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A computational method is described for obtaining inner-shell-vacancy states of three-electron atoms
which combines a block-diagonalization procedure with generalized Feshbach projection operators appl-
icable to systems with three or more electrons. Typically, the accuracy is about 1.5 parts per thousand
(6E/E=1. 5 X10 '). The strength of the method is that it provides many energy levels for each Ryd-
berg series. A quantum-defect analysis is then applied that identifies the members of each series and

yields reliable quantum defects and series limits. The method is particularly important in symmetries for
which multiple Rydberg series exist. The present work reports on P' states of three-electron systems
with 3 Z 10, which are compared with other calculations. The energies of S' states of C'+ are also
presented as an example requiring both the multielectron Feshbach projection operators and the

quantum-defect analysis developed here. Four distinct Rydberg series are found for this case and their
series limits obtained.

PACS number(s): 32.30.—r, 32.80.Dz, 31.50.+w, 31.20.Tz

I. INTRODUCTION

Inner-shell-vacancy states, the existence of which was
known experimentally in the early 1930s, appear as
discrete energy levels embedded in a continuum spec-
trum. They play an important role in various physical
processes such as dielectric recombination, photoabsorp-
tion, electron scattering, and multielectron phenomena in
ion-atom and atom-atom collisions, to name just a few.
The investigation of these states both experimentally and
theoretically has yielded important information on the
effects of electron correlations in atomic systems. This in
turn has led to the development of new theories,
classification schemes, and the search for new quantum
numbers to characterize these states [I]. The present
work describes a computational method for obtaining
inner-shell-vacancy states of three-electron atoms that
combines a block-diagonalization procedure with Fesh-
bach projection operators. Typically, this method pro-
vides energy values that are too high by about 1.5 parts
per thousand (5E/E = 1.5 X 10 ). The error is almost
entirely due to the absence of continuum functions in the
basis set, a limitation imposed by the matrix-
diagonalization techniques employed in this work. This
question is more completely addressed in Sec. IV B. The
value of the method rather lies in providing ten or more
energy levels of comparable accuracy for each series
within a given configuration. Thus, reliable quantum de-
fects and series limits can be (and are) calculated.

For configurations with multiple series converging to
different thresholds, it is extremely difficult to unscramble
the different series, particularly if the thresholds are not

accurately known. Because the computational method
developed in this work generates many members of each
series, they can be identified by examining their quantum
defects after the threshold values have been determined.
Results for all Rydberg series for lithiumlike atoms with
3 Z 10 will appear in a subsequent paper; the present
work reports the "P' states, for which comparisons can
be made with other works, and a sample multiple Ryd-
berg series for C + to illustrate the method. The quartet
states can be calculated without the Feshbach projection
operators developed in this work because they are
separated from the ionized states by different spins. They
are therefore not coupled by the model Hamiltonian,
which contains kinetic and Coulomb terms only. Because
they are coupled to the background continuum only via
the very small spin-orbit and spin-spin terms in the true
Hamiltonian, which are always neglected in structural
calculations, they are very long lived and are called meta-
stable states.

Inner-shell-vacancy states are not true discrete (nor-
malizable) states. In most cases, they are coupled to the
continuum background via the interelectron Coulomb in-

teraction. Generally, the coupling is weak, so that the
states behave experimentally very much like true bound
states. Nevertheless, they are not eigenstates of the phys-
ically correct atomic Hamiltonian (as opposed to
simplified models of the Hamiltonian used in most com-
putational procedures), and are therefore not stationary
states. If they do not first decay via some other deexcita-
tion channel, they must undergo a transition into the
background ionization continuum. To obtain these au-
toionizing states via some calculational procedure, they
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must in some way be separated from the background ion-
ization continuum. The two most successful methods de-
vised to accomplish that task are Feshbach projection
operators [2] and the complex rotation method [3]. The
present work deals exclusively with the former, and ex-
tends and generalizes the Hahn, O' Malley, and Spruch
[4] version of the Feshbach projection operators.

In the independent-particle model, an atomic state is
characterized by its configuration and symmetry, de-
scribed by the quantum numbers L,S,L„S„m.or J,J„~
plus the principal and angular quantum numbers of the
individual electrons. The wave function that describes
the state is the antisymmetrized product of single-
electron functions, or linear combinations thereof. Thus,
the situation in which a particular core electron is excit-
ed, thereby leaving a vacancy in the inner shell, is easily
visualized. An atom in such a state will have an energy
that in general exceeds the ionization energy. In such sit-
uations, or with the simultaneous excitation of two or
more outer electrons to large distances from the residual
ion, correlation effects become important, since the dom-
inant role of the nuclear Coulomb potential is reduced.
Electron correlations are described within the
independent-particle model by the superposition of
configurations of the same symmetry. For example, the
lowest doubly excited S' state (i.e., with two ls vacan-
cies) in helium, (2, 3a ) S' in the empirical classification of
Conneely and Lipsky [5], is composed over 90% of
configurations coherently mixed according to
~2sns )+ ~2pnp ). Since two-electron atoms are the sim-
plest systems in which multiple excitations can occur,
they are the most extensively investigated and have
served as prototypes for the spectroscopy of multiple ex-
citations. Several other classification schemes have been
used to describe angular and radial correlations in doubly
excited states of two-electron systems, two of which are
group theoretical: one introduced by Wulfman [6] and
used extensively by Sinanoglu and Herrick [7], and the
hyperspherical approach first described by Macek [8) and
developed by Lin [9] and by Fano and Rau [10].

The concepts and techniques used in the study of dou-
bly excited two-electron systems are relevant to analo-
gous phenomena in atoms with three or more electrons.
Such phenomena are far more varied in atoms for which
the excited electrons can exchange energy and angular
momentum with ionic cores that include other electrons.
Transitions from some quartet states, for which Coulomb
autoionization decay is forbidden by spin selection rules,
were already observed in optical spectra in the 1920s [11].
Since then, the amount of data on multiexcited atomic
systems has grown explosively. There are so many ob-
served levels that their identification seems close to im-
possible, particularly since there have been very few cal-
culations performed beyond the lowest levels. Many re-
views have covered studies of multiply excited states
[12—15], and recently Mannervik [16]has reviewed devel-
opments for few-electron systems with emphasis on ernis-
sion spectroscopy, while also giving some historical back-
ground.

The energy spectrum of lithiurnlike ions can be divided
into three groups of levels. The first group, converging
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FIG. 1. Energy-level diagram for Li singly excited states,
(1s2pnp) P' doubly excited states converging to 1s2p P'
threshold, and triply excited S' and 'P' states converging to
various 2121' thresholds.

on the ( ls) 'S' ground state of the corresponding two-
electron residual ion, consists of levels with a filled 1s
shell together with one excited electron. They are the
ground state and singly excited states ( ls ) nl I with pari-
ty (

—1) . These are shown for Li on the left-hand side of
Fig. 1. The second group is composed of levels for which
there is only one 1s electron. The terminology for these
states is not uniform. Either of two electrons can decay
down to fill the 1s vacancy. Hence, in analogy with two-
electron systems, they are often referred to as doubly ex-
cited states. The other term used to describe inner-shell-
vacancy states is taken from the Auger effect for many-
electron systems, where it is referred to as a single-inner-
shell-Uacancy state. A representative sample for Li is
shown in the center of Fig. 1. The third spectral group
consists of double-K-shell-uacancy states with no electrons
in the 1s shell. These are also described as triply excited
states. A representative sample of such states is shown on
the right-hand side of Fig. 1.

