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algebraic eikonal approach to electron-molecule scattering.
II. Rotational-vibrational excitations
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The a1gebraic eikonal approach to electron-molecule scattering is applied to electron scattering off HF
and HC1, for which rotational-vibrational excitation cross sections were recently measured. Calculations
are done with realistic interactions that include improved dipole, quadrupole, and polarization interac-
tions. Good agreement with the data is obtained in the vibrational elastic channels.

PACS number(s): 34.80.Bm, 34.80.Gs, 03.65.Fd

I. INTRODUCTION

Electron scattering from a polar molecule is a complex
process that involves many channels. Various approxi-
mations and techniques were developed [1] to solve the
coupled-channel equations [2]. Ab initio coupled-channel
calculations were performed for diatomic and some tria-
tomic [3] molecules. For polyatomic molecules the ap-
proach becomes difficult to apply due to the large number
of coupled channels, although some ab initio calculations
were recently done [4] for molecules such as formal-
dehyde using an optical potential model. An alternative
method was recently developed [5,6] in which the alge-
braic treatment of the rotational-vibrational molecular
states (vibron model [7]) is combined with the eikonal
(Glauber) approximation. The advantage of the algebraic
eikonal approach is that the S matrix is given in a closed
form to all orders in the interaction as a representation
matrix of the corresponding dynamical group of the mol-
ecule.

In a previous paper [8] (which we refer to as paper I),
we have generalized the algebraic approach to include
more realistic interactions that are not necessarily linear
in the generators of the dynamical algebra. In particular
we have used a more realistic form for the dipole opera-
tor of the molecule, which resulted in the enhancement of
the vibrational inelastic cross section.

Recent measurements [9] of differential cross sections
of individual rotational-vibrational states make a more
detailed comparison between theory and experiment pos-
sible. When the vibrational cross sections are resolved
into their rotational content, it is essential to include ad-
ditional long- and medium-range interactions [1,2, 10] be-
side the dominant dipole interaction. The purpose of this
paper is to apply the methods of paper I to such situa-
tions. In particular we include a quadrupole interaction
and a polarization potential [11],which results from the
molecular dipole moment induced by the electron field.
The agreement with the data is significantly improved, in
particular in the vibrational elastic channels. In the vi-
brational inelastic channels, though we obtain a
significant enhancement as compared with previous alge-

braic calculations [5], we still underestimate the data,
especially at backward angles. This is mostly since we
have not yet incorporated the exchange interaction
[12,13] in the algebraic formulation. This interaction is
known to play an important role in the inelastic vibra-
tional channels [10]and at higher energies.

The outline of the paper is as follows. In Sec. II we
briefly review the multichannel generalized algebraic
eikonal approach to electron-molecule scattering and in
Sec. III we discuss several realistic electron-molecule in-
teractions: the dipole, quadrupole, and polarization in-
teractions. The dipole operator of the molecule in the
vibron model has already been discussed in paper I, so
here we discuss in detail only the quadrupole operator.
The methods developed in paper I are then applied in
Sec. IV to electron scattering off molecules using the
above interactions. Results for electron scattering from
LiF, HF, and HC1 are presented in Sec. V and compared
with experimental data [9,14]. A comparison with other
calculations is made.

II. ALGEBRAIC EIKONAL APPROACH

The Hamiltonian of an electron colliding with a rnole-
cule is given by

2
H= +Ho(g)+ V(r, g),

27tl
(2.1)

where r and p are the relative coordinate and momentum
of the electron, and g are the molecule internal coordi-
nates. Ho is the molecule's Hamiltonian and V is the
electron-molecule interaction. In paper I it was shown
that in the eikonal approximation, the scattering ampli-
tude from an initial molecular state i to a final state f can
be expressed as an integral over an impact parameter b

gf (q)=ki ' J'b dbJI; — I( 1b)

X (f ~
U (b) 1 ~i ) . (2.2)—

Here it is assumed that the initial and final states have
good angular momentum projection m,- and mf, respec-
tively, along the collision z axis. q is the momentum

46 3991 1992 The American Physical Society



3992 Y. ALHASSID AND B. SHAO 46

transfer q=kf —k,- and J~
~

is the Bessel function of or-
der lml. U~(b) is the propagator (S operator) in the in-
teraction picture for a straight-line trajector at an impact
parameter b that is parallel to q.

