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The algebraic eikonal approach to electron-molecule scattering is applied to electron scattering off HF
and HCI, for which rotational-vibrational excitation cross sections were recently measured. Calculations
are done with realistic interactions that include improved dipole, quadrupole, and polarization interac-
tions. Good agreement with the data is obtained in the vibrational elastic channels.
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I. INTRODUCTION

Electron scattering from a polar molecule is a complex
process that involves many channels. Various approxi-
mations and techniques were developed [1] to solve the
coupled-channel equations [2]. Ab initio coupled-channel
calculations were performed for diatomic and some tria-
tomic [3] molecules. For polyatomic molecules the ap-
proach becomes difficult to apply due to the large number
of coupled channels, although some ab initio calculations
were recently done [4] for molecules such as formal-
dehyde using an optical potential model. An alternative
method was recently developed [5,6] in which the alge-
braic treatment of the rotational-vibrational molecular
states (vibron model [7]) is combined with the eikonal
(Glauber) approximation. The advantage of the algebraic
eikonal approach is that the S matrix is given in a closed
form to all orders in the interaction as a representation
matrix of the corresponding dynamical group of the mol-
ecule.

In a previous paper [8] (which we refer to as paper I),
we have generalized the algebraic approach to include
more realistic interactions that are not necessarily linear
in the generators of the dynamical algebra. In particular
we have used a more realistic form for the dipole opera-
tor of the molecule, which resulted in the enhancement of
the vibrational inelastic cross section.

Recent measurements [9] of differential cross sections
of individual rotational-vibrational states make a more
detailed comparison between theory and experiment pos-
sible. When the vibrational cross sections are resolved
into their rotational content, it is essential to include ad-
ditional long- and medium-range interactions [1,2,10] be-
side the dominant dipole interaction. The purpose of this
paper is to apply the methods of paper I to such situa-
tions. In particular we include a quadrupole interaction
and a polarization potential [11], which results from the
molecular dipole moment induced by the electron field.
The agreement with the data is significantly improved, in
particular in the vibrational elastic channels. In the vi-
brational inelastic channels, though we obtain a
significant enhancement as compared with previous alge-
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braic calculations [5], we still underestimate the data,
especially at backward angles. This is mostly since we
have not yet incorporated the exchange interaction
[12,13] in the algebraic formulation. This interaction is
known to play an important role in the inelastic vibra-
tional channels [10] and at higher energies.

The outline of the paper is as follows. In Sec. II we
briefly review the multichannel generalized algebraic
eikonal approach to electron-molecule scattering and in
Sec. III we discuss several realistic electron-molecule in-
teractions: the dipole, quadrupole, and polarization in-
teractions. The dipole operator of the molecule in the
vibron model has already been discussed in paper I, so
here we discuss in detail only the quadrupole operator.
The methods developed in paper I are then applied in
Sec. IV to electron scattering off molecules using the
above interactions. Results for electron scattering from
LiF, HF, and HCI are presented in Sec. V and compared
with experimental data [9,14]. A comparison with other
calculations is made.

II. ALGEBRAIC EIKONAL APPROACH

The Hamiltonian of an electron colliding with a mole-

cule is given by

2
H=P +H,&)+V(re), @.1)
2m

where r and p are the relative coordinate and momentum
of the electron, and £ are the molecule internal coordi-
nates. H, is the molecule’s Hamiltonian and ¥V is the
electron-molecule interaction. In paper I it was shown
that in the eikonal approximation, the scattering ampli-

tude from an initial molecular state i to a final state f can
be expressed as an integral over an impact parameter b

/}f(q)=ki|m'—mf|_] fow bdbJm, —m(qb)
X{flU(b)—1]i) .

Here it is assumed that the initial and final states have
good angular momentum projection m; and m/, respec-
tively, along the collision z axis. q is the momentum

(2.2)
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transfer =k, —k; and J|,,| is the Bessel function of or-
der |m|. U,(b) is the propagator (S operator) in the in-
teraction picture for a straight-line trajector at an impact
parameter b that is parallel to q.

In the Glauber approximation one assumes in addition
to the eikonal, the sudden limit, for which the incoming
electron is moving fast compared with a time scale
characterizing the vibrational and rotational motion in
the molecule. In this limit, the rotational-vibrational ex-
citation energies in the molecule are small compared with
the collision energy and [H,, ¥]=0. The potential V; in
the interaction picture can be approximated by ¥V, and
U,(b) in Eq. (2.2) is replaced by the sudden propagator

Ub)=T,exp | —i—— [ dzV(b2) |, 2.3)

#k Y-
where T, denotes z ordering.

In the algebraic approach, the molecular Hamiltonian
H, is expanded in the generators G, of a dynamical alge-
bra §. We assume that the interaction ¥ can be written
in the form

V=V,+V,, (2.4)

where V=3 ,v,G, is a linear combination of the gen-
erators of the algebra and V, is weak relative to V,. V,
is in general a nonlinear function of G,. In some realistic
situations ¥; may be quadratic in G,. If ¥, =0, then the
sudden propagator U,(b), given by (2.3) with ¥V, replac-
ing ¥, is an element of the group G

Uyb)=exp [—i 3 6,G, ] , (2.5)

where 6, are some parameters that depend on the impact
parameter b and the coefficients v,. The matrix elements
(flUqy(b)]i) describe a representation matrix of the
group and can therefore be evaluated in a closed form.
For V70 and nonlinear in G,, U(b) is not a group ele-
ment. In paper I it was shown that an algebraic evalua-
tion of U (b) is still feasible if V| is weak compared with
V,. For example, if V| is quadratic in G, then

(FIUDINi) =3 (flUyb)]i")
X 8+ 3 ¥ma0i'lG,G,li) ],

(2.6)

where |i’) is a finite number of intermediate states, which
are connected to the initial state |i) by G,G,. The
coefficients vy, , are determined from v,, as is explained
in paper I. In Eq. (2.6) the matrix elements of both U,(b)
and G,, G, can be evaluated algebraically.