The singly excited states are well studied experimental-
ly by optical spectroscopy methods and theoretically by
various approximations of atomic theory. The levels of
the second and third groups, in addition to radiative de-

cay channels, also have nonradiative paths. These states
are degenerate with a continuum of states of the atomic
Hamiltonian having the same quantum numbers [17), and
are called autoionizing states. The discrete and continu-
ous states mix to allow the radiationless transition to
occur. The selection rules for such a decay require, how-
ever, that the total angular momentum J and parity m be
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conserved. Since we are considering states in the L-S
coupling approximation, the selection rules also require
that L and S are conserved. Due to the conservation laws
for L, S, and ~, many multiply excited states are forbid-
den to decay via the Coulomb interaction. Such states
are metastable, and can only decay radiatively or au-
toionize via the spin-orbit, spin —other-orbit, or spin-spin
interactions. These decay modes are slow compared with
Coulomb-mediated autoionization (10 —10 sec versus
10 ' sec). The Is(2p) P' and the (2p) S' states of
Li-like ions are two specific examples of multiply excited
metastable states. The P' state is degenerate only with
the doublet continuum [(ls} 'Skp] P', while the
(2p ) S' state is embedded in S continua of the wrong
parity (ls2sks S'or Is2pkp S').

The first accurate calculations on the doubly excited
quartet states of lithium were done by Holoien and Gelt-
man [18], who performed variational calculations using
Hylleraas-type wave functions, and by Weiss [19], who
performed configuration-interaction calculations. Since
then, a number of authors have carried out calculations
on the lowest quartet and doublet states of lithiumlike
ions using a variety of techniques: Lunell and Beebe [20]
and Lunell [21] (multiconfiguration Hartree-Fock),
Bhatia and Temkin [22,23) (quasiprojection-operator
method), Glass [24] and Bunge [25 —29] (configuration in-

teraction}, Safronova and co-workers [30—32] (1/Z ex-
pansion), Chung [33—38] (saddle-point technique). Rela-
tivistic and mass-polarization effects are included in
Chung's calculations, and the method was also used to
calculate the energies of triply excited states [39]. These
calculations have been used to identify excited states and
Auger lines seen in experiments [40—42]. Chung and
Davis [43] have incorporated the saddle-point method
with the complex rotation method to calculate the Auger
width [44] or the spin-induced width [45] of some atomic
ions. Many of these predictions were verified by precise
experiments [13,46,47].

Ahmed and Lipsky [48] used a large set of
configurations that excluded both 1s orbitals to calculate
energy levels for some triply excited states of He and its
isoelectronic sequence. They devised a procedure that
automatically sets up all the totally antisymmetric three-
electron wave functions for a given set of orbitals
(n

&
1 &, n 2lz, n 313 ) and calculates the matrix elements of

the three-electron Hamiltonian using matrix elements al-
ready calculated for the two-electron case [49,50]. Their
procedure was used in this study to calculate energy lev-
els of three-electron systems with a ls vacancy (i.e., the
doubly excited states) for Z =2—10 and for all doublet
and quartet states with L =0—4, some 5000 energy levels
all together. Each of the configurations used in the trun-
cated diagonalization procedure has at most one electron
in the ls shell. As will be shown in Sec. III, this pro-
cedure turns out to be an extension of the Hahn,
O' Malley, and Spruch [4] version of the Feshbach projec-
tion operators [2], which was so successful in predicting
doubly excited states in the two-electron case [50—53]. In
Sec. IV of this paper, the results for the P' states in the
isoelectronic series Li to Ne +, which have but a single
Rydberg series, are presented. Section IV also presents a

II. METHOD

The true physical Hamiltonian describing the system
will here be denoted by H and is of the form

H =H+V, , (la)

where V, stands for a collection of spin-dependent and
relativistic terms, all of which are very small, and H is
the model Hamiltonian. In its nonrelativistic form in

atomic units H is given by

H =Ho+ V

where

(lb)

3

HO=H, +H2+H3= g (2a)

and

V = V)2+ Vq3+ V3) . (2b)

Here T, is the kinetic-energy operator for the ith electron
and V, =1/r; . The states and energies here described
are obtained by diagonalizing the model Hamil-

multiple-Rydberg series of states for C + as an example
of an application requiring the generalized version of the
Feshbach projection operators. The full catalog of K-
shell vacancy states will be published separately. Also in
Sec. IV, Rydberg series of levels are fit to effective quan-
tum numbers n *, the fractional parts of which (the quan-
tum defects) vary slowly with n. To do so, it was found
necessary to use threshold energies shifted from the
values obtained in equivalent two-electron calculations.
The reason for this threshold energy shift is established
with the help of a perturbation expansion in 1/Z. It
turns out to be an artifact of the calculation, due to the
absence of continuum orbitals in the configurations used
in the truncated diagonalization procedure.

The generalized Feshbach projection operators here
developed are valid for a wide range of metastable or au-
toionizing states of multielectron atoms, including those
involving inner-shell vacancies. They are formulated in
Sec. III for three-electron atoms, since three is the small-
est number of electrons that illustrate the general formu-
lation. They can be used as they stand for Li-like sys-
tems, but for applications involving four or more elec-
trons, a straightforward generalization is required. These
projection operators were originally formulated by
Russek and Furlan [54] for an unrelated molecular phys-
ics application, but are also applicable to autoionizing
states.

The present formulation of the Feshbach projection
operators is particularly well suited to the matrix block-
diagonalization approach, which has been used earlier to
obtain autoionizing states [49,50,52,55,56]. Indeed, the
formulation of Sec. III places the block-diagonalization
approach on a rigorous foundation. However, the
present formulation is more general, and permits varia-
tional techniques and Z-dependent perturbation theory to
be used as well.
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tonian H using the antisymmetric basis functions
%(n&l„n2lz, n3l3:LS} constructed from hydrogenic func-
tions. The spin-dependent term V, is mentioned only be-
cause it is responsible for the eventual autoionization of
so-called metastable states, such as quartet states, which
are stable against autoionization via the Coulomb in-
teraction (2b), but eventually decay via spin rearrange-
ment.