In the Glauber approximation one assumes in addition
to the eikonal, the sudden limit, for which the incoming
electron is moving fast compared with a time scale
characterizing the vibrational and rotational motion in
the molecule. In this limit, the rotational-vibrational ex-
citation energies in the molecule are small compared with
the collision energy and [Ho, V]=0. The potential V2 in

the interaction picture can be approximated by V, and
U~(b) in Eq. (2.2) is replaced by the sudden propagator

U(b)= T,exp i —
2 f dz V(b, z)

Ak
(2.3)

where 5', denotes z ordering.
In the algebraic approach, the molecular Hamiltonian

Ho is expanded in the generators G„ofa dynamical alge-
bra Q. We assume that the interaction V can be written
in the form

Born-Oppenheimer approximation, and no electronic ex-
citations are taken into account. We can then average
the electron-molecule interactions over the electronic
ground-state molecular wave function to obtain an
effective interaction V(r, g), which depends only on the
nuclear coordinates g (as well as the scattered electron
coordinate r), but not on the coordinates of the
molecule's electrons. If the incoming electron is not too
close to the molecule, we can expand its Coulomb in-
teraction with the molecule in multipoles to obtain

(3.1)

where r denotes a unit vector specifying the direction of
the electron, and Qz is the electric 2" pole moment of the
molecule and is a function of the nuclear coordinates g.
Because the molecule is electrically neutral, there is no
monopole term in (3.1) and the leading term is the dipole
interaction. In this paper we shall investigate also the
quadrupole interaction.

For A, =l, the dipole contribution to (3.1) can be
rewritten as

V= Vo+ V), (2.4)

where Vo=g„u„G„ is a linear combination of the gen-
erators of the algebra and V, is weak relative to Vo. V,
is in general a nonlinear function of G„. In some realistic
situations V& may be quadratic in G„. If V, =0, then the
sudden propagator Uo(b), given by (2.3) with Vo replac-
ing V, is an element of the group G

Vd =a&(r)r T,
where T is the dipole operator of the molecule

1/2
4m

3

and a, (r) is

(3.2)

(3.3)

Uo(b) =exp i g O„G—„
n

(2.5}

where O„are some parameters that depend on the impact
parameter b and the coefficients v„. The matrix elements
(flUO(b)li) describe a representation matrix of the
group and can therefore be evaluated in a closed form.
For V, WO and nonlinear in G„, U(b) is not a group ele-

ment. In paper I it was shown that an algebraic evalua-
tion of U(b} is still feasible if V, is weak compared with

Vo. For example, if V, is quadratic in G„, then

e
a, (r)=-

r +Ra
(3.4)

V =a2(r) g Pz„(r)Q2„. (3.5a)

Here

In Eq. (3.4) we have added a cutoff radius Ro to avoid the
nonphysical singularity of the dipole interaction at short
range.

For A, =2, the quadrupole contribution to (3.1) is

(flU(b)li ) = g (flUO(b)li')

x 5;;+ g y „(b)(i'lG G li }

4m e
a2(r) =-

(r2+R 2 )3/2
(3.5b)

rn, n

(2.6)

where li ) is a finite number of intermediate states, which
are connected to the initial state li } by 6 G„. The
coefficients y „are determined from v„, as is explained
in paper I. In Eq. (2.6) the matrix elements of both Uo(b)
and G G„can be evaluated algebraically.

III. ALGEBRAIC DESCRIPTION

where we have introduced a cutoff radius Ro similar to
the one in (3.4).

The multipole expansion (3.1) assumes that the mole-
cule is not affected by the incoming electron. An impor-
tant correction to (3.1) is obtained by considering the in-

teraction between the electron and the induced dipole
moment caused by the electric field of the electron. This
interaction is known as the polarization potential V .
Denoting by E the electric field of the electron at the
molecule and by T;„d the induced dipole moment, we

have

A. Electron-molecule interaction e r
V = ——'E.T = ———.T

p T ind ~ 2 ind (3.6)

In the present algebraic eikonal approach to electron
scattering off molecules, the molecule is described in the The polarizability tensor is diagonal in the intrinsic
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molecular frame and we denote by aII and a~ its com-
ponents along the molecular axis (of the diatomic mole-
cule) and perpendicular to it, respectively. Then

Another important contribution to the electron-
molecule interaction is the exchange interaction [13],but
we have not yet included it in our algebraic formulation.

