and apply the
variational method to derive the coupled wave equations
for the relevant channels. Within this method wave
equations were derived recently for positronium [7,8],
scalar positronium [9], and photon-photon scattering
[10,11]. It is the latter work in which the positronium
states appear as resonances in the y-y scattering channel
that motivated the present study. In the y-y scattering
calculation it was shown how the positronium wave equa-
tion derived from QED, which initially represents a
discrete eigenvalue problem below the continuum thresh-
old, becomes modified due to the coupling to the photon-
photon sector. This coupling turns the bound-state equa-
tion into an inhomogeneous problem with solutions at all
energies. Similarly, in the present work we show how the
coupling of the atomic wave equation to the one-photon
sector modifies the Schrodinger equation in such a way
that the excited states become simply resonances in the
photon-atom scattering channel.

The scattering of atoms by light and the role played by
virtually populated excited states have been investigated
long ago by Kramers and Heisenberg [12]. For our prob-
lem of elastic scattering of a photon by an atom there are
two lowest-order Feynman diagrams of equal importance
(cf. Fig. 1). In the equal-time Hamiltonian approach that
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we use, one obtains process (la) through an ansatz that
couples the one-photon sector with the atomic bound
state. Incorporation of process (lb) requires an expanded
Fock-space ansatz, which includes two photons coupled
to the atom.

In order to keep the presentation as simple as possible
we derive first the equations for process (la) in Sec. II.
Two coupled integral equations are obtained using a vari-
ational ansatz, which includes Fock-space states for a
pair of two scalars (spinless hydrogen) and two scalars
plus a photon. In Sec. III we show how to obtain an ap-
proximate solution of these equations and the cross sec-
tion for photon-atom scattering. In Sec. IV the expanded
Fock-space results are presented. Numerical calculations
of the scattering partial-wave cross sections are presented
in Sec. V. These results show that resonances in partial-
wave cross sections correspond to atomic unstable excit-
ed states, and that the lines are syrnrnetric in the first ap-
proximation. Effects of nonresonant terms can be incor-
porated naturally in our approach. Concluding remarks
are given in Sec. VI.
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p(x) =ie, (P*~, P—n~)+ie2(g*~ e Q—sr~),

and &&(x) takes the same form as &&(x), but with e, and
m replaced by e2 and M. In the above m& and vr are the

conjugate momenta of P and P*, respectively.
We make the usual Fourier expansion of the field

operators at equal time t =0 [17]. For the scalar fields we
have
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II. VARIATIONAL EQUATIONS FOR TWO SCALARS
AND ONE PHOTON
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In order to treat the particles and the radiation field
(photons) on an equal footing, we resort to a quantum-
field-theoretic description. The use of quantum field
theory to describe relativistic bound (and continuum)
states has been described by many authors. The work of
Blankenbecler and Sugar [13], Sucher and co-workers
[14,15], and Fulton [16] can be cited as representative ex-
amples of such an approach.

In the present work we use a variational method within
the Hamiltonian formalism of SQED to derive wave
equations for the amplitudes of the included Fock-space
states. This formalism has the advantage that it is
straightforward (though sometimes tedious) to apply, and
is very close to ordinary Schrodinger quantum mechan-
ics, which it contains as a nonrelativistic limit. The
Hamiltonian is constructed by the canonical prescription
from a covariant Lagrangian. In radiation gauge, the
Hamiltonian for the system of photons and distinct sca-
lars of masses m and M and charges e, and e2 takes the
form (fi =c = 1)

H= f d x[~(x)+%~(x)+k, '$*$1iQi

X A (q}e'q'*—8 (q)e (2.2d)

a (k)e'k'"+ at (k)e
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k=1 2(2n. )

1/2
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X a(kg)
i exka t&(k)e ik x—