III. ALGEBRAIC DESCRIPTION

A. Electron-molecule interaction

In the present algebraic eikonal approach to electron
scattering off molecules, the molecule is described in the

Born-Oppenheimer approximation, and no electronic ex-
citations are taken into account. We can then average
the electron-molecule interactions over the electronic
ground-state molecular wave function to obtain an
effective interaction ¥V (r,&), which depends only on the
nuclear coordinates & (as well as the scattered electron
coordinate r), but not on the coordinates of the
molecule’s electrons. If the incoming electron is not too
close to the molecule, we can expand its Coulomb in-
teraction with the molecule in multipoles to obtain

4me yl—y(?)
IA+1 pAFL Ql#’

Virng)=— 3 (—1)H (3.1)

A p

where T denotes a unit vector specifying the direction of
the electron, and Q, is the electric 2* pole moment of the
molecule and is a function of the nuclear coordinates &.
Because the molecule is electrically neutral, there is no
monopole term in (3.1) and the leading term is the dipole
interaction. In this paper we shall investigate also the
quadrupole interaction.

For A=1, the dipole contribution to (3.1) can be
rewritten as

Vy=a,(r)t-T, (3.2)
where T is the dipole operator of the molecule
172
T= T’T 0,_\, (3.3)
and a,(r) is
e
a(r)=——-—. (3.4
! r’+R3}

In Eq. (3.4) we have added a cutoff radius R, to avoid the
nonphysical singularity of the dipole interaction at short
range.

For A =2, the quadrupole contribution to (3.1) is

Vq :az(r) 2 [‘y;}l(?)QZN . (353)
I
Here
a,(r)= _ A < (3.5b)

5 (r2+R6)3/2 ’

where we have introduced a cutoff radius R similar to
the one in (3.4).

The multipole expansion (3.1) assumes that the mole-
cule is not affected by the incoming electron. An impor-
tant correction to (3.1) is obtained by considering the in-
teraction between the electron and the induced dipole
moment caused by the electric field of the electron. This
interaction is known as the polarization potential V,.
Denoting by E the electric field of the electron at the
molecule and by T, the induced dipole moment, we
have
T

Vy=—4ET=— % 5 Tig - (3.6

P

~

The polarizability tensor is diagonal in the intrinsic
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molecular frame and we denote by @ and «a, its com-
ponents along the molecular axis (of the diatomic mole-
cule) and perpendicular to it, respectively. Then

Tia=E+aE, . (3.7
Denoting by © the angle between T and the molecule axis

we obtain

2
V,=— <+ (acos’@+asin’0) . (3.8)
2rt
Defining an average polarizability a and an anisotropic
polarizability o’ by
2a,ta

a=——3—— ’

we can rewrite (3.8)

a'=a”~‘a R (3.9

2
Vp=—fr—;[a+a'1>2(cose)]. (3.10)

Thus, ¥, has both a monopole and a quadrupole contri-
bution. To rewrite the quadrupole part in a more general
way, we assume an axially symmetric rigid molecule that

has an intrinsic quadrupole moment ©,,

20‘2 *(QIQ5 =Y, ()8, , (3.11)

where Q denotes the orientation of the molecule’s axis in
the laboratory frame. Using the addition theorem for the
spherical harmonics we can rewrite P, in (3.11) in terms
of the molecule’s quadrupole moment:

Pz(cos6)———9“12 Y3,3)0,, - (3.12)

The polarization potentlal is then more generally written
as a sum of monopole and quadrupole contributions

V,=V,+V}
—aaN+ L S S YL@, G13)
v u
where a,(r) is given by
2
ag(r)= o (3.14)

Here too, we have to introduce a cutoff to suppress (3.14)
at short distances. Various cutoffs have been considered
in the literature. We shall use

eZ

=t 3.15)
lr) 2r*+R3, ) (

The total electron-molecule interaction potential con-
sidered in this paper is then

V=V, +V,+V"+ V2

=a,(r)T-T+a,(r) 2 Y3,.(1)0,,

+a0(r)a+ s ao(r)z‘yZ”(r

gu QZM] . (3.16)

Another important contribution to the electron-
molecule interaction is the exchange interaction [13], but
we have not yet included it in our algebraic formulation.

B. Vibron model

The rotational-vibrational structure of molecules can
be described algebraically in the vibron model [7], using
the algebra u(4). The model is described in terms of four
bosons, one scalar with a creation operator s and three
spherical components of a vector p p (p=—1,0,1). Most
diatomic molecules are described well by a Hamiltonian
that is a linear combination of Casimir invariants in the
chain u(4)Do(4)Do(3). The molecule’s eigenstates are
|o,j,m) with g(o +2) the eigenvalue of an o(4) Casimir
invariant, j is the angular momentum of the molecule,
and m is its projection. The vibrational quantum number
v is related to o by v =(N —o)/2. As in paper I we shall
exploit the isomorphism of 0(4) to su(2) Xsu(2). The cal-
culations are then done in a basis |km,km,), where
k=0 /2 is the SU(2) quasispin.