The procedure described in Ahmed and Lipsky [48] is
used for generating the three-electron configurations and
the associated matrix of the model Hamiltonian H. A
full description of the procedure is given in that work.
Following their method, the totally antisymmetric three-
electron wave function is expressed in terms of vector-
coupled products of all antisymmetric two-electron wave
functions [4J(1,2~Li, SJ)] constructed from two of the
same three orbitals, and multiplied by the wave function
of the third electron. That is,

4, (1,2, 3)= pa;. [P (1,2~L S )Pi(3)]
J

H =aha", (4)

where a is the matrix of the a;, a is its transpose, and h

is the matrix whose components are given by

h,"=(4,(1,2:3)~3(H&+1/r, 2)~&J(1,2:3)) .

where p'(r)=R„I(r)1'& (0, $)g~&&2 .The ql; are fully an-
tisymmetric, while 4. is antisymmetric only in variables
1 and 2. The a; are the generalized fractional pa-rentage

coefficients described in Ref. [48]. They make the linear
combination fully antisymmetric in all variables. The
nomenclature derives from open-shell theory, where the
equivalents to the PJ(1,2~LJ. ,S, )ar. e referred to as parents
of the O';. There may be more than one 4'; with the same
set of orbitals and the same L,S and m.. If so, then a
seniority index must be assigned to each of the indepen-
dent functions. Hence the subscript i =1,2, . . . .

The energies are obtained by calculating (in blocks) and
diagonalizing a matrix written symbolically as

=g aj@ (1,2:3),
J

(3) In this way, the two-electron interactions can be calculat-
ed in terms of

(p, (1,2)n„l„n2, l2 L;S; )] V..&2)pi(1, 2)n3, ls, n~, l4 L~,SJ.)),.

exactly the matrix elements used in the two-electron
problem. The matrix a can be used to construct a repre-
sentation of the idempotent total antisymmetrization
operator A in the basis of the 4 (1,2:3}. Note that a is
not a square matrix; for a given set of orbitals and
configurations, it has the dimensions [number of
parents] X [number of independent functions (seniority
number)]. It can be shown that

aa =I (6a)

but

a a=A. (6b)

It follows from Eqs. (6) that A is indeed idempotent,
since

=a aa a=a Ia=a a=A .

The basis set used in the calculation includes all
configurations of the form n

&
l &, n 212, n 3 l3, where

0 ~ I; ~I,„=5 and n; ~ n,„=20, with the following re-
strictions. Only if two of the three n; are less than or
equal to 3 can the third be as large as n,„. Otherwise,
the maximum value is 6. (For example, the triplets
[3,3, 20) and [6,6, 6) are included, but I2, 4, 7) is not. )

For any configuration, at most one n, can equal 1 (e.g. ,
[l,n, 1) is not allowed). This latter restriction will be
translated into projection-operator terminology (P, Q&,
and Q» project onto subspaces containing 0, 1, and 2 va-
cancies in the K shell) in Sec. III.

The procedure yields different numbers of con-
figurations depending on the particular symmetry I.,S,m

under consideration. For example, for S' symmetry,
this procedure gives 338 configurations, while for D' the
number of configurations is 924. Each configuration in
turn produces anywhere from zero to ten (or even more)
antisymmetric basis functions. For instance, no functions
based on [2s,2s, 2s) are allowed, while [2s, 2s, 2p) P'
produces but a single function, since the three functions
corresponding to the configurations (2s)2 'S 2p,
(2s2p)'P'2s, and (2s2p) P 2s all yield the same totally an-
tisymmetric P' basis function. On the other hand,
[ls, 2s, 2p) P' produces two functions, while the 30
configurations consistent with [3d,4d, 4f) F' yield ten
orthogonal, independent antisymmetric functions. Since
A is idempotent, the number of functions is given by
Tr( A). A computer program automatically generates all
the basis functions for a given configuration and also cal-
culates the fractional-parentage coefficients for the basis
functions. Further details are provided in Ref. [48].

III. THEORY

A. Formulation of the projection operators

Given a basis set of product states constructed from a
fixed set of one-electron orbitals, a class of autoionizing
states is obtained by diagonalizing a subspace consisting
of configurations, all of which have a single vacancy in
the K shell. It will here be shown that this process is
completely equivalent to solving for the eigenstates of
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(8b)

where r; denotes the coordinates of the ith electron.
These projection operators satisfy the well-known rela-
tions

q; =q;, p; =p;, p q;=0, p +q;=1. (9)

Projection operators describing different electrons com-
mute:

q;q, =q, q; p;q, =q,p; p, p, =p,p; (10)

from which it follows that all one-electron operators
comlnute (including j =i), since q, and p, each commute
with themselves and p;q, =q;p; =0.

With three pairs of projection operators, exactly eight
product terms can be constructed having a p or a q for
each electron. The product of any two of the eight prod-
uct terms vanishes, since different product terms must
differ in the factors for at least one electron. For exam-
ple,

(P192P3 )(1192'V3 ) P lq 2P3q3
2 2

It was shown by Russek and Furlan [54] that these eight
products can be grouped into four complementary pro-
jection operators:

R =p&pzp3

I' =q & ppp3+ p / q2p3+ p 1p2q3

Q 1 'v 1 'V 2P 3 + 'I 1p 2 93 +p 1 'V 2 'V 3

Qll &192q3 .

(12)

[The notation of Eqs. (12) diff'ers, however, from that of

Q, HQ, , where Ql is a projection operator that rejects all
states except those having one, and only one, vacancy in
the K shell. For the sake of explicitness, the three-
electron case will be considered, since three is the least
number of electrons illustrating the general case. The
method can be generalized to an arbitrary number of
electrons, an arbitrary shell and an arbitrary number of
vacancies therein. The form and algebra of projection
operators for inner-shell vacancies are essentially the
same as those introduced by Russek and Furlan [54],
differing only by a notational change to make them con-
sistent with the conventions that have arisen in the litera-
ture on autoionizing states. We will show how they
reduce to the Hahn, O' Malley, and Spruch projection
operators for two-electron atoms. The two-electron situ-
ation proves to be too special a case to illuminate the gen-
eral formulation.

Let P„be a predetermined set of one-electron spatial
orbitals, with Po the ground-state (IC-shell) orbital. They
can be either hydrogenic or Hartree-Fock orbitals. Actu-
ally, only lI10 itself is required. The rest of the complete
set need not be explicitly obtained if a variational calcula-
tion is being carried out. The one-electron projection
operators p, and q; are defined as

(8a)

Ref. [54] to conform with the notational conventions
adopted to describe autoionizing states. ] Each of the pro-
jection operators, P, Q„Q», and R is fully symmetric
with respect to any permutation of particle coordinates;
hence each of theIn commutes with the antisymmetriza-
tion operator. From the commutative property (10) to-
gether with Eqs. (9) and (11), it follows that

and

P =P, QJ=QJ, and R =R (13)

PQJ=RQJ=RP =Q, Q„=O, (14)

where the subscript J stands for I or II. It is not diScult
to show that

P+Ql+Q11+R =I . (15)

The projection operators P, Q„and Q» project onto sub-
spaces which contain two, one, and zero electrons, re-
spectively, in the E shell. (The subscripts on Q describe
the number of uacancies) The p. rojection operator R pro-
jects onto a subspace containing three electrons in the K
shell. Of course, when spin and antisymmetry are intro-
duced, R acting on any antisymmetrized state will give
zero. The antisymmetrization operator rejects any
configuration that contains three electrons with the same
quantum numbers. Consequently, in addition to its other
properties, the antisymmetrization operator is a projec-
tion operator orthogonal to R.