(2.3b)

where the transverse polarization vectors e&(k) satisfy
ei(k) k=0. The momentum-space operators A, 8, ai,
etc. , obey the usual commutation relations. The nonvan-
ishing ones are

where co(p)=(p +m }'~. Similar expressions hold for
lii(x), m &(x), etc. , but with m and co(p) replaced by M and
Q(p)=(p +M )' . For the electromagnetic field we
have

2 —1/2
A(x)= g f d'k ek(k) (2n. )'2lkl

1

+%r(x)+Wc(x)], (2.1) A(p), A (q) = 8(p), B (q) =fi (p —q), (2.4)

where k,' is the coupling constant for the direct interac-
tion between scalars. The various parts of this Hamil-
tonian are, explicitly,

r

%&(x)=m&m, + V ie, A P*—. V+ie, A P+m iti*P,

&r(x}=—,'[A +(VX A) ],
& (x)= f dy8~ lx —

yl

with

ai(k), ai (k') =5 (k —k')fiii (2.5)

while all the other commutators vanish. We are not in-
terested in the vacuum energy problem and so we use the
normal-ordered Hamiltonian after expressing it in terms
of rnomenturn-space operators A, 8, a&, etc. The opera-
tors A (p) and A(p) [8 (p) and B(p)] are identified
with creation and annihilation operators of positively
(negatively) charged free scalars of momentum p, and
a&(k) and a&(k} with those of transverse photons of
momentum k and linear polarization index A..
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To take account of the processes shown schematically
in Fig. 1(a) the variational ansatz is chosen as

Iq') = J d pF(p)B (
—p)AM(p)IO)

2

+ g fd q d p G(q, pl)B (pz)A~(p, )ai(p)IO),
A. = 1

(2.6)

with p, =q —pM/(m +M) and pz
= —q —pm /(m +M).

Here IO) stands for the trial vacuum state, which has the
defining property a&(p)IO) =0 and similarly for the A

and B annihilation operators. The functions F and G are
I

two variational coefficients to be determined from the
variational principle

(2.7)

where:H: stands for the normal-ordered Hamiltonian
operator. F and G are identified with the momentum-
space wave functions that describe the channel of two
scalars of opposite charges and the channel of two scalars
plus one photon, respectively.

Taking the functional derivatives with respect to F and
G in Eq. (2.7), we obtain the following two coupled in-
tegral equations:
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where p =[m /(m+M)]p and p~=[M/(m+M)]p.
These two equations determine the momentum-space
wave functions describing the two-scalar and two-scalar
plus one-photon channels, and the coupling between
them. Equation (2.8) with G set equal to zero describes
the two-scalar bound state as an eigenvalue problem.
With GWO this equation, together with (2.9), turns into a
nonhomogeneous problem with solutions at any energy
E. Near the eigenvalues of the G =0 equation, the
nonhomogeneous wave equation resonates, i.e., F(p) ac-
quires a very large amplitude. Equation (2.9) describes,
similarly, a (Mmy) state. It contains on the left-hand
side the free energies of these particles and on the right-

hand side their interactions and coupling to the (mM)
channel.

As it stands Eq. (2.9) is difficult to solve. In order to
make the problem tractable a simpler version is derived
in the next section, in which the (Mm) degrees of free-
dom are factored away and a simple photon scattering
equation emerges. This equation, when solved together
with (2.8), describes how the photon scatters from the
atom with the temporary formation of an excited (Mm)*
state. We study these solutions for the limiting case
where the mass of the scalar particle with positive charge
tends to infinity.
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III. APPROXIMATE SCATTERING SOLUTIONS

In the limit where the mass of the positively charged scalar tends to infinity, i.e., M~ ~, Eq. (2.8) reduces to

[ ( ) E, ]F( ) f d, F(p') co(p)+co(p')
(2n ) Ip

—p'I 2[co(p)co(p')]'
2 2P e~(P')

d p'G(p+p', p')(, )
(4n)'n q=& [co(p)co(p+p')Ip'I]' ' (3.1)

where E'=E —M. Similarly Eq. (2.9) reduces to
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Now suppose that the function G can be separated into
two factors: one describing the two-scalar atom, which is
in a stable state, say ground state, and the other part
describing one photon. That is, we factorize 6 as