The dipole and quadrupole moments of the molecule
play an important role in the long- and medium-range
electron-molecule interaction. The dipole operator T of
the molecule was already discussed in paper I. It is a

nonlinear function of the u(4) generators
T=d,D+3d,(7,D+D#,) . (3.17)

Here D =(s' P+p s)] is an o(4)
f,=p pand do,d are parameters

dipole operator,

C. Quadrupole moment

The leading contribution to the quadrupole moment of
the molecule is the quadrupole operator of u(4),

05, =40(p " Xp)? (3.18)

The constant g is determined from the measured quad-
rupole moment of the molecule. For that purpose we re-
call that

Q= 2Dt (QIQ3

X

(3.19)

where Q“lt are the quadrupole components in the intrin-
sic frame. For a diatomic molecule, the charge distribu-
tion is axially symmetric and Qmt =0 for u'#0. We find

172

ATy, (Rl (R

5 (3.20)

Q2y =

where R is the vector connecting the two nuclei. The re-
duced matrix elements of (3.20) in a vibrational state v
are given by

(0,7']|Q; v, ) =( —l)f'\/(2j’+1)(2j 1)

f2
0 o ol{vs’ Qi |y, j) . (3.21)

For a rigid molecule {v,j'|Q|v,j) is independent of j
and j' and it defines the intrinsic quadrupole moment of
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the molecule O, :
172

4_77' (v|ant|v>

e =
5

v

(3.22)

The factor V4 /5 is due to the fact that ©, is related to
the Cartesian component Q™, while Q' is the spherical

component [for a charge distribution p, we have

=(e/2) [p(3Z*>—R?)d’R). We conclude
s |72
W,/ 1Q: [0, /)= | = O,(—1YV(2j'+1)(2j +1)
2
5 00 (3.23)

We adopt (3.23) as the definition of 6,.
values of j and j’ we obtain

For special

1/2
0,= 15’1 (0,7'=2]|Q3lv,j =0 , (3.242)
2 172
0,=— —3”— (v,j'=1|Q,[lv,j =1) (3.24b)
14 172
0,=— 25” (v,j'=2||Q,|v,j =2) (3.24¢)

In the vibron model Q, is given by (3.18). To calculate
its matrix elements, we note that the u(4) generators can
be expressed [15] as irreducible tensors T ,, ., m,) of

su(2) Xsu(2) with s, =0,1. The su(2) Xsu(2) reduced ma-
trix elements of T, are defined through a Wigner-
Eckart theorem and are tabulated in Ref. [16],

’ r, 0 ’ .
<K17m1’K2’m2!T(s,ms)(r ml)lKI’ml’KZ’m2)

— 1 ’ ’
= (kym sm, |k \m)

V(26 + 1265+ 1)

X (kymytm |kym 5 )k, K9] T l|K1a60) (3.25)
o(3) rotational tensors can be constructed by a recoupling
of the su(2) Xsu(2) tensors. Their o(3) reduced matrix ele-
ments are then related to the su(2) Xsu(2) ones. In partic-
ular (p*Xp‘ )'?) is given by

(p ><P)(2)~ S (Im1m' 2T oyt m) s

m,m'’

(3.26)

and its reduced o(3) matrix elements are

(0,j' "% 0, )
=\/5(2j+1)(2j’+1)

o' /2 a'/2 j’
Xi0/2 o/2 j
1 1 2

X(k'=0'/2,k'=0"/2||T )|k=0/2,k=0/2) .
(3.27)
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TABLE 1. Theoretical values of the quadrupole parameter g,
derived from Egs. (3.24) and (3.29) for the molecules LiF, HF,
and HCl. The experimental values [17] of 6, are listed in the
last column.

go (e AY)
. 02
Molecule =0, j'=2 j=j'=1 j=j'=2 06, (eA)
LiF 0.016219 0.016214 0.016209 1.207
HF 0.016 504 0.016476  0.016443 0.491
HCl 0.021316 0.021292  0.021265 0.786

In particular, the reduced matrix elements in a vibration-
al state v (for which 0 =0'=N —2v) are

(0/2,0 /2| Ty llo /2,0 /2)=—(N+2)o+1)/2 .

(3.28)
Therefore, in the vibron model
. . 90
(0,'1Qa [0, )= = =~(N +2)(N =20 +1)
XV5(2j +1)(2j'+1)
N/2—v N/2—v j'
X i{N/2—v N/2—v j (3.29)

1 1 2

Comparing Egs. (3.29) and (3.23), we can calculate g,
from the measured value ©,. Since the vibron model
does not describe necessarily a rigid molecule [for which
©, in (3.23) is independent of j,j'], we expect to find a
slight dependence of g, on the values of j and j’ used to
determine ©, in (3.23). For example, if v =0 and
j=0,j'=2, we find

1

_ I15N(N +2)
90" N12

2m(N —1)(N +3)

172
’ 0,_,. (330

Table I lists several such values for g, for the three mole-
cules discussed in this paper: LiF, HF, and HCl. They
are derived from Eqgs. (3.24) and (3.29) using the experi-
mental values of ©,. g, is seen to be very weakly depen-
dent on j and j'.

D. Born approximation

If the electron-molecule interaction is weak enough, we
can use the Born approximation to calculate the cross
section v,j—v’,j’. Using the multipole expansion (3.1)
for the electron-molecule interaction, we obtain

4me iqr ZA-—u T/ ")
2(— #2}\+1 fdreq A+l

X<f|Q,\“|i> .