T;„q=allEII a~E~ . (3.7) B. Vibron model

2

V = — (a cos 8+a~sin e) .
s 24 Il

(3.8)

Defining an average polarizability a and an anisotropic
polarizability a' by

2a, +aII
3

we can rewrite (3.8)

II

a'=a —a (3.9}

2

V = — [a+a'Pt(cose)] .
2r4

(3.10)

Thus, V has both a monopole and a quadrupole contri-
bution. To rewrite the quadrupole part in a more general
way, we assume an axially symmetric rigid molecule that
has an intrinsic quadrupole moment e„,

g,„=y D„"„'"(n)g. ',"„'=S,,„(n)e„, (3.11)

where 0 denotes the orientation of the molecule's axis in
the laboratory frame. Using the addition theorem for the
spherical harmonics we can rewrite P2 in (3.11) in terms
of the molecule's quadrupole moment:

Denoting by e the angle between r and the molecule axis
we obtain

The rotational-vibrational structure of molecules can
be described algebraically in the vibron model [7], using
the algebra u(4). The model is described in terms of four
bosons, one scalar with a creation operator s and three
spherical components of a vector p„(p= —1,0, 1). Most
diatomic molecules are described well by a Hamiltonian
that is a linear combination of Casimir invariants in the
chain u(4)Do(4)Do(3). The molecule's eigenstates are
Icr, j,m ) with o(0+2) the eigenvalue of an o(4} Casimir
invariant, j is the angular momentum of the molecule,
and m is its projection. The vibrational quantum number
v is related to cr by u =(N —a )/2. As in paper I we shall
exploit the isomorphism of o(4) to su(2) X su(2). The cal-
culations are then done in a basis Ivrn„am~), where
a =cr/2 is the SU(2) quasispin.

The dipole and quadrupole moments of the molecule
play an important role in the long- and medium-range
electron-molecule interaction. The dipole operator T of
the molecule was already discussed in paper I. It is a
nonlinear function of the u(4) generators

T=doD+ —,'d, (&~D+D& ) .

Here D„=(s"p+p s)„"' is an o(4) dipole operator,
R' =p -p and do, d, are parameters.

P,(.o.e)= ', e„-'y W,*„(".)g,„. (3.12) C. Quadrupole moment

I

=aap(r)+ ao(r) g Pf„(r}Q2„,e P P ' (3.13}

The polarization potential is then more generally written
as a sum of monopole and quadrupole contributions

V =V+V
Ij Jj

The leading contribution to the quadrupole moment of
the molecule is the quadrupole operator of u(4),

g „=q (P'XP)'". (3.18)

The constant qo is determined from the measured quad-
rupole moment of the molecule. For that purpose we re-
call that

where ao(r) is given by g —y D(2)e (~)gmt (3.19)
2

ao(r) =-
2r4

(3.14)

2

ao(r) =—
2(r +RE)

(3.15)

The total electron-molecule interaction potential con-
sidered in this paper is then

Here too, we have to introduce a cutoff to suppress (3.14)
at short distances. Various cutoffs have been considered
in the literature. We shall use

where Qz"„' are the quadrupole components in the intrin-
sic frame. For a diatomic molecule, the charge distribu-
tion is axially symmetric and Q2"„' =0 for p'%0. We find

1/2

P2„(R)g~()'(R ), (3.20)

where R is the vector connecting the two nuclei. The re-
duced matrix elements of (3.20) in a vibrational state v

are given by

v(r) = v + v + v"'+ v"'

=a, (r)r.T+a2(r) g P2„(r)Q2„

(u j IIQ2llv, j)=(—1)' V(2j'+ 1)(2j + 1)

J J
0 0 0 (u j IQ20I»j) . (3.21)

I

+ao(r)a+ ao(r) g Pz„(r) Q2& . (3.16) For a rigid molecule (v, j'IQ2o'lu, j ) is independent of j
and j' and it defines the intrinsic quadrupole moment of
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e.= 4m

5

the molecule e, :
1/2

& ul O',".'
I
u & (3.22)

TABLE I. Theoretical values of the quadrupole parameter qo
derived from Eqs. {3.24) and (3.29) for the molecules LiF, HF,
and HC1. The experimental values [17] of O„are listed in the

last column.