The eigenfunctions of Q, HQ, are those that diagonal-
ize the space consisting of all configurations with a
single-K-shell vacancy:

Q,HQ, lP=Q, HQ, (Q1%)=E(Q,V) . (16)

Z 1 Z
(17)

Thus if qI is an eigenstate of Q,HQ„ then so is Q, ql.

Similarly, states with a double vacancy in the K shell are
obtained as eigenstates of Q„HQ11. The calculations de-
scribed in Sec. II obtain the eigenstates and eigenenergies
of (Q, +Q„)H(Q, +Q„) rather than just Q1HQ, . Thus,
the calculations do not assume a priori that there exist
single-K-shell vacancy states and double-K-shell vacancy
states. The calculations permit the system to speak for it-
self, so to speak, and in fact the energy levels do group
into single- and double-vacancy states. No energy level is
found that would suggest a substantial admixture of sin-

gle and double vacancies in the K shell.
We now show that the projection operators here de-

scribed are Feshbach projection operators by establishing
lower and higher bounds that bracket the fully discrete
spectrum of each QJHQ~ and locate that bracketed ener-

gy range completely within the ionization continuum of
H itself. The eigenstates of QJHQJ associated with the
fully discrete spectrum are localized and give the autoion-
izing states.

If the orbital $0, which generates the projection opera-
tors, is an eigenstate of the one-electron Hamiltonian in
the field of a bare nucleus,
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for EL„and the 21,2I', 2l" degenerate energy level for
EL». Thus,

1 1 1E = —lZ2 —+—+ = —3ZLI 2 j2 22 22 4 (19a)

then lower bounds EL, and EL«on the fully discrete
spectra of QiHQ, and Q»HQ» are easily obtained as the
1s, 21, 21' degenerate energy level of

=Z =Ho= g T, =—=Z'%o (18)
i =1 l

PII P1P2 ~ (22b)

and where p and q are given by Eq. (8), with $0 a ls hy-
drogenic state in the field of a bare nucleus. The operator
Pi could equally well have been denoted by Q, , depend-
ing on whether the 1s shell is regarded as half full or half
empty. Since Hahn, O' Malley, and Spruch characterized
the autoionizing state (Q space) as having no electron in
the 1s shell, the single-occupancy case is included in P
space. The Hahn, O' Malley, and Spruch projection
operator P is more familiarly written in the form

1 1 1E = —-'Z —+—+———-'ZL II 2 22 22 22
(19b)

PI+PII (1 Pi )P2+Pi(1 P2)+P1P2

=p&+p2 p&p2 ~ (23a)

These are generous lower bounds, since the positive-
definite contributions of the interelectron repulsion terms

so that

Q =I P= 1 —I i P—2+1—is» =vie» (23b)
H'= 1/r, 2+ 1 Irp3+ 1/r3, =Z&' (20)

B. The Hahn, O'Malley, and Spruch operators

The three-electron projection operators of Sec. IIIA
are in some sense generalizations of the Hahn, O' Malley,
and Spruch projection operators for the two-electron
case. In the notation of Sec. III A, the Hahn, O' Malley,
and Spruch projection operators P and Q are defined by

P =P, +P„,
=1—P,

where

(21a)

(21b)

P& =q&pz+p, +q2, (22a)

to EL g and El r~ have been omitted. These bounds need
not be the refined bounds sought in a variational calcula-
tion of a given energy level. They only have to bracket
the fully discrete spectrum of QHQ with sufficient accura-
cy to show that it lies in the ionization continuum of H
above the singly excited states. In all cases, the lower
bound (19) is quite adequate to accomplish that task.
Thus, no eigenstate of QHQ can converge to an optically
excited state in any calculation, even when the basis
space is indefinitely enlarged.

The higher bound on the fully discrete spectrum of
QiHQi, which signals the onset of the ionized continuum
of Q&HQ„ is the lowest series limit for single vacancy
states. For systems controlled by a Coulomb potential,
the onset of a continuum is always the series limit of
Rydberg series. Consequently, the higher bound is estab-
lished when the lowest 15 or so levels are fit to a Rydberg
series of a form

(Z —2)
2(n —d)

where the quantum defect d (n) is a slowly varying func-
tion of n, and E, is the series limit, which should be the
energy of the two-electron core state. Together, EL, and
E, provide a quick and simple range for the energies of
single-K-shell-vacancy autoionizing states.

These projection operators can be easily shown to have
adequate bounds EL = —Z l4 and EU = —Z l8 to
separate the fully discrete spectrum of QHQ from the op-
tically excited states (which are in PHP space).

C. Application to lithiumlike atoms

In the three-electron case investigated in this work, a
single vacancy in the E shell results in either an autoion-
izing or a rnetastable state. As a consequence, the single-
vacancy projection operator is here denoted by Q„con-
sistent with the established convention of having autoion-
izing states in Q space. The present investigation em-
ploys a finite basis set consisting of fully bound eigen-
states of Ho, given by (2a). The orbital $0, which defines
the projection operators (8), is the ground hydrogenic
state in a Coulomb field Zlr Figure 1 .shows the energy
spectrum for neutral lithium decomposed into P, Q„and
Q„subspaces. The solid lines in the spectrum on the left
are eigenenergies of PHP, including the ground state as
well as optically excited states (ls nl) I, which can only
decay via photon emission. The continuum spectrum of
PHP commences at E = —7.280 a.u. , with a ( ls) residu-
al ion plus a free electron. The spectrum of Q,HQ„
shown in the center, is bounded from below by
E = —6.75 a.u. , which is the common energy of a degen-
erate set of eigenstates of Ho characterized by 1$2l 21'.
In addition to Ho, the full Hamiltonian contains the sum
of electron-electron repulsive potentials g; &, I/r, . Since
this latter is a positive-definite operator, its expectation
value must always be positive regardless of +, raising the
lowest energy in the spectrum of QiHQi to a value higher
than —6.75 a.u. by a substantial amount.