The contribution of the 2* pole to the unpolarized cross
section (sum over final m’ and average over initial m) is
then

/ﬁ 21 ﬁl

(3.31)
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do _4mme
aQ v,l—v, !’ (2)"+1)‘h2
[’ j"|@xllv, )12
2+ ha+n e, 632
with
A v, @ |
0 0 A
Fyg)= 3 | ["dboblygb) [ 7 dz |
p=-2x b
(3.33)

and T=(b /r,0,z /r). The factor F,(q) is geometrical and
determines the angular dependence of do /d (), while the
strength |(v",j']|@; ||lv,j)|* determines a global scale for
do/dQ. The Born cross section for the dipole interac-
tion (A=1) was evaluated in paper I. For the quadrupole
interaction (A=2), we find

© 2
Fy(g)=2 ’ J7 db bJy(gb)G,(b) ‘

3995
® dz
Go(b)= ——Y
o=, (r2+R3)2 7%
s 21 4RZ+6b2
16w R3(b*+R3)
6b Ry
-3 arctan |—— ,
o dz
G,(b)= ——Y
2 f_m (r2+R(2,)3/2 22
15 | 2b?
= | —_— (3.35)
327 R3(b*+R3)

R

+ 2—b3 arctan
Ry

.

For b >>R,, we have the following approximation for G,
and G,:

1 R
G (b)z—._—— ,
RRET (3.36)
1/2 172 .
G~ | 5| L _ |6 | RS
27 er b2 S b4

The magnitude of the cross section is determined by
the reduced matrix elements of Q,. For the quadrupole
(A=2) interaction we have from (3.27)

N/2—v"

1 2

o 2

+‘f0 dbbJO(qb)Go(b)‘ , (3.34)
where
J
q N/2—v'
(u',j'||Q2||u,j)=—7°x/5(2j+1>(2j'+1) N/2—v N/2—v j

1

(N +2)N—2v+1) forv'=v

X

(3.37)

VAN —20+1)N—2v—1)N—v+1)v+1) forv'=v+1.

IV. ELECTRON-MOLECULE SCATTERING

The scattering amplitude in the Glauber approxima-
tion has been calculated in paper I for a dipole interac-
tion. The calculation was done to all orders in d, and to
first order in d,| (which is weak compared to d,). Since
the quadrupole and quadrupole polarization interactions
are relatively weak, we shall expand U (b) to first order in
these interactions. Thus only the strongest dipole d,
term is dealt with to all orders. Since D is in the o(4)
algebra, the corresponding propagator U,(b) is an ele-
ment of O(4) for which the calculation of the representa-
tion matrices is much easier than for U(4). One could in-
clude the quadrupole to all orders but this will require
the evaluation of U(4) matrix elements.

The sudden propagator U,(b,z) between — « and z
and at impact parameter b was parametrized in paper I as

Uo(b,z)=exp[2i (6,D,+6,D,+6,L,)] , (4.1)

I
with 6=0(b,z), and is easily written as an SU(2) X SU(2)

element
Uo(b,z)=U{"(b,2) U (b,z2) ,

W . 4.2)
Uy'(b,z)=exp(2i6;-K;) .

K, and K, are the su(2)Xsu(2) generators, 6,=6 and
02 =614, 0,3=64, 6,,=—06,,. Due to time reversal
symmetry 6, =0.

A. Dipole interaction

This case was already discussed in Paper I, where we
refer the reader for details. We found
Ub)=Uyb)[1+8U,;], 4.3)

where 8U,; is given by Eq. (4.38) of paper L
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B. Quadrupole interaction

The vibrational elastic cross section (summed over final
rotational states) for electron scattering from a polar mol-
ecule is dominated by the dipole interaction. However,
the cross sections to individual rotational states in the vi-
brational elastic channel may be strongly affected by
higher-order interactions. In this section we discuss the
quadrupole interaction.

The quadrupole interaction (3.5) with Q, given by
(3.18) is

V,=q0ay(n) 3 Y3, p xp)? . (4.4)
H

This ¥V, is in the u(4) algebra and therefore the corre-
sponding evolution operator U (b) is a U(4) group ele-
ment. However, since the quadrupole interaction is weak
relative to the d dipole interaction, it is simpler to treat
it also as a perturbation similar to the d, dipole term. In-
cluding ¥, in addition to V,, we find

Ub)=Uy(b)[1+8U,+8U,], (4.5)
where 8U, is given by
8U, =—i 2 (7
hzk fA
Expressing (pTXﬁ)(2
Sec. III C), we obtain

dz Uy ' (b,2)V,(r)Uy(b,z) . (4.6)

in terms of the tensors T, (see

Uglp” P)yIUy= 2 hz(t})w 2T m > 4.7)
where
hMM#(6)= > (Im1m'{2u)Dy, ,,(0)D3y. . (6) . (4.8)
MM
Therefore $U, in Eq. (4.5) is
meq
8U —lﬁ 2 0 2 EMM'(b)T(lM)(lM') ’ (4.9)
5 #k s i
where
w Y3.(r)
Exm(b)= dzS —+*——n (6) (4.10)
MM f_w g(rz_’_R(z))z/z MM#