The factor &4m. /5 is due to the fact that 6, is related to
the Cartesian component Q,',"', while Qz~ is the spherical
component [for a charge distribution p, we have
6„=(e/2)fp(3Z R—)d R]. We conclude

1/2

6.(
—1&' &(2j +1)(2J +1)

J =J'=2

LiF
HF
HCl

0.016219
0.016 504
0.021 316

0.016214 0.016209
0.016476 0.016443
0.021 292 0.021 265

o 2

qo te A )

Molecule j =0, j'=2 j =j'=1 O„(eA )

1.207
0.491
0.786

j' 2 j
0 0 0 (3.23}

In particular, the reduced matrix elements in a vibration-
al state u (for which cr =cr'=N —2u) are

We adopt (3.23) as the definition of 6„. For special
values ofj and j' we obtain

' 1/2

(o /2, cr/2II T(, , ) llcr /2, o /2) = —(N +2)(o + 1)/2 .

(3.28)

4m

5
(u j'=2IIQ2llu j=o& (3 24a) Therefore, in the vibron model

2'
3

14m

25

' 1/2

(u J'=1IIQ2llu J =»
' 1/2

(u, J'=2IIQ, II,J' =2) .

(3.24b)

(3.24c)

In the vibron model Qz is given by (3.18). To calculate
its matrix elements, we note that the u(4) generators can
be expressed [15] as irreducible tensors T(, )(, ) of
su(2) X su(2) with s, t =0, 1. The su(2) X su(2) reduced ma-
trix elements of T~, ,] are defined through a Wigner-
Eckart theorem and are tabulated in Ref. [16],

I I ~ I I~„m);~,, m~ 1~ (,, )(, ) IK), m(,'Kp, mp ~

(u, j'Ilg~llu, j&= — (N+2&(N —2u+1&
qo

Xv 5(2j+1)(2j'+1)

N/2 —v N/2 —v j'
X N/2 —v N/2 —v j

1 1 2

(3.29)

Comparing Eqs. (3.29) and (3.23), we can calculate qo
from the measured value 6„. Since the vibron model
does not describe necessarily a rigid molecule [for which
6„ in (3.23) is independent of j,j'], we expect to find a
slight dependence of qo on the values of j and j' used to
determine 6„ in (3.23). For example, if u =0 and

j =0,j'=2, we find

Q(2)c') + 1)(2a2+ 1)
(rcim )sm, lie(m ) )

1 15N(N+2)
N+2 2n(N —1)(N+3)

1/2

e, , (3.30)

x ()c,m, tm, la', m ', )(tc'), Ic. ',
ll T(, , ) IIa „)c,) . (3.25)

a '/2 o.'/2 j '

X o. /2 o /2 j
1 1 2

X((c'=o'/2, ic'=cr'/2IIT(( ))II(c=cr/2, K o/2) .

(3.27}

o(3} rotational tensors can be constructed by a recoupling
of the su(2) X su(2) tensors. Their o(3) reduced matrix ele-
ments are then related to the su(2) X su(2) ones. In partic-
ular (p Xp )' ' is given by

(p XP)I, ' g (1m 1m l2)tt)T() ~)() ~ )

m, m'

and its reduced o(3) matrix elements are

'xp
=&5(2j + 1)(2j'+ 1)

Table I lists several such values for qo for the three mole-
cules discussed in this paper: LiF, HF, and HC1. They
are derived from Eqs. (3.24) and (3.29) using the experi-
mental values of 8„. qo is seen to be very weakly depen-
dent on j and j'.

D. Born approximation

If the electron-molecule interaction is weak enough, we
can use the Born approximation to calculate the cross
section v, j~v', j'. Using the multipole expansion (3.1)
for the electron-molecule interaction, we obtain

„(r)
A. ,p

x(fig „Ii) . (3.31)

The contribution of the 2 pole to the unpolarized cross
section (sum over final m and average over initial m) is
then
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with

dfL
v, 1~v, l'

4vrrrre

(2A, + I }A'

l{u',j'IIQgllu, j}l'
X

(2j + 1)(2A, + 1)
(3.32}

=f"
2 23m—~ (r +Ra) ~

4R +6b
16m g2(b2+g2)

6b
arctan

R0

R0
b

F~(q)= X
2

P„„(r)f db bJ~„~(qb) f dz &"+,

G2{b)= f (r2+g 2 )3/2

' 1/2

(3.33)
15

327T

2b

g 2 {b2++ 2
)