All the eigenstates of QiHQi between the (ls) and
1s2l thresholds are autoionizing or metastable states that
can decay into the eigenstates of PHP via the interaction
term QiH P+PH Qi, where H is the true physical
Harniltonian. This latter contains spin-dependent terms
collected in V, in addition to the interelectron Coulomb
interaction terms given in Eq. (2b). If the Coulomb terms
are able to mediate a transition between Q and P spaces
(Coulomb autoionization), the process can be quite rapid.
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If the terms in (2b) cannot mediate the transition, the
states are termed metastable. They are actually eigen-
states of the model Hamiltonian H, but will eventually
autoionize via spin-dependent terms in V, such as spin-
orbit and spin-spin. However, the process is very slow
compared with Coulomb autoionization. In the energy
range between the ( ls) and ls21 thresholds, an outgoing
electron is energetically possible only if one of the other
electrons simultaneously drops down to fill the vacancy in
the 1s shel/. In this sense, the three-electron Hamiltoni-
an Q, HQ, accomplishes exactly what the Hahn,
O' Malley, and Spruch Hamiltonian QHQ accomplishes
for the two-electron case.

It should be pointed out that the lower bound of
—6.75 a.u. to the eigenstates of Q, HQ, is valid even if
the configurations are not constructed from pure hydro-
genic functions, ProuEded that $0, which defines the one-
electron projection operator p, is a pure hydrogenic func-
tion. Whatever functions are used, they can be expanded
in the complete set of eigenfunctions of Ho, and Q, re-
jects all eigenfunctions of Ho with energies below —6.75
a.u. Thus, screened Coulomb radial functions can be em-
ployed, or variational procedures can be used to deter-
mine the radial functions. Either of these options may
yield more accurate results than those obtained here, but
at the expense of a vast increase in effort. If, on the other
hand, the orbital projection operator p is changed to the
ground state of a screened Coulomb wave function, the
entire problem is changed, and the bounds must be
recomputed to validate that the resulting projecting
operators are Feshbach.

The eigenspectrum of Q«HQ„(double-K-shell vacan-
cies) starts at even higher energies, E ) —3.375 a.u. , cor-
responding to the degenerate set of eigenstates of Ho
characterized by 21, 21', 21". These are shown at the
right, taken from Ahmed and Lipsky [48].

IV. CALCULATED RESULTS FOR P' STATES

Since the main purpose of this work is to present the
method and demonstrate its validity, only two sets of re-
sults are presented as examples. The P' states are exam-
ples of a symmetry that has but a single Rydberg series.
These quartet states are orthogonal to the subspace of the
projection operator P, so they are actually eigenstates of
the model Hamiltonian given by (lb). As a consequence,
projection operators are not needed here. For this
reason, many calculations exist for these metastable
states with which to assess the accuracy of the present
method. The full power of the method is needed in the
multiple-Rydberg case for symmetries in which autoion-
izing states are coupled to the ionized states of H via the
Coulomb interactions (2b) in H.

For the set of [n, , l, ] described in Sec. II, the P' sym-
metry has 524 configurations, from which 694 totally an-
tisymmetric functions are constructed. The 694X694
Hamiltonian matrix is then computed and diagonalized.
There is only one Rydberg series of states below any of
the four 1s21 two-electron states: 1s2s 'S', 1s2s S',
1s2p 'P', and 1s2p P'. It corresponds to the series

H =Z &0+Z&', (24)

where &o and &' are independent of Z. Therefore, once
they have been computed, it is a simple matter to corn-
pute H for as many values of Z as desired. Of course, H
must be diagonalized anew for each value of Z.

A. The energies

In order to guarantee eight-digit accuracy, all calcula-
tions were carried out to at least double precision on the
IBM3090 computer at the University of Connecticut
Computer Center, which processes numbers to approxi-
mately 17 decimal digits. The two-electron matrix ele-
ments were computed in quadruple precision on the VAX
8700 computer in the University College, Galway, com-
puter center, since the largest roundoff error is bound to
occur in these matrix elements [49]. After calculating the
matrix elements described in Eq. (5} for a given Z, L,S,n,
the eigenvalues of H [Eq. (4)] were computed. In princi-
ple, this involves finding the orthogonal transformation
that satisfies

U 'HU=A, (25)

where A is diagonal. The matrix U yields the eigenfunc-
tions %„(1,2, 3;L,S,E„}of H via the relation

%„(1,2, 3;L,S,E„)=gu„;4;(1,2, 3),
1

(26)

where the 4;(1,2, 3) are the functions from Eq. (3). How-
ever, to explicitly compute U would require three times
the space and three times the computer CPU time it
takes to find A alone. Since we are not prepared to exam-
ine the wave functions at this time, the simpler course
was taken. The resulting energies below total ionization
are given (in a.u. ) in Table I for Z =3—10 for the
configuration P'. Although there are over 600 energy ei-
genvalues, only the lowest 10—16 (depending on Z) are
physically significant. The cutoff is selected by examining
the quantum defects, as described in the next section.

B. The erat'ective quantum numbers and quantum defects

Whenever an atomic system can be viewed as a single
electron orbiting a positive ionic core, the energy levels
can be parametrized by the Rydberg formula:

2
Z —N,1

tl C
(27)

where Z —X, ~ 1 is the net charge of the ionic core and
n' is the effective quantum number. What makes this
formula so useful is the fact that n ' can be written as

[(ls2p) P']np P' for n)2 .

These states happen to be metastable. Since there is no
adjacent P' continuum into which they can decay, they
are stable against simple Coulomb autoionization. More-
over, there are no quartet singly excited states, so the
states are also stable against photodecay.

The Hamiltonian matrix H can be written as
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TABLE I. Energy levels (in a.u. ) for ( ls2p) P'np P' rnetastable states, for Z =3-10.

2
3

4
5
6
7
8
9

10
11
12
13
14
15
16
17

5.238 42
5.088 49
5.053 30
5.037 77
5.030 10
5.025 70
5.022 93
5.021 07
5.01975
5.018 79
5.01800
5.01699
5.015 35

5.014 39

9.855 19
9.414 55
9.298 50
9.240 76
9.213 43
9.197 31
9.186 98
9.17996
9.174 98
9.171 31
9.168 54
9.166 39
9.164 67
9.162 85
9.159 63

9.154 20

15.975 79
15.103 22
14.856 25
14.738 89
14.679 27
14.643 76
14.620 96
14.605 44
14.594 41
14.586 28
14.580 13
14.575 35
14.571 57
14.568 52
14.565 67
14.560 78
14.548 16

23.599 59
22.154 11
21.726 95
21.529 46
21.424 23
21.362 04
21.322 13
21.294 97
21.275 63
21.261 37
21.250 55
21.242 16
21.235 50
21.230 14
21.225 75
21.221 22
21.194 17

32.725 85
30.567 31
29.91080
29.61044
29.447 16
29.351 18
29.289 57
29.247 59
29.217 68
29.195 62
29.178 87
29.165 85
29.155 53
29.147 22
29.140 42
29.134 63
29.091 26

43.353 91
40.342 79
39.407 84
38.981 44
38.747 97
38.61097
38.522 94
38.462 93
38.420 16
38.388 59
38.364 61
38.345 98
38.331 21
38.31930
38.309 55
38.301 47
38.238 98