G(q p~) =F0(q)g.(p» (3.3)

and perform a restricted variation on gz(p) only. In Eq.
(3.3) Fo(q) is the wave function describing the ground
state of the atom. In practice we represent Fo(q) by the
following analytic form:

2(2ys)ln
Fo(q) =

( 2+y2)2
(3 4)

where y =mZa, a=e f /4m. , and Z represents the atomic
number. With unrestricted y this function has been used
as a variational approximation to the lowest eigenstate of
the bound-state equation [9]:

me Z mes Z 8n
Eo m-

2n 8n 2l +1 (3.6)

where n and l are the principal and angular quantum
numbers, respectively. The approximate form of Fo(q),
Eq. (3 4), which we employ in practice, is the exact solu-
tion of Eq. (3.5) in the nonrelativistic (Schrodinger) limit,
i.e., p/m ((1.

Using Eqs. (3.3) and (3.5), we obtain from Eq. (3.2) the
following formal scattering solution:

[co(q) —Eo ]Fo(q)

e, e2 Fo(P') co(q)+co(p )
in '(2~)' lp' —ql' 2[co(q)co(p')]'n

which is just the homogeneous part of Eq. (3.1) with
G =0. Note that in the nonrelativistic limit
co(q) =m+p /2m, and so Eq. (3.5) reduces to the
momentum-space Schrodinger equation for a one-
electron atom, as one would expect. The eigenenergies of
Eq. (3.5), when expanded to order (Za), are

1 eI
gz (p) =5 (p —k, )5~z+, d qFo (q)F(q —p)E' Eo —

lpl (4~)—'n [co(q—p)co(q) p ]' '

2
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2(2')

g -(q'+p —q)~ (p) ~ -(q'+p —q)
X

[co(q)co(q') Ipl Iq'+p —ql]'" (3.7)

E'=Eo+ Ik, I
. (3.8)

where we take the normalization condition

Jd qFo(q)Fo(q)=1, and require that the energy E'
satisfy the restriction

This formal solution (3.7) contains two parts: a free pho-
ton wave function describing the incident flux plus a scat-
tered standing wave that can be identified as the free real
Green's function times the K matrix.

Correspondingly Eq. (3.1) is replaced by
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[~(p)—&']F(p)

] 2 3, F p Cg) p + CO pd p(2~)' Ip' —pl' 2[co(p)~(p')]' '
2

g f d p'Fo(p+p')gi(p')
(4 )3/2

2p. ez(P')
X (3.9)

[~(p)~(P+P )IP I]

It is of interest to note the difference between Eq. (3.9),
which represents the coupling of the scalar-atom channel
to the scalar-atom plus one-photon channel, and the
isolated-atom equation (3.5). Equation (3.9) is no longer a
homogeneous eigenvalue equation, and so has a continu-
ous spectrum of solutions. The information about the
scattering of the photon and scalar atom is provided by
the terms in the curly brackets in Eq. (3.7).

The second term in the curly brackets of Eq. (3.7) is of
higher order in a =e

&
/4~ than the first one. Evaluation

of this term in lowest order [gz(p)=5 (p —k;)5zz ]
2

shows that it describes Wailer scattering [18]. This is evi-
dent from the appearance of the term Fo (q)FO(q') under
the integral. In the case where the photon energy is very
large compared to the binding energies of atomic elec-
trons, but very small compared to the electron rest ener-

gy, it reduces to Thomson scattering. When a resonance
occurs in photon-atom scattering this contribution is
negligible and is ignored. In this approximation we iden-
tify the E-matrix elements for the linearly polarized pho-
ton scattering to be

K~., (kf, k, ) = f d qF0 (q+ kf )F(q)
&a
4a

2q. ez(kf)X, . (3.10)
[~(q)~(q+kf )Ikf I]'"