(3.35)

and r=(b/r, O, z/r). The factor Fz(q) is geometrical and
determines the angular dependence of do. /d 0, while the
strength l(u', j'IIQ&llv, j)l determines a global scale for
der/dQ. The Born cross section for the dipole interac-
tion (A, = 1) was evaluated in paper I. For the quadrupole
interaction (A, =2), we find

F,(q)=2 f db bJ, (qb)G, (b)

2b+ arctan
R0

R0
b

R0
Gv(b) =

+5m b
' 1/2

5 1

6m
G2(b) =

'1/2R2
6 0

5m- b4
'

(3.36)

For b &&R0 we have the following approximation for G0
and G2.

where

+ f db bJO(qb}GO(b}
0

(3.34) The magnitude of the cross section is determined by
the reduced matrix elements of Q&. For the quadrupole
{A,=2) interaction we have from (3.27)

{v' j'IIQ211»j}=—
N/2 u' N/2 —v' j'—

q0

2
&5(2j+1)(2j'+1) N/2 uN/2 —uj—

1 1 2

X
(N+2}(N —2v+1) for v'=v

&4(N —2v+1)(N —2v —1)(N —v+1)(v+1) for u'=u+1 .
(3.37)

IV. ELECTRON-MOLECULE SCATTERING

The scattering amplitude in the Glauber approxima-
tion has been calculated in paper I for a dipole interac-
tion. The calculation was done to all orders in d0 and to
first order in d, (which is weak compared to do). Since
the quadrupole and quadrupole polarization interactions
are relatively weak, we shall expand U(b) to first order in
these interactions. Thus only the strongest dipole d0
term is dealt with to all orders. Since D is in the o(4)
algebra, the corresponding propagator Uo(b) is an ele-
ment of O(4) for which the calculation of the representa-
tion matrices is much easier than for U(4). One could in-
clude the quadrupole to all orders but this will require
the evaluation of U(4) matrix elements.

The sudden propagator Uo(b, z) between —~ and z
and at impact parameter b was pararnetrized in paper I as

with 8=8(b,z), and is easily written as an SU(2) X SU(2)
element

Uv(b, z) = Uo" (b, z) U(') '(b, z),
Uo'(b, z) =exp(2i8, K, ) .

(4.2)

K~ and Kz are the su(2)Xsu(2) generators, 8&
——8 and

~2b = 1bs ~qy=1y, 2, = —~1,. Due tO time reVerSal
symmetry 8, =0.

U(b) = Uo(b)[1+5Ud ], (4.3)

A Dipole interaction

This case was already discussed in Paper I, where we
refer the reader for details. We found

Uo(b, z) =exp[2i {8bDb+8,D, +8+~)], (4.1) where 5Ud is given by Eq. (4.38) of paper I.
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B. Quadrupole interaction Elastic v'=0 Inelastic v'=1

The vibrational elastic cross section (summed over final
rotational states) for electron scattering from a polar mol-
ecule is dominated by the dipole interaction. However,
the cross sections to individual rotational states in the vi-
brational elastic channel may be strongly affected by
higher-order interactions. In this section we discuss the
quadrupole interaction.

The quadrupole interaction (3.5) with Qz given by
(3.18) is

q =qoa2(r) g P2„(r)(p Xp )„'
' . (4.4)

This V is in the u(4) algebra and therefore the corre-
sponding evolution operator U(b) is a U(4} group ele-
ment. However, since the quadrupole interaction is weak
relative to the do dipole interaction, it is simpler to treat
it also as a perturbation similar to the d, dipole term. In-
cluding Vq in addition to Vd, we find

O+

b

10

10

10
!

10

10

10

10

10 I

I

10 I-

10

10

j'=0

j =2

j'=3+4
~ ~ ~

10

10

10

10

10

10 I-

10 j-

10

10

10

10
1

,+.r
10

j'=2

j'=3+4

U(b) = Uo(b)[1+5Ud+5U j,
where 5U is given by

I5Uq(2dzU()(b~z)Vq(r)U()(b)z)

(4.5)

(4.6)

10

10

10

1
I

10

10

10

v=0~v'= 1

Expressing (ptXp )' ' in terms of the tensors T(, , )
(see

Sec. III C), we obtain

I . I . I

50 100 150
8(deg)

I

0 50 100 150
()(deg)

U
—)

(
t X —)(2) U — (2)

o p p )
o= g hMM ), (8)T(( M)(I M )

M, M'

where

hM(M), „(8)= g (lm lm'~2p)DM ~(8)D, M ~ ~ (8) .
M, M'