Notice that the operator (4.9) is a combination of rota-
tional tensors with rank O, 1, and 2. If we neglect the
noncommutation of U,(b) and Q, in Eq. (4.6), then only
a second-rank tensor (Q,) is present. Since in (2.2) we
take r=(b /r,0,z /r), we have in (4.10)

1/2
a~ z?
Y1,0(T) Tor 37—‘1] ,
l/Zb
~ — z
Y, @)= . 7 , (4.11)
1/2
A 15 b?
Y, (0= . e

To illustrate the importance of the quadrupole interac-
tion we compare in Fig. 1 the cross sections for e +HF at

Elastic v'=0 Inelastic v'=1
™
n
~
o~
°Z
c
°
~
5
S
1
0 50 100 150
6(deg)
FIG. 1. The differential cross sections for the scattering of

electrons from HF at E =3 eV. Left column: v'=0 channel.
Right column: »'=1. Shown separately are the cross sections
to excite the j'=0,1,2 and 3+4 states and the summed cross
section over all rotational states (bottom row). Dotted lines:
with the dipole interaction. Dashed lines: with the addition of
the quadrupole interaction. The solid lines are obtained with
the inclusion of the quadrupole and monopole polarization in-
teractions, so that the full interaction (3.16) is considered. The
data points (dots) are taken from Ref. [9].

E =3 eV with both quadrupole and dipole interactions
(dashed lines) against the corresponding cross sections
computed with only a dipole interaction (dotted lines).
The parameters used are determined as explained below
in Sec. V. In the vibrational elastic channels, we see that
the inclusion of the quadrupole interaction affects strong-
ly the j'=2 and j'=3-+4 channels (where the cross sec-
tions are increased between one and two orders of magni-
tudes), while the j'=0 and j'=1 channels are much less
affected. The change in the summed elastic cross section
(v =0—v'=0) is rather small, but in agreement with the

data. In the vibrationally inelastic channels (v'=1), there
is a significant effect also for j'=0 and j'=1 at backward
angles. The summed inelastic cross section

(v =0—v'=1) increases significantly, especially at back-
ward angles.

C. Polarization potential
The quadrupole polarization interaction

49

V(Z):'—g“ao Eyzy? e (p xﬁ);f)
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is proportional to the anisotropic polarizability a’ and
has a form similar to the quadrupole interaction (4.4), ex-
cept that a,(r) is replaced by (47 /5)ay(r)(a’/6,). The in-
clusion of VI',Z) is thus straightforward and leads to

U(b)=Uy(b)[1+8U,+8U, +8U ], (4.13)
with
.47 me? , 4o
BUAZ)Z’?WO‘ 2 2 X O T a1, 4.14)
and
o Y3,(3)
Xub)= [© dz 3 mh;},{,.uw) . 4.15)

m

The monopole polarization potential is too strong to
treat in an eikonal approximation. We therefore use a
distorted-wave eikonal approximation developed in Ref.
[6], where the monopole polarization is treated exactly
but the other interactions are treated in the eikonal ap-
proximation. In this approximation

1 poo
L@y =ki fo bdb ), p,(qb)

Imf—m‘-(—

X{fISBUMb)—|i) . (4.16)

Here U (b) is the propogator due to all interactions ex-
cept the monopole polarization, while S(b) is the
impact-parameter representation S matrix of the polar-
ization potential alone. For U(b) we use (4.13). To find
S (b) notice that the exact scattering amplitude f(6) due
to a monopole polarization potential

Vi9=qyra , 4.17)

P
can be written in the impact-parameter representation
[18] as

f(e)=—ik fowbdeO(qb)[S(b)—l]. (4.18)

The amplitude f(6) can be calculated from the partial-
wave expansion

£(0)=3 (21 +1)f,P/(cos) ,
!

(4.19)

where f,=(e?®—1)/2ik are the partial-wave ampli-
tudes. The phase shifts §, can be calculated numerically
using the Numerov method [19]. The relation of f; to
S(b)is

f1=—ifowdezH,(Zkb)(S(b)—l). (4.20)

It is possible to invert (4.18) in order to express S(b) in
terms of f(8). For that purpose we use the orthogonality
relation [20] of the Bessel functions of odd order

1

w dx _
fo - am #1021 ()= S, (421)
Expanding
b[S(b)—1]=3 ¢;(k)y +1(2kb) , (4.22)

1

we obtain, using Egs. (4.21) and (4.20),
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=221 +1)f, . (4.23)
Thus

4.24)

S(b)—1=2% S (20 +1)f 1y +1(2Kb) .
1

We note that {J,,,,(x)} is not a complete set and it is a
priori not clear that (4.22) is possible. We can instead use
(4.24) as the definition of S(b). Equation (4.20) follows
then from the orthogonality relation (4.21). Expanding
Jo(gb) in the Legendre polynomials

2l +1

!

we can derive (4.18) from (4.20) and (4.19). For large b,
the potential is weak and we expect S (b) to approach the
eikonal limit

S (b)=exp ——i;’;’; f_:dz vi%b,2) | . (4.26)

The inversion of (4.18) is not unique and unfortunately
the solution (4.24) does not approach (4.26) for large b. It

Re S

2.0

. P
1.0
05 | F
0.0 H E=2.9eV L

15

1.0

0.5 [/

0.0 E=5.0eV [
16

1.0 ‘/—‘"
0ot ¥
0.0 E=10.0eV -

FIG. 2. The impact-parameter representation S matrix S(b)
vs x =2kb (b is the impact parameter) for the monopole polar-
ization potential (4.17) of e +HCI at various collision energies.
Left column: real part of S(b). Right column: imaginary part
of S(b). The dashed lines are the analytic inversion (4.24),
while the solid lines are the numerical inversion that has the
correct eikonal limit at large b.
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TABLE II. Dipole moment (u,), dipole transition matrix element (R, ;), quadrupole moment (6,),
and polarizabilities (@ and a’) for the molecules LiF, HF, and HCL. In brackets next to each value is the
reference from which it is taken. We have used experimental values if known. Otherwise we have used
ab initio calculations (denoted by «). T denotes references where theoretical calculations are combined

with experimental values to infer the quoted quantity.