This reactance matrix describes how photons are
deflected due to the fact that the atom makes a transition
from Fo to F and back. Here k; and A, (kf and X') stand
for the initial (final) momentum vector and linear polar-
ization index. The F function is determined by Eq. . (3.9),
which in lowest-order approximation reduces to

2 2
0.= dA~ —,

' 2m kf T~ ~ kf k
X=1 A.'=1

(3.12)

where T&,& are the elements of the transition matrix.
They are related to the K-matrix elements (3.10) through
the Heitler equation

Ti 2 (kf, k;) =K2. 2„(kf,k;) imk;—
2

X g f dA& Tzz (kf, k, )K& z(k„k, ),
A,

l
= 1

(3.13)
where k, =kf =k, , as given by the energy-conservation
law.

IV. TWO-SCALAR AND TWO-PHOTON
FOCK-SPACE TREATMENT

In order to incorporate the process corresponding to
the diagram of Fig. 1(b), which also contributes to the
resonance in lowest order, we have to expand the Fock
space to allow for the simultaneous presence of the sca-
lars and two photons. The variational ansatz in addition
to (2.6) now contains the term

2 2

lq') y,.
= Z y f d-'~ d'pid'p2I(q pl~i, p2~2)I1 (p4)

=1 A~=]

X ~M(P3)a2, (P2)~2, (p~)l0), (4.1)

with p3=q —[~™~M1](p, +p2) and p4= —
q—[m /(m +M)](p, +p2).

After taking the variation (2.7) and the limit M~ ~,
additional terms are obtained on the right-hand side of
Eqs. (3.1) and (3 2) as well as an equation for the
( Mm y y ) amplitude:

[co(p) —E']F(p)
F(p') ~(p)+~(p')

d p2a lp' —
pl 2[co(p)co(p')]'i

v'a 2p. e2 (k, )
Fo(p+k;), , (3.11)

4~ [co(p)co(p+ k; ) Ik, I

]'~

where we have set e2 =Ze, .
The unpolarized total cross section for the scattering of

the photon with the two-scalar atom is given by [19]

[~(q)+ Ipil+ Ip, l
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eie2 3
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2(2' )'
I
q' —

q
I' [~(q)~(q')]' '

2 &2 (P&) ei. (P2)

, F(q —
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—p»
&~(q —pi —p2)~(q)lpil IP2l

e2.'(P ) e2, (pl)
& f ' [I(q+p' —

p&, p'&', p2&2)+I(q+p' —
p&, P2~2 p ~

2(2ir)' 2 [~(q)lp'I]'" [~(q+p' —p, )lp, ]'"
ex'(p ) ex (p2)

+ [I(q+ P' —P2, P'k', P, A, ) + I (q+ p' —
p2, p, k, , p'k') ]

I ~(q+p' —P2) IP2]'" . (4.2)



46 EXCITED STATES AS RESONANCES IN THE PHOTON-ATOM. . . 4031

The additional term on the right-hand side of Eq. (3.1) is
given by

2

g I d p'id pzI(p+Pl+Pz, plkl, pzkz)(4~)' '~
1 2

e~.(Pl) &~.(P2)
X (4.3)

[~(p)~(pi+Pl+P2)IPII IP2I]
'

and on the right-hand side of Eq. (3.2) by

e, g f d'q'[I(q', PA, , ( q' —q)&')(4~)'",
+I(q', (q' —q)&', pk) ]

2q ez(q' —q)
X

[a)(q')co(q) Iq' —qI ]' '

(4 4)

J=1M = —Jp p

(5.1)

where the indices p2 and p, run over e and m, and YJMJ
and YJM are, respectively, the electric and magnetic vec-

J
tor spherical harmonics. In addition, the momenta k,
and kz are equal (kz=ki =k) by energy conservation.
For a spherically symmetric scatterer under parity con-
servation, we have

R =R =0
em me

J JR,e
= —

Rmm

(5.2)

(5.3)