55.483 28
51.480 39
50.218 05
49.642 49
49.326 76
49.141 38
49.022 15
48.940 83
48.882 86
48.84007
48.807 57
48.782 31
48.762 29
48.746 14
48.732 93
48.721 98
48.637 11

10

69.11362
63.979 96
62.341 38
61.593 69
61.183 60
60.942 43
60.787 16
60.681 22
60.605 70
60.549 95
60.507 62
60.474 72
60.448 64
60.427 61
60.41040
60.396 14
60.285 49

n '(n) =n —d (n), (28)

TABLE II. Threshold energies (in a.u. )

3
4
5
6
7
8
9

10

Calculated

5.020 9971
9.164 6542

14.560 4777
21.207 4704
29.105 1384
38.253 2253
48.651 5878
60.300 1408

Fitted

5.014 392
9.154 205

14.548 160
21.194 170
29.091 260
38.238 980
48.637 111
60.285 485

0.006 6051
0.0104492
0.012 3177
0.013 3004
0.013 8784
0.014 2453
0.0144768
0.014 6558

where n is the orbital quantum number of the outermost
electron and where d (n) is a slowly varying function of n

Here, E, is the total energy of the core. In the present
case of a three-electron system, N, =2, and there are four
possible cores, corresponding to the singly excited two-
electron ions: ( ls, 2s)'S', ( ls, 2s) 5', ( ls, 2p)'P', and
( ls, 2p) P'. The energies of these ions were calculated us-

ing basis functions consistent with those used in the
three-electron calculations. The results are given in
Table II. When these numbers were used for E„ in Eq.
(27), the results for d(n) were unsatisfactory. But Eq.
(27) must hold for some value of E„so that parameter
was varied until a fit was found that made d(n) as
smooth as possible. This is not as much a guessing game
as it might seem at first, since for n ) 10 or so, d (n) is

very sensitive to the value chosen for E, . In fact, a
change of one unit in the fifth decimal digit of E, causes a
change in the fourth decimal digit of d(n) Therefore, .it
can be assumed that the E, are accurate to at least five di-
gits after the decimal point. The values obtained for the
( ls, 2p) P' state, which is the core ion for the P' doubly
excited three-electron states, are also given in Table II,
together with their differences from the ab initio calcula-

tions just mentioned. The explanation for these
differences is given in the following section, which also
demonstrates that these differences should be, and indeed
are, a smooth function of 1/Z.

Table III gives the quantum defects of the energy levels
presented in Table I for all Z from 3 to 10. Note that the
mantissas of the numbers are indeed slowly varying func-
tions of n for each Z (i.e., successive values of n" differ by
almost exactly 1). More results could have been included
in Table III, but a cutoff' was made based on the value
of n for which n ~(n +1)—n (n) ))n "(n)

n'(n —1—), so that the d(n) are no longer slowly vary-
ing.

Table IV compares the results of several calculations
for the 1s2pnp P' states. Because they are exact eigen-
states of the model Hamiltonian (lb), these quartet states
can be calculated without reference to the Feshbach pro-
jection operators developed in this work. Indeed, it is for
this very reason that the computations exist; they can be
carried out by conventional variational calculations used
for nonautoionizing states. The results are presented in
Table IV to assess the accuracy of the method developed
in the present work. Since the present work does not rely
on the fact that quartet states are exact eigenstates of the
model Hamiltonian, the errors are expected to be the
same for these states as they are for multiple series of
doublet states, which require the full strength of the
method. Column A lists the results of the present work,
using hydrogenic functions. Columns 8—E give the re-
sults of other investigations. Column 8 gives the results
of Davis and Chung [45], column C the results of Lunell
and Beebe [20] and Lunell [21], column D the results of
Holoien and Geltman [18], and column E gives the re-
sults of Bunge [25]. Comparisons with the best of these
calculations show that the percentage error of the present
results, 5E /E, remains almost constant. For Z =3,
6E/E varies from 1.4X10 for the n =2 state to
2. 1X10 for the n =5 state. As Z increases, the accu-
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Z
3

TABLE III. Effective quantum numbers of (1s2p)'P'np P' metastable states for z = 3—10.

10

2
3

4
5

6
7
8

9
10
11
12
13
14
15
16
17

1.493 93
2.597 70
3.584 92
4.624 41
5.641 87
6.650 28
7.654 45
8.565 08
9.656 18

10.656 52
11.765 19

1.689 12
2.771 67
3.722 98
4.807 01
5.811 38
6.811 68
7.811 62
8.811 60
9.811 68

10.811 85
11.812 13
12.812 46
13.827 61
15.213 64
19.19372

1.775 41
2.847 33
3.821 82
4.857 29
5.858 57
6.860 73
7.862 35
8.863 41
9.864 15

10.864 72
11.865 03
12.865 47
13.865 73
14.867 16
16.030 18
18.884 74

1.823 68
2.886 85
3.874 99
4.884 69
5.896 96
6.903 31
7.906 81
8.908 84
9.910 10

10.91098
11.911 52
12.91196
13.912 22
14.912 51
15.91644
17.19671

1.854 50
2.91008
3.905 43
4.906 77
5.92644
6.934 81
7.939 35
8.942 01
9.943 60

10.944 56
11.945 12
12.945 46
13.945 60
14.945 56
15.945 58
16.976 78

1.875 93
2.925 05
3.924 23
4.923 80
5.946 78
6.956 18
7.961 72
8.965 26
9.967 52

10.968 90
11.969 73
12.970 13
13.970 27
14.970 28
15.970 22
16.971 65

1.891 73
2.935 44
3.936 64
4.93649
5.960 32
6.970 31
7.976 88
9.981 52
9.984 83

10.987 13
11.988 66
12.989 58
13.990 15
14.99043
15.990 57
16.990 59

1.903 88
2.943 06
3.945 25
4.945 81
5.969 10
6.979 29
7.986 65
8.992 32
9.996 67

10.999 91
12.002 25
13.003 78
14.004 73
15.005 18
16.005 31
17.005 35

TABLE IV. A comparison of energy-level calculations (in a.u. ) for 1s2pnp P' states, Z =3—10. A,
results of the present study using hydrogenic functions; B, results of Davis and Chung [45]; C, results of
Lunel and Beebe [20] and Lunell [21];D, results of Holoien and Geltman [18] E, results of Bunge [25];
F, results of the present study using generalized Laguerre functions.