02 03 °3

Molecule u, (D) R,, (D) 0, (e A) a (A) a' (A7)
LiF 6.58 [21] 0.2718 [21]° 1.207 [17] 1.57 [24]* —0.01 [24]*
HF 1.827 [25) 9.85X 1072 [22] 0.491 [17) 0.8 [26] 0.16 [26]
HCI 1.108 [25] 7.12X107? [23] 0.786 [17] 2.15 [27] 0.19 [27)'

is, however, possible to construct a solution to (4.18) that
does approach the eikonal limit by using a numerical
technique described in Ref. [6].

Solving (4.18) for S(b) is equivalent to solving (4.20),
using the known partial amplitudes f;. Choosing b to be
such that the eikonal approximation (4.26) is good for
b > b, we rewrite (4.20) as

fi=F—i f: db Jy  ((2kb)[ Sy (b)—1],  (4.27)
where

_ Y

Fi=—i fo dbJy . (2kb)[S(b)—1] . (4.28)

£ can be calculated from the known f; and S;, (b) given
by (4.26). It then remains to solve (4.28) for S(b). We
have done this by iterations as described in Ref. [6], ex-
cept that we have used a cubic spline interpolation rather
than a Lagrange interpolation.

Figure 2 shows the impact-parameter representation
S (b) for the polarization monopole potential of HCI at
different collision energies. The dashed lines are the ana-
lytic inversion (4.24) and the solid lines represent the nu-
merical inversion that satisfies the eikonal limit (4.26).
Notice the oscillatory behavior of the analytic S(b) at
large b’s (in particular for E =0.5 eV). The two different
solutions for S (b) get closer at higher energies.

The solid lines in Fig. 1 are the results of the calcula-
tions when the polarization potential is included in addi-
tion to the dipole and quadrupole interactions. A
enhancement is observed in the elastic v'=0, j'=0 chan-
nel in agreement with the data. The effect in all other
channels is small.

V. APPLICATIONS

In this section we compare the results of our calcula-
tions with experimental data for electron scattering off
LiF, HF, and HCI. We describe these molecules by an

O(4) Hamiltonian where the number of bosons N is given
in Table III. The molecule dipole parameters d, and d,
are determined from the measured dipole moment u, and
the infrared transition matrix element R, using Egs.
(3.32) of paper I. Since only R%,l is measured, we know
IRo,;| but not its sign. The sign is determined by com-
paring with ab initio calculations [28]. When R, is not
measured we determined it from a calculation. The
quadrupole parameters g, in (3.18) are determined from
(3.24) and (3.29) using the measured quadrupole moment
©,. Table II provides the experimental dipole and quad-
rupole parameters ., R, |, and ©, while Table III pro-
vides the model parameters d), d,, and gq,,.

A. e +LiF

Here the number of bosons is relatively large, N =113.
The total vibrational elastic and inelastic cross sections
due to the dipole interaction were already discussed in
paper I (see Figs. 3 and 4 of I). In Fig. 3 we show the
cross sections to individual rotational states (j'=0,1,2
and 3+4) for E =5.44 eV. We show the cross sections
with the dipole interaction (dotted lines); with dipole and
quadrupole interactions (dashed lines); and with dipole,
quadrupole, and polarization interactions (solid lines).
The quadrupole moment of LiF is quite large so the
correction due to the quadrupole interaction is substan-
tial even in the j'=0 and j'=1 channels (in particular at
backward angles). The effect of the polarization potential
is small even in the j'=0 elastic channel.

B. e +HF
Figures 1 and 4-6 show the e +HF elastic
(v=0—v'=0) and inelastic (v =0—v'=1) scattering

cross sections for a series of energies between 0.63 and 10
eV. In each vibrational (v’) channel we show separately
the cross section for j'=0,1,2 and 3+4 as well as the

TABLE III. Vibron model parameters used in the electron scattering off LiF, HF, and HCI. N is the
number of bosons, d, and d, are the dipole operator parameters [see Eq. (3.17)], and g, is the quadru-
pole operator parameter [Eq. (3.18)]. R is the cutoff parameter for the dipole and quadrupole interac-
tions, while R, is the cutoff parameter of the polarization potential.

Molecule N dy (e A) d,(eA) g0 (e A) R, (A) Ry, (A)
LiF 113 173X 1072 —0.469X10* 1.62X 102 0.5 1.8
HF 44 1.14X 1072 —0.694X107* 1.65X 102 0.5 1.0
HCI 55 0.606 X 102 —0.360Xx10°* 2.13X1072 0.5 1.3
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summed cross section. The dotted lines are results with Elastic v'=0 Inelastic v'=1

only a dipole interaction, while the dashed lines include 10} feb \6* f=0

the quadrupole interaction. In the vibrational elastic
channels (v’ =0) the quadrupole interaction affects mostly
j'=2 and j'=3+4. The corresponding increase in their
cross sections due to the inclusion of a quadrupole in-
teraction is larger at higher energies. The solid lines
show the calculations that include the polarization in-
teraction. The quadrupole part of the polarization is
weak and is responsible for small corrections. The mono-
pole part, however, is strong and affects mostly the elastic
J'=0channel. The cutoff parameter R, =1 A is close to
the internuclear separation R, =0.9168 A. We expect to
obtain good results at forward angles that are not much
affected by the particular choice of the cutoff. Various
cutoff models have been suggested in the literature and
they may lead to different results at larger and backward
angles (dominated by smaller impact parameter).