We expand the T matrix in the same way as Eq (5..1),
denoting the multipole expansion coefficients by T„„.IfP)Pp

we parametrize the expansion coefficients of the diagonal
E matrix in terms of eigenphases

The two-photon plus bound-scalar amplitude I appears
in a symmetric way with respect to the photon variables,
and therefore we introduce

I'(q, pluri, pzkz)=I(q, pil i, pz)lz)+I(q, pzkz Pill)

(4.5)

R„„(k)= tan5&(k), p, =e,m,1

then from Eq. (3.13) it follows that

JR pp 1 . —i SIJ'(k)
T (k) = "" = sin5lJ'(k)e

1+;m.k2R J ~k2
PP

(5.4)

(5.5)

Again, we shall not attempt to solve the three coupled
equations (3.1) [with (4.3)], (3.2) [with (4.4)], and (4.2) for
the variational coefficients F, G, and I. Rather, we shall
proceed as in Sec. III and, in addition, we shall choose I'
to take on the particular factorized form

'(q pi~i pz~z) F(q@ (Pl+Pz)(2l. jL ( (4.6)

V. RESULTS

For a numerical study of the scattering cross section,
we need to make Eqs. (3.10)—(3.13) numerically treatable.
To this end, we make a partial-wave electromagnetic
multipole expansion of the K matrix as follows [20]:

where, as previously, F(q) describes the intermediate
state of the atom during the collision. This form is the
simplest possible choice that is symmetric in the photon
variables and links this channel properly to the scalar
particle's degrees of freedom. The incident and outgoing
photon flux is still described by the amplitude G. Equa-
tion (4.2) could be used, in principle, to describe the col-
lision of two photons with a ground-state atom, but this
is not our interest for the present paper.

This restriction of the two-photon plus scalar atom am-
plitude to the form (4.6) results in an additional mass re-
normalization term in Eq. (3.1), which can be absorbed in
the usual way [9],as well as an additional scattering term
in Eq. (3.2), namely, that shown in Eq. (4.4). This term is
identical in form to the first term on the right-hand side
of Eq. (3.2) and in effect replaces e, by 2e, in that term.
Thus on resonance the results from the previous section
are only modified by the fact that the K matrix [Eq.
(3.10)] is multiplied by a factor of 2.

Here 5J and 5J are the electric and magnetic eigenphase
shifts, respectively. The total scattering cross section Eq.
(3.12) can then be written in the form

cr= g g crJ(k),
p=e, m J=1

(5.6)

with the partial-wave cross sections given by the expres-
sion

criJ(k) = (2J+1)sin 5rJ'(k),
k

(5.7)

I dq f„'l' (q) Ki(p, q)+Si '(p,—k;), (5.9)
0 I p I

where the kernel Kl and inhomogeneous term SI' ' are
I

given in the Appendix for the l =1,2 cases. Numerically
this equation is solved by expanding f„'&

' (q) in a sine
I

basis using the variable x =2 tan 'q, and the expansion is
truncated, typically„after 80 terms. Performing these
partial-wave expansions we evaluate the phase shift 6~J

from the partial-wave form of Eq. (3.10):

where we recall that k, =kf =k.
In order to evaluate the partial-wave cross sections, we

make the partial-wave decomposition of Eq. (3.11) with

oo

F(q)=F' '(q)= g g f„'&' (q)Y& (8,$), (5.8)
1=0m = —II

where YI are the usual spherical harmonics. Therefore,
I

Eq. (3.11) is replaced by the radial equation

[~(p) F-']f.'i"', (p»)—
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merical calculations become less accurate and more ex-
pansion terms in the numerical solution are needed.