Therefore 5 U in Eq. (4.5) is

4 g
q

I
5 %2k ~ eMM (b)T() M. )() M. )

M, M'

(4.7)

(4.8)

(4.9)

FIG. 1. The differential cross sections for the scattering of
electrons from HF at E = 3 eV. Left column: u' =0 h 1

Ri ht couig t column: u' = 1. Shown separately are the cross sections
to excite the j'=0, 1,2 and 3+4 states and the summed cross
section over all rotational states (bottom row). Dotted lines:
with the dipole interaction. Dashed lines: with the addition of
the quadrupole interaction. The solid lines are obtained with
the inclusion of the quadrupole and monopole polarization in-
teractions, so that the full interaction (3.16) is considered. The
data points (dots) are taken from Ref. [9].

where

(X) 5;„(r)
eMM(b)= J dz g " h' ' (61) .

( 2+g 2 )3/2 MM'p (4.10)

Z2
3——1

2

5

16m
&p ()(r)=

+)(r)= + 15
8~

1/2
bz
r2 ' (4.11)

Notice that the operator (4.9) is a combination of rota-
tional tensors with rank 0, 1, and 2. If we neglect the
noncommutation of Uo(b) and Qz in Eq. (4.6), then only
a second-rank tensor (Qz) is present. Since in (2.2) we
take r=(b/r, O, z/r), we have in (4.10)

1/2

E =3 eV with both quadrupole and dipole interactions
(dashed lines) against the corresponding cross sections
computed with only a dipole interaction (dotted lines).
The parameters used are determined as explained below
in Sec. V. In the vibrational elastic channels, we see that
the inclusion of the quadrupole interaction affects strong-
ly the j'= 2 and j' =3+4 channels (where the cross sec-
tions are increased between one and two orders of magni-
tudes), while the j'=0 and j'=1 channels are much less
affected. The change in the summed elastic cross section
(u =O~u'=0) is rather small, but in agreement with the
data. In the vibrationally inelastic channels (u' = 1), there
is a significant effect also for j'=0 and j'= 1 at backward
angles. The summed inelastic cross section
{U =0~v'=1) increases significantly, especially at back-
ward angles.

1/2

(~ }
15 b

327T 2

C. Polarization potential

The quadrupole polarization interaction

To illustrate the importance of the quadrupole interac-
tion we compare in Fig. 1 the cross sections for e +HF at

Vp = ao(r) g ')/~„(r)a' (p Xp)„' '4w qo

P U

(4.12)
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(4.13)

is proportional to the anisotropic polarizability a and
has a form similar to the quadrupole interaction (4.4), ex-
cept that a2(r) is replaced by (4m /5)ao(r)(a'/8, ). The in-

clusion of V' ' is thus straightforward and leads to

U(b) = U()(b)[1+5Ud+5U +5U'2'],

c(=2i (21+1)f( .

Thus

S(b) —1=2—g (2l +1)f(Jq(+)(2kb) .

(4.23)

(4.24)

with

[2] . 4~ me, 9'o2

5U~ =i
5 2

(z'
8 g y~~ (b)T(),M)((,M')

fi k

and

(4.14)

We note that [J2&+, (x) j is not a complete set and it is a
priori not clear that (4.22) is possible. We can instead use
(4.24) as the definition of S(b). Equation (4.20) follows
then from the orthogonality relation (4.21). Expanding
Jo(qb) in the Legendre polynomials

oo (2)(b) — d g. . .b .„(8) .
2(r +R() )

(4.15)

The monopole polarization potential is too strong to
treat in an eikonal approximation. We therefore use a
distorted-wave eikonal approximation developed in Ref.
[6], where the monopole polarization is treated exactly
but the other interactions are treated in the eikonal ap-
proximation. In this approximation

jfi (q) ki f b db J)~ — . )(qb)

X (flS(b)U(b) —
~i ) . (4.16)

2l +1
Jp(qb)= g J»+, (kb)P, (cos8)

kb
(4.25)

S„k(b)=exp i — f dz V' '(b, z)
Ak

(4.26)

The inversion of (4.18) is not unique and unfortunately
the solution (4.24) does not approach (4.26) for large b It.

we can derive (4.18) from (4.20) and (4.19). For large b,
the potential is weak and we expect S(b) to approach the
eikonal limit