At higher energies and at backward angles the calcula-
tion underestimates the data. The difference should be

accounted for by the exchange interaction, which is not ' 1o vt

do/dﬂ(xz/sr)
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FIG. 4. The differential cross sections for e +HF at E =0.63
eV. The data is taken from Ref. [9]. See Fig. 1 for details.
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FIG. 3. The differential cross sections for e +LiF at E =5.44
eV. Shown are the cross sections to individual rotational states
j'=0,1,2 and 3+4 in the vibrational elastic (v'=0, left column)
and the inelastic (v'=1, right column) channels. In the bottom
row are the summed cross sections. Dotted lines: with only a
dipole interaction. Dashed lines: with dipole and quadrupole
interactions. The solid lines correspond to the inclusion of the 0 50 100 150 o 50 100
polarization potential in addition to the dipole and quadrupole. 6(deg) 8(deg)
The various interaction parameters are given in Table III. The
data (dots) is taken from Ref. [14]. FIG. 5. As in Fig. 4, but for a collision energy of E =6 eV.
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FIG. 6. As in Fig. 4, but for E =10eV.

included in the present calculations.

Figure 7 shows the energy dependence of the vibration-
ally elastic (v'=0) and inelastic (v'=1) differential cross
sections at 6=90°. While our calculations in the vibra-
tional elastic channels (v =0, j =0—v’'=0, j') agree fair-
ly well with the data, the calculated inelastic vibrational
cross sections underestimate significantly the data. This
again reflects the larger importance of the exchange in-
teraction in the inelastic channel. Thus though the in-
clusion of more realistic dipole and quadrupole interac-
tions increases the inelastic cross section by one or two
orders of magnitude, it is still not sufficient to account for
the experimental data.

An interesting experimental observation [29] in the
scattering of electrons from hydrogen halides (such as
HF and HCI) is the existence of sharp threshold peaks in
the vibrational excitation cross sections. This observa-
tion was followed by extensive theoretical studies
[1(b),30]. The peaks were reproduced by solving the
coupled-channel equations for a model potential [31] and
in an ab initio adiabatic calculation [32] when short-range
exchange interactions are included. A more detailed ab
initio calculation [33], in which the vibrational motion is
treated nonadiabatically, led to an interpretation of the
peaks in terms of nuclear Feshbach resonances.

Since the present model calculation excludes the elec-
tronic degrees of freedom of the molecule and does not
include short range and exchange interactions, it cannot
reproduce the threshold peaks.
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FIG. 7. The vibrational elastic (v'=0) and inelastic (v'=1)
differential cross sections for e +HF at 6=90° vs the energy of
the electron. The solid lines are the algebraic eikonal calcula-
tions and the dots are the data [9].

C. e +HCI

We have carried a study similar to that of e +HF but
for the e + HCI system. Figures 8-11 show the e + HCI
elastic and inelastic scattering for several collision ener-
gies between 0.5 and 7 eV. The relevant parameters are
tabulated in Tables II and III. It is interesting to com-
pare the two systems. The HCI molecule is bigger
(R,=1.274 A) than the HF molecule, so that
Ry, =13 A is also chosen to be larger accordingly. The
polarizability of HCI is relatively large compared with
HF. The monopole polarization interaction is thus
stronger and affects much more the j'=0 channel of HCIL.
This agrees nicely with the data. The quadrupole mo-
ment of HCl is larger than that of HF and is indeed seen
to have a stronger effect in the j'=2 and j'=3+4 chan-
nels. The cross section in the j'=3+4 channel is un-
derestimated, probably since higher multipoles are
neglected.

To compare the HF and HCI systems, notice that a
relevant dimensionless scale is kR,, with R, the internu-
clear separation. Since k < V'E, we find that in order to
have the same value of kR,, the energy for the e + HCI
system should be smaller by about a factor of 2 than the
energy for e +HF. When comparing the e +HF and
e +HCI systems at such respective energies, we indeed
see a similar quality of the fit to the data.
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FIG. 8. The differential cross sections for vibrational elastic FIG. 10. Asin Fig. 8, but for E =5¢V.
and inelastic scattering of e +HCl at E =0.5 eV. The data is
taken from Ref. [9]. See Fig. 1 for details.
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FIG.9. Asin Fig. 8, but for E =2.9 ¢V. FIG. 11. Asin Fig. 8, but for E =7 eV.
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Detailed coupled-channel calculations [2] for e +HCI,
which include exchange in addition to static and polar-
ization interactions, reproduce well the energy depen-
dence of the vibrationally elastic cross sections even at
higher energies. The inclusion of an exchange interaction
also results in an order-of-magnitude increase of the cross
section for the vibrationally inelastic channels [10]. The
failure of our calculations at higher energies and in the
vibrationally inelastic scattering is because we have not
yet included the exchange interaction in the algebraic ap-
proach.