In Figs. 2 and 3, we show the behaviors of O.~J, for
Z =20 in the vicinities of the first and second resonances.
The two lines respectively correspond to the 2p-1s and
3p-1s transitions. Detailed analysis shows that the lines
have the Lorentzian shape, i.e., they are well fitted by the
Breit-Wigner formula. For example, for the results in
Fig. 2, we obtain an excellent fit of our calculated curve
to the Breit-Wigner form A I „/[(k —k, ) + ( &„/& ) )
with k, =8.262964X10 m, I „=6.649X10 m, and
A =6.902X10 . Indeed, the Breit-Wigner fit is indiscer-
nible from the calculated curve on the scale of the figure.
It agrees with the numerical value to three significant
figures over the domain of k shown in the figure. Similar-

ly, for Fig. 3 the corresponding results are
k, =9.746962X10 m, I „=1.758X10 m, and
A =4.960X10 .

We retain only the contribution from the I =1 term in
the calculation of O.J &, using a two-state atom model.
The numerical results indicate, as one would expect, that
the contribution from the I = 1 term is dominant near the
maxima of the resonances and the shape of the lines is

symmetric. The contributions from the nonresonant l
terms have less effect on the 2p-1s line than on the np-1s
lines with n 3, as there are other closely lying levels
near the higher-n, levels. It is dificult to include the
effects of many nonresonant terms in the numerical cal-
culation. As an example, we have calculated the effects
of the p =2 term and find that they can hardly be demon-
strated in a diagram, like Fig. 2 or 3.

For a fixed spectral line, for example, the 2p-1s line,
when changing the atomic number Z, we find that the
widths of the resonances are proportional to Z for small
Z, which is in agreement with perturbation theory [5,21].
For large Z the results deviate from this behavior, and
the larger Z is, the larger the deviation. This can be
clearly seen in Fig. 4. The reciprocal of I =I,+I of
these resonances yields the lifetime of the excited states.

We have also calculated the J=2 partial-wave cross
section O.J as a function of the photon energy k. The d-
wave cross section o~J z has a similar resonance structure
as the p-wave cross section, but the resonances occur near
the energies ko=E„d —E„. These spectral lines corre-
spond to the atomic transition from the nd state to the
ground state. Figure 5 shows the first resonance of the

2

FIG. 3. The behavior of the electric or mag-
netic p-wave cross section in the vicinity of the
second resonance for an atom with Z=20.
The vertical line indicates the position of
kp =E3p —E),.
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d-wave cross section for Z =20, which corresponds to
the 3d-1s line. This line has the same Lorentzian line
shape as the ones in Fig. 2 and Fig. 3, and is well fitted by
the Breit-Wigner formula with k, =9.749 217 X 10 m,
I „=6.071X10 m, and 3 =8.263X10 . The calcula-
tion shows that near the resonance the contribution of
the resonant term, i.e., the 1=2 term, is dominant and
the effects of the nonresonant terms are small (indiscerni-
ble on the scale of Fig. 5). The line center is also de-
creased from ko but by an amount of about one order less
than the resonance width, as one would expect for a radi-
ative shift in a higher I state.

VI. CONCLUDING REMARKS

We have used the Hamiltonian formalism of scalar
quantum electrodynamics to describe unstable (excited)
states of atoms as resonances in the photon-atom contin-
uum. The Hamiltonian formalism is particularly con-
venient for the description of such unstable states, since
the variational method can be used to derive relativistic
wave equations that couple the discrete-energy ground
state to the excited atomic state and its decay to the

stable ground state is naturally described as a coupled-
channel problem in this approach. Moreover, the Hamil-
tonian formalism has the advantage that it is closely re-
lated to the familiar Schrodinger description of atoms,
which it contains as a nonrelativistic limit. Thus we have
applied the variational method, within the Hamiltonian
formalism of SQED, to the problem of the natural line
shape of atoms from the scattering viewpoint. In this ap-
proach, the unstable excited states of atoms appear natu-
rally as resonances in the photon-atom scattering cross
section. The widths of these resonances yield the transi-
tion rate from the atomic excited state to the ground
state. In contrast to the usual descriptions, we do not
need to introduce the concept of complex energy, and
effects of nonresonance terms can be incorporated natu-
rally.