Z

3
4
5

6
7

8
9

10

5.238 4
9.855 2

15.975 8

23.599 6
32.725 9
43.353 9
55.483 3
69.1136

5.245 3
9.870 7

16.000 3

23.631 7
32.7640
43.396 9
55.530 2
69.163 8

n =2
5.243 3
9.868 4

15.997 6
23.628 4
32.759 9
43.391 8

55.523 8

D

5.245 9
9.868 8

15.996 8

23.627 2
32.758 7
43.391 0
55.523 9
69.157 5

E

5.245 3

F

5.244 9

3
4
5

6
7
8

9
10

5.088 5

9.414 5

15.103 2
22.154 1

30.567 3
40.342 8

51.480 4
63.9800

5.096 7
9.428 7

15.124 3
22. 182 1

30.601 6
40.382 6
51.525 0
64.028 6

n =3
5.094 1

9.424 0
15.119 1

5.093 9
9.423 2

15.1190
22. 176 5

30.596 1

40.377 0
51.519 2
64.022 5

5.096 8 5.095 0

3
4
5

6
7
8

9
10

5.053 3
9.298 5

14.856 2
21.726 9
29.9108
39.407 8
50.218 1

62.341 4

5.063 9
9.3124

14.875 3
21.751 4
29.940 5
39.442 4
50.256 9
62.3840

n=4
5.060 7 5.060 7

9.245 7
14.805 3
21.672 4
29.849 3
39.337 6
50.1374
62.248 5

5.064 1

5.037 8

n=5
5.046 3 5.050 2

5.030 1

n=6
5.038 5
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racy improves and becomes less dependent on n. For
Z =10, 6E/E =0.7X 10 for all n. The primary limita-
tion on the accuracy of the present method is due to the
use of hydrogenic functions without the inclusion of con-
tinuum hydrogenic functions. A hydrogenic n =20 func-
tion is of little use in correcting the deficiencies of a hy-
drogenic n =2 orbital in a screened Coulomb setting.
Continuum hydrogenic functions are needed for that
task, and they are lacking in the present work. Other
studies, using basis sets of Slater orbitals, for example, do
better than the present hydrogenic basis. To test this in-
terpretation, the lowest few states were recalculated using
a basis set of generalized Laguerre functions, which are
similar to Sturmian functions, but are orthogonal under a
weighting function r . They constitute a complete set of
normalizable functions and thus incorporate the hydro-
genic continuum. These results, shown in column F, are
of the quality of the best results. However, the results for
higher levels in the Rydberg series obtained with these
functions without using parameter variations are very
poor. The conclusion thus derived is that artificial func-
tions may do very well for a limited number of low-lying
states, but consistent accuracy over an extended Rydberg
series is better served with a large basis of hydrogenic
states, for which the present method is ideally suited.

Table V presents energies of S' states for C + as an
example of a symmetry with multiple Rydberg series, all
of which are coupled to the ionization continuum via the
interelectron Coulomb repulsion terms. This case re-
quires both the generalized Feshbach projection opera-
tors of Sec. IIIA and the quantum-defect analysis de-
scribed in this section. The energy levels of
(Q, +Q„)H(Q, +Q„) for C + that correspond to
single-E-shell-vacancy states are listed in numerical order
in column 2. Columns 3, 4, 5, and 6 show the assignments
of the levels of column 2 into the four Rydberg series,
with the series limits and core configurations shown at
the top of each column. The four series are designated as
[(is2s) S']ns S', [( ls2s)'S']ns S', [(ls2p) P']np S',
and [(ls p2)' P']np S', respectively. Columns 3—6 give
the effective quantum number of each state; the fractional
part is the quantum defect. It can be seen that the quan-
tum defects are very slowly and very smoothly varying.
Any appreciable alteration from the assignments given in
Table V would yield sets of quantum defects looking like
sets of random numbers. As would be expected, small
anomalies in the quantum defects are found in regions
where two series intersect, but these are much smaller
than the jumps in quantum defects produced by an in-
valid assignment.

Note that there is only one state with configuration
[is(2s) ] S'. Thus the lowest energy level in Table V
(24.03468 a.u. ) is the first member of two series, namely
[(1s2s) S']2s S'and [(ls2s)'S']2s S'. The same can be
said for the second level (23.249 43 a.u. ) regarding
[( is2p) P']2p S' and [( ls2p)'P')2p S'. Note also that
as the effective quantum numbers for each series exceed
16, the quantum defects become erratic. This has been
acknowledged in the table by replacing such quantum
numbers with "—." If the calculated value of an energy
level lies above its appropriate threshold, then "e e e" is

used. Finally, it is seen that although the threshold for
one series lies in the midst of the levels of series with
higher thresholds, the fitting procedure still works well.

C. Explanation of the threshold shifts

1.6 x lO

l.4

1.2

0
l.O

0.8—

0.6—

0.4

0.2—

0.0
0.0

I

O. l

I

0.2
I

0.3

FIG. 2. Differences D of calculated and fitted energies for the
1s2p P' threshold as a function of 1/Z. Data are taken from
Table II.

In all calculations we have performed, each Rydberg
series of energy levels for every Z and every core state ex-
hibited the expected quantum-defect behavior described
by Eq. (27). The series limit E, should be the energy of
the two-electron core state. However, in order to fit the
calculated energies to a functional dependence of the
form (27), the energy of each series limit had to be shifted
to a slightly higher energy than that calculated for the
two-electron core state by an amount depending only on
the quantum numbers of the core state involved (e.g. ,

1s2p P'). The differences between the calculated values
for E, ( ls2p P') and the empirically fitted values given in

Table II are plotted in Fig. 2 as a function of 1/Z. The
smoothness of the resulting curve validates two ideas: (1)
the heuristic method for obtaining E, is very stable and
accurate, and (2) there appears to be a finite limit for
E,(Z) as 1/Z~O, which in turn implies that a 1/Z ex-

pansion is valid. As will be demonstrated, some of this
shift (if not all) is an artifact of the approximations in-

herent in the configuration-interaction calculations using
only bound hydrogenic states. The discussion presented
below demonstrates that the shifts would be smaller and

may even disappear or change sign were the complete hy-
drogenic manifold including continuum states used.

For large Z, the interelectron repulsive terms in the
Hamiltonian are small compared with the core attraction
terms in the ratio 1/Z, and the configuration diagonaliza-
tion can be reasonably well approximated by a perturba-
tion expansion. More precisely, the perturbation calcula-
tion using only a finite subset of bound-state eigenfunc-
tions of Ho should render a reasonably good approxima-
tion to the result obtained from a full diagonalization us-

ing exactly the same finite set of eigenfunctions as basis
set. Thus, any effect caused by omitting the continuum
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TABLE V. Energy levels (in a.u. ) and eA'ective quantum numbers of the four Rydberg series for C'+,
2+8

1

2

3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

�

~Core state

—Energy~

24.034 68
23.249 43
22.427 24
22.284 34
22.086 95
21.983 16
21.943 71
21.770 11
21.750 60
21.692 53
21.634 75
21.576 31
21.571 80
21.537 74
21.532 28
21.511 57
21.500 84
21.482 97
21.468 77
21.457 89
21.449 41
21.442 69
21.437 28
21.432 86

21.429 62
21.428 45
21.419 99
21.413 28
21.383 99
21.369 66
21.358 30
21.353 74
21.31997
21.31809
21.292 61
21.291 60
21.273 98
21.271 97
21.261 99
21.259 91
21.255 47
21.249 58
21.245 01
21.241 41
21.236 48
21.234 92
21.229 77
21.229 59
21.225 37
21.224 18
21.220 65
21.219 69
21.215 41
21.209 25
21.206 77
21.19959
21.175 63