VI. CONCLUSIONS

We have applied the generalized algebraic eikonal
framework of paper I to electron-molecule scattering
with more realistic interactions than previously included
in this approach [5]. Our calculations, which use an im-
proved dipole, a quadrupole, and polarization interac-
tions are compared with data of electron scattering from
LiF, HF, and HCl. The agreement with the experiment
in the vibrational elastic channels (for different rotational
states) is good. In the vibrational inelastic channels there
is a strong enhancement when compared with the calcu-
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lations of Ref. [5], but we still underestimate the data, in
particular at backward angles. This is mainly because we
have not yet included the short-range exchange interac-
tion [2,8,12,13] in our algebraic formulation. The in-
clusion of such an interaction can be done in a phenome-
nological way using the local free-electron gas exchange
interaction [10]. A better way will be to use an algebraic
extension [34] of the vibron model, which includes the
electronic degrees of freedom. A secondary reason for
the discrepancy at large angles may be due to the sudden
approximation. Our generalized framework allows the
algebraic evaluation of corrections to the sudden approxi-
mation (to all orders in the coupling). For the dipole in-
teraction these corrections diverge, but for other interac-
tions (e.g., quadrupole) they are convergent. It will be in-
teresting to investigate these corrections.

ACKNOWLEDGMENTS

This work was supported in part by Department of En-
ergy Grant No. DE-FG-0291ER-40608. Y.A. acknowl-
edges support from the A.P. Sloan Foundation.

[1] (a) N. F. Lane, Rev. Mod. Phys. 52, 29 (1980); (b) D. W.
Norcross and L. A. Collins, Adv. At. Mol. Phys. 18, 341
(1982).

[2] N. T. Padial, D. W. Norcross, and L. A. Collins, Phys.
Rev. A 27, 141 (1983).

[3] A. Jain and D. W. Norcross, Phys. Rev. A 32, 134 (1985).

(4] B. 1. Schnieder, T. N. Rescigno, and C. W. McCurdy,
Phys. Rev. A 42, 3132 (1990).

[5] R. Bijker, R. D. Amado, and D. A. Sparrow, Phys. Rev. A
33, 871 (1986); R. Bijker and R. D. Amado, ibid. 34, 71
(1986).

[6] R. Bijker and R. D. Amado, Phys. Rev. A 37, 1425 (1988).

[7] F. Iachello and R. D. Levine, J. Chem. Phys. 77, 3046
(1982).

[8] Y. Alhassid and B. Shao, preceding paper, Phys. Rev. A
46, 3978 (1992).

[9] N. Radle, G. Knoth, K. Jung, and H. Ehrhardt, J. Phys. B
22, 1455 (1989).

[10] N. T. Padial and D. W. Norcross, Phys. Rev. A 29, 1590
(1983).

[11] F. A. Gianturco and D. G. Thompson, J. Phys. B 10, L21
(1977).

[12] S. Hara, J. Phys. Soc. Jpn. 22, 710 (1967).

[13] Y. Itikawa and O. Ashihara, J. Phys. Soc. Jpn. 30, 1461
(1971).

[14] L. Vuskovic, S. K. Srivastava, and S. Trajmar, J. Phys. B
11, 1643 (1983).

[15] O. S. van Roosmalen, Ph.D. thesis, Groningen, 1982.

[16] K. T. Hecht and S. C. Pang, J. Math. Phys. 10, 1571
(1979).

[17] A. A. Radzig and B. M. Smirnov, Reference Data on
Atoms, Molecules, and Ions (Springer-Verlag, Berlin,

1985).

[18] T. Adachi and T. Kotani, Prog. Theor. Phys. Suppl. Ext.
316 (1965); T. Adachi, Prog. Theor. Phys. 35, 463 (1966);
T. Adachi and T. Kotani, ibid. 35, 485 (1966).

[19]S. E. Koonin, Computational Physics
Cummings, Menlo Park, CA, 1986).

[20] 1. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,
Series and Products (Academic, New York, 1980), Eq.
(6.538).

[211H. J. Werner and W. Meyer, J. Chem. Phys. 74, 5802
(1981).

[22] R. N. Sileo and T. A. Cool, J. Chem. Phys. 65, 117 (1976).

[23] E. W. Kaiser, J. Chem. Phys. 53, 1686 (1970).

[24] H. F. Diercksen and Andrzej J. Sadlej, Chem. Phys. Lett.
153, 93 (1988).

[25] C. E. Miller, A. A. Finney, and Fred W. Inman, At. Data
5,1(1973).

[26] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecu-
lar Theory of Gases and Liquids (Wiley, New York, 1954).

[27] L. A. Collins, R. J. W. Henry, and D. W. Norcross, J.
Phys. B 13, 2299 (1980).

[28] H. J. Werner and P. Rosmus, J. Chem. Phys. 73, 2319
(1980).

[29] K. Rohr and F. Linder, J. Phys. B9, 2521 (1976).

[30] M. A. Morrison, Adv. At. Mol. Phys. 24, 51 (1988).

[31] M. R. H. Rudge, J. Phys. B 13, 1269 (1980).

[32] T. N. Rescigno, A. E. Orel, A. V. Hazi, and B. V. Mckoy,
Phys. Rev. A 26, 690 (1982).

[33] L. A. Morgan and P. G. Burke, J. Phys. B 21, 2091 (1988).

[34] A. Frank, R. Lemus, and F. Iachello, J. Chem. Phys. 91,
29 (1989).

(Benjamin/