An unappealing aspect of the equal-time Hamiltonian
variational method also becomes apparent in the present
work. Within covariant perturbation theory, photon-
atom scattering is described, in lowest order, by the two
Kramers-Heisenberg terms depicted in Figs. 1(a) and
1(b). These are easily seen to be of equal importance as
they contribute at the same order of perturbation theory.
In the presently used formalism these two terms corre-

10-'.

FIG. 4. The electric or magnetic width I „
as a function of Z for the Zp-1s resonances.
Solid line, perturbative result; crosses, present
numerical results.

10



46 EXCITED STATES AS RESONANCES IN THE PHOTON-ATOM. . . 4035
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FIG. 5. The behavior of the electric or mag-
netic d-wave cross section in the vicinity of the
first resonance. The vertical line indicates the
position of ko=E3d —E„.
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spond to Fock-space trial states with different photon
number [Eqs. (2.6) and (4.1)], which leads to equations
[(4.2) in the present case] that involve more than two
momentum coordinates. Such equations can be handled,
in practice, only in some approximate way, such as the
separable approximation Eq. (4.6) used in the present
work. On the other hand, as we have stressed previously,
the Harniltonian formalism provides equations that are
easily interpreted in terms of ordinary quantum mechan-
ics. In particular it is transparent how the quantum-
mechanical eigenvalue problem becomes modified so that
the excited states appear as continuum resonances
without any ad hoc assumptions.

More work is required to exploit fully the possibilities
of the present approach, and in particular, to exploit the
relativistic treatment of the bound-state problem. In par-
ticular, an extension to the case of ferrnionic QED would
be of interest for the study of transitions in high-Z atoms,
which are currently being investigated in heavy-ion
storage rings.

and Engineering Research Council of Canada is acknowl-
edged for financial support.

APPENDIX

For the I =1,2 cases, the kernel I(.&(p, q) and inhomo-
geneous term Sl' ' in Eq. (5.9) take the following forms:

I

K, (p, q) = ln —2, (A 1)
4&~(p)co(q) pq p —

q

T

3 co(p)+co(q) p +q 1E2p, q =—
4 &co(p)~(q) pq

xl„p+q p'+q'
p —

q 2pq
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In the coordinate system formed by e, (k; ), e2(k, ), and k, ,
for A, =1 we get
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S'," (p, k, )=+ 1

I 2

' 1/23aZm p
~k, ( 2+ 2)1/4

X [ Wo(p, k, )
—W~(p, k, )]5+,

St' '(p, k, )=+iS,"'(p, k, ), (A5)

where the minus (
—

) is for mt)0 and plus (+) for
m& ~0. In the above W, (i =0, 1,2, 3) are given as fol-
lows:

S"' (p, k )=+ 1
2m' l

(A3)

p
( 2+ 2)1/4

m1=0, +1,
' 1/215a'Z'm '

~k;

Wo(p, k, ) = 1

2pk;(rn —
y )

t3
1

(p —k;) +y
t2

3

(p+k, ) +y

and for A, =2,

X [ W, (p, k, )
—Wq(p, k, ) ]5+,

m~ =0, +1,+2, (A4)
—W(p, k; )

where here and hereafter y =Zam, and

(A6)

t, =[(p —k, ) +m ]'

tp=[(p+k;) +m ]'

1
W(p, k,}=,4 ln

4(m —y )

t —(m —
y )' t, —(m —

y )'—1n
t~+(m —

y )' t, +(m —
y )'

(A7)

(AS)

t2+2arctan, —2 arctan
(

2 y2)l/4 (
2 2)1/4 (A9)

W, (p, k;)= W(p, k;) —(y +p~+k; ) Wo(p, k;) (A10)

W (p, k )= 1

2p k;

W~(p, k;)= 1

4p 4k,4

—2(y +p +k, )W(p, k, )+(y +p +k; ) Wo(p, k;)

2 2

2 1( t 3 t 3
)

y +y
2 +p

2 +k 2
l

(y +p +k; }pk;
+(y +p +k, ) 3W(p, k, )

—
z(y +p +k, )

—(2pk, )
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