(1s2s) S"

ns

1.742 95

2.792 37

3.840 28

4.785 34

5.853 27

6.848 81

7.813 87

8.962 89
9.893 96

10.884 77
11.884 67
12.888 21
13.893 75
14.900 71
15.909 64

{1s2s) 'S'

ns

1.676 33

2.701 05

3.706 52

4.781 36

5.751 69

6.849 94

7.780 10

8.736 71

9.749 37

10.872 78

11.825 42

12.819 85

13.807 07

14.828 45

15.837 64

(1s2p) P"

np

1.972 93

2.993 46

4.006 56

5.020 43

6.042 42

7.080 70

8.034 85

9.061 66
10.011 71

11.031 14

12.015 97

13.013 10

14.011 73

15.029 10
16.013 33

(1s2p) 'P'

np

1.90002

2.902 27

3.838 66

4.877 61

5.915 85

6.938 05
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TABLE V. (Continued).

Core state
—Energy

(1s2s) S"
ns

( 1s2s) 'S'
ns

(1s2p) P"
np

(1s2p) 'P'
np

58
59
60
61
62
63
64
65
66
67
68
69

21.166 34
21.159 37
21.13347
21.11443
21.100 30
21.089 56
21.081 21
21.074 58
21.069 24
21.064 86
21.060 32
21.049 88

7.969 01
8.941 01
9.936 36

10.935 00
11.935 04
12.936 11
13.937 87
14.940 57
15.947 78

'Series-limit energy is 21.401 25 a.u.
Series-limit energy is 21.187 80 a.u.

'Series-limit energy is 21.194 17 a.u.
Series-limit energy is 21.033 40 a.u.

hydrogenic states should also show up in the perturbative
treatment, where it will be much more transparent. To
understand the shift in the series limit, it is necessary to
carry out the expansion to second order in the energy.

For the sake of explicitness, a (Is2s) core (in zeroth or-
der) will be used as an example. The unperturbed states
for this case are the single configurations

u. —=u)„2...(=lls 2s, nl),
with energy

Z'
Z e„=— (1/1 +1/2 +1/n ) .

(29a)

(29b)

To simplify the notation, the entire three-electron
configuration is denoted by the single subscript n. Using
the notation of Eq. (24), the energy to second order is
given by

E„=Z e„+Z%'„„+g
van En

—
Ev

(30)

The matrix elements of &' are independent of Z. Hence,
for a fixed electronic state but varying Z (an isoelectronic
sequence), successive orders of the perturbation series
(30) scale as Z, Z ', Z, . . . .

The first-order correction to Z c„contains a contribu-
tion to the core energy E, of Eq. (27) that is completely
independent of the Rydberg electron, and also a contribu-
tion to the second term on the right-hand side of Eq. (27).
The contribution to E, is the same as would be calculated
for a pure two-electron core state. Hence it cannot be re-
sponsible for a shift in E, caused by the Rydberg elec-
tron. The second term in &'„„[from Eq. (20)] corrects
the leading behavior of the Rydberg energy from

Z /2n to approximately ——(Z —2) /2n . In fact, it
accurately corrects for the incomplete screening of the
nucleus by the two core electrons. This is clearly not a

) ( Is, 2s, nl ~&'
~
Is, 2s, n 'l' ) (

III
n ', I' &n &n

(31)

As n —+oo, all intermediate bound-state Rydberg levels
n'l' become lower in energy than c„l, making all energy
denominators positive. Since the numerators are also
positive, it follows that 4Eggy is positive. This is the shift
in the series limit observed in the configuration-
interaction calculation. Confirmation of the correctness
of this analysis is obtained by checking the Z dependence
of the calculated shifts. The calculated energy shifts ob-
tained from the full diagonalization are plotted in Fig. 2

contribution to E, . Thus, neither of the two contribu-
tions to the first-order correction makes a change in E„
away from E, as n ~ (x).

The second-order correction to Z c„can be grouped
into three categories. Group I contains all those terms in

g„ that are diagonal in the Rydberg electron state.
These terms comprise a second-order contribution to the
two-electron core energy plus a contribution from the
Rydberg electron that essentially describes polarization
of the core by the Rydberg electron, a contribution that
must vanish as n ~~. Neither of these contributions
generates a shift in the series limit away from the core en-
ergy. Group II contains all of those terms that are nei-
ther diagonal in the core states nor the Rydberg states.
These group-II intermediate states describe a departure
from quantum-defect behavior, and account for the in-
teraction between different Rydberg series. Such effects
were indeed seen when accidental very near degeneracies
occurred between levels in different Rydberg series with
the same L,S,~, and showed up as abrupt departures
from smooth quantum-defect behavior.

The energy shift of the series limit arises from the
group-III intermediate states: those that are diagonal in
the core state. The group-III contribution is of the form
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as functions of 1/Z. The behavior of the energy shifts for
large Z is seen to vary as Z (i.e., independent of Z), as
would be predicted for a second-order perturbation term.
The calculated shifts exhibit 1/Z and 1/Z dependences
arising from perturbations of order higher than 2.

These energy shifts obtained in the configuration-
interaction (CI} diagonalization were positive because all
of the second-order contributions to AE, were positive.
However, were continuum hydrogenic states included in
the diagonalization, there would be intermediate states
with energies higher than c, „&. These intermediate states
make a negative contribution to AE&&, , which would tend
to cancel the positive contribution made by the bound-
state configurations. The complete absence of a shift
would require a fortuitous exact cancellation of the
bound-state contributions by the continuum contribu-
tions. Such an exact cancellation is rendered unlikely by
the fact that the summation over n'I' in Eq. (31) is depen-
dent upon which states are occupied in the core being
considered. Thus, if the cancellation were exact for one
particular core, it could not then be exact for other cores.

From Eq. (31) it is seen that the calculated shift in the
series limit depends mainly on the core state involved; to-
gether with H', the core generates a potential that dis-
torts the Rydberg electron state. Each core state gen-

crates its own characteristic potential. On the other
hand, since I' is summed over, the dependence of AE&„
on I should be reduced. However, this derivation does
not establish that there should be no variation in shift of
the series limit from one Rydberg series to the next for a
given core.

V. FURTHER GENERALIZATION
OF FESHBACH OPERATORS

which can be recast more compactly:

p =R„((r) d r'R„t(r') Pt(8, , ) .
21+1

4m
(33)

The angular variables must be included in the definition
of the projection operator because the radial functions
with different values of I are not mutually orthogonal.
The operator p defined in (32) selects any state with given
n and I, regardless of its azimuthal quantum number m.

If vacancy states are desired in shells other than s
shells, as is often the case in Auger state investigations,
the single-electron operator p is given by

p = J d r'R„t(r)R„t(r') g Yt (0,$)Yt (O', P'), (32)
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