Here U(b) is the propogator due to all interactions ex-
cept the monopole polarization, while S(b) is the
impact-parameter representation S matrix of the polar-
ization potential alone. For U(b) we use (4.13). To find
S(b) notice that the exact scattering amplitude f (8) due
to a monopole polarization potential

(4.17)

can be written in the impact-parameter representation
[18]as

2.0

1.5

1.0

0.5

0.0
—0.5

1.5

He S

eV

Irn S

f (8)= ik f b db —J()(qb)[S(b)—1] . (4.18)
0

The amplitude f (8) can be calculated from the partial-
wave expansion

1.0

0.5

0.0

1.5

=2.9eV

f (8)= g (21+1)f(P((cos8),
I

(4.19)
1.0

where f(=—(e ' ' —1)/2ik are the partial-wave ampli-
tudes. The phase shifts 5& can be calculated numerically
using the Numerov method [19]. The relation of f& to
S(b) is

0.5

0.0

1.5

E=5.0eV

f(= i f db J2(~)(2kb)(S(b—) —1) . (4.20)
1.0

0.5
It is possible to invert (4.18) in order to express S(b) in
terms off (8). For that purpose we use the orthogonality
relation [20] of the Bessel functions of odd order

0.0 E=10.0eV

I . I

10 15
I . I

10 15

Expanding

b [S(b) 1 ]= g c((k }J2(+((2kb)

we obtain, using Eqs. (4.21) and (4.20),

(4.22}

~ dx 1
J2 +)(x)J~„+((x)= 5 „. (4.21)

0 X 2 2m +1)
X X

FIG. 2. The impact-parameter representation S matrix S(b)
vs x =2kb (b is the impact parameter) for the monopole polar-
ization potential (4.17) of e+HCl at various collision energies.
Left column: real part of S(b). Right column: imaginary part
of S(b). The dashed lines are the analytic inversion (4.24),
while the solid lines are the numerical inversion that has the
correct eikonal limit at large b.
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TABLE II. Dipole moment (p, ), dipole transition matrix element (Ro, ), quadrupole moment (6,),
and polarizabilities (u and a') for the rnolecules LiF, HF, and HCl. In brackets next to each value is the
reference from which it is taken. We have used experimental values if known. Otherwise we have used
ab initio calculations (denoted by +). t denotes references where theoretical calculations are combined
with experimental values to infer the quoted quantity.

Molecule

LiF
HF
HCl

p, (D)

6.58 [21]t
1.827 [25]
1.108 [25]

Ro ] (D)

0.2718 [21]
9.85 X 10 [22]
7.12 X 10 ' [23]

e„, (e A')

1.207 [17]
0.491 [17]
0.786 [17]

o.' (A )

1.57 [24]*
0.8 [26]
2.15 [27]

a'(A)
—0.01 [24]*

0.16 [26]
0.19 [27]

f) =
f&

—t f db J2I+ &
(2kb) [S„k(b)—1],

b

where

(4.27)

f, = i f—db J2)+, (2kb)[S(b) —1] . (4.28)
0

f, can be calculated from the known fi and S„„(b)given

by (4.26). It then remains to solve (4.28) for S(b). We
have done this by iterations as described in Ref. [6], ex-
cept that we have used a cubic spline interpolation rather
than a Lagrange interpolation.

Figure 2 shows the impact-parameter representation
S(b) for the polarization monopole potential of HC1 at
different collision energies. The dashed lines are the ana-
lytic inversion (4.24) and the solid lines represent the nu-
merical inversion that satisfies the eikonal limit (4.26).
Notice the oscillatory behavior of the analytic S(b) at
large b's (in particular for E =0.5 eV). The two different
solutions for S (b) get closer at higher energies.

The solid lines in Fig. 1 are the results of the calcula-
tions when the polarization potential is included in addi-
tion to the dipole and quadrupole interactions. A
enhancement is observed in the elastic v'=0, j'=0 chan-
nel in agreement with the data. The effect in all other
channels is small.

is, however, possible to construct a solution to (4.18) that
does approach the eikonal limit by using a numerical
technique described in Ref. [6].

Solving (4.18) for S(b) is equivalent to solving (4.20),
using the known partial amplitudes f, . Choosing b to be
such that the eikonal approximation (4.26) is good for
b )b, we rewrite (4.20) as

O(4) Hamiltonian where the number of bosons N is given
in Table III. The molecule dipole parameters d0 and d&
are determined from the measured dipole moment p, and
the infrared transition matrix element R0 „using Eqs.
(3.32) of paper I. Since only Ro, is measured, we know
~Ro, ~

but not its sign. The sign is determined by com-
paring with ab initio calculations [28]. When Ro, is not
measured we determined it from a calculation. The
quadrupole parameters qo in (3.18) are determined from
(3.24) and (3.29) using the measured quadrupole moment
e, . Table II provides the experimental dipole and quad-
rupole parameters p„R0 &, and 8, while Table III pro-
vides the model parameters d0, d „and q0.

A. e+LiF

Here the number of bosons is relatively large, N =113.
The total vibrational elastic and inelastic cross sections
due to the dipole interaction were already discussed in

paper I (see Figs. 3 and 4 of I). In Fig. 3 we show the
cross sections to individual rotational states (j'=0, 1,2
and 3+4) for E =5.44 eV. We show the cross sections
with the dipole interaction (dotted lines); with dipole and
quadrupole interactions (dashed lines); and with dipole,
quadrupole, and polarization interactions (solid lines).
The quadrupole moment of LiF is quite large so the
correction due to the quadrupole interaction is substan-
tial even in the j'=0 and j'= 1 channels (in particular at
backward angles). The effect of the polarization potential
is small even in the j'=0 elastic channel.

B. e+HF

V. APPLICATiONS

In this section we compare the results of our calcula-
tions with experimental data for electron scattering off
LiF, HF, and HCl. We describe these molecules by an

Figures 1 and 4—6 show the e +HF elastic
(v =0~v'=0) and inelastic (v =0~v'= I) scattering
cross sections for a series of energies between 0.63 and 10
eV. In each vibrational (v') channel we show separately
the cross section for j'=0, 1,2 and 3+4 as well as the

TABLE III. Vibron model parameters used in the electron scattering off LiF, HF, and HCl. N is the
number of bosons, do and d, are the dipole operator parameters [see Eq. (3.17)], and qo is the quadru-
pole operator parameter [Eq. (3.18)]. Ro is the cutoff parameter for the dipole and quadrupole interac-
tions, while Ro~ is the cutoA'parameter of the polarization potential.

Molecule

LiF
HF
HCl

113
44
55

d, (eA)

1.73 X 10-'
1 ~ 14X 10
0.606 X 10

d, (e A)

—0.469 X 10
—0.694 X 10-'
—0.360 X 10

2

qo (eA)

1.62 X 10-'-

1.65 X 10
2.13 X 10

Ro (A)

0.5
0.5
0.5

Rop (A)

1.8
1.0
1.3
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taken from Ref. [9]. See Fig. l for details.
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Detailed coupled-channel calculations [2] for e +HC1,
which include exchange in addition to static and polar-
ization interactions, reproduce well the energy depen-
dence of the vibrationally elastic cross sections even at
higher energies. The inclusion of an exchange interaction
also results in an order-of-magnitude increase of the cross
section for the vibrationally inelastic channels [10]. The
failure of our calculations at higher energies and in the
vibrationally inelastic scattering is because we have not
yet included the exchange interaction in the algebraic ap-
proach.

VI. CONCLUSIONS

We have applied the generalized algebraic eikonal
framework of paper I to electron-molecule scattering
with more realistic interactions than previously included
in this approach [5]. Our calculations, which use an im-

proved dipole, a quadrupole, and polarization interac-
tions are compared with data of electron scattering from
LiF, HF, and HCl. The agreement with the experiment
in the vibrational elastic channels (for different rotational
states) is good. In the vibrational inelastic channels there
is a strong enhancement when compared with the calcu-

lations of Ref. [5], but we still underestimate the data, in
particular at backward angles. This is mainly because we
have not yet included the short-range exchange interac-
tion [2,8,12,13] in our algebraic formulation. The in-
clusion of such an interaction can be done in a phenome-
nological way using the local free-electron gas exchange
interaction [10]. A better way will be to use an algebraic
extension [34] of the vibron model, which includes the
electronic degrees of freedom. A secondary reason for
the discrepancy at large angles may be due to the sudden
approximation. Our generalized framework allows the
algebraic evaluation of corrections to the sudden approxi-
mation (to all orders in the coupling). For the dipole in-
teraction these corrections diverge, but for other interac-
tions (e.g. , quadrupole) they are convergent. It will be in-
teresting to investigate these corrections.
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