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Low-energy behavior of few-particle scattering amplitudes in two dimensions
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A study of the analytic behavior of difFerent few-particle scattering amplitudes at low energies in
two space dimensions is presented. Such a study is of use in modeling and understanding different
few-particle processes at low energies. A detailed discussion of the energy and the momentum
dependence of the partial-wave on-the-energy-shell and ofF-the-energy-sheQ two-particle t matrices
is given. These t-matrix elements tend to zero as the energy and momentum variables tend to zero.
The multiple-scattering series is used to show that the connected three-to-three amplitudes diverge
in the low-energy-momentum limit. Unitarity relations are used to show that the connected two-to-
three and one-to-three amplitudes have speci6c logarithmic singularities at the m-particl. e breakup
threshold. The subenergy singularity in the two-to-three amplitudes is also studied, and comments
are made on some applications of the present study in difFerent problems of physical interest.

PACS number(s): 03.65.Nk

I. INTRODUCTION

R cently, there hm b~n a g eat de@ of activity in
the studying and modeling of few-particle problems in
two space dimensions, both theoretically [1—6] and ex-
perimentally [7—10]. Since it is now possible to experi-
mentally study two-dimensional systems such as helium
adsorbed on graphite [10], spin-polarized hydrogen (H$)
[5,7—9] recombining on a helium film, and mulgiparticle
bound states on monolayers of quantum gases [10], there
has been growing interest in the theoretical study of the
quantum-mechanical few-particle problem in two dimen-
sions.

Also, in the recent past there has been a number of in-
teresting studies on the quantum and statistical mechan-
ics of anyons [11],which are elementary particles in two-
space dimensions having continuous fractional spin and
thus interpolating between boson and fermion properties.
The possibility of the existence of anyons has increased
the relevance of the study of quantum and statistical me-
chanics in two-space dimensions.

In this paper we present a systematic study of the ana
lytic structures of difFerent few-particle scattering ampli-
tudes in two-space dimensions at low energies, considered
as functions of center-of-mass energy and momenta in
the initial and final states. A knowledge of such analytic
properties at low energies has proved to be of great rele-
vance in the study of quantum-mechanical few-particle
problems in thr""=space dimensions [12]. One cannot
usually solve multiparticle-scattering problems exactly;
instead, one makes use of simple, tractable models of such
processes. Nevertheless, the analytic singularity struc-
ture of exact multiparticle amplitudes is of practical in-
terest. It provides guidance in the construction of models

of the actual physical processes, because these singulari-
ties are often crucial in the reproduction of experimental
results. A knowledge of such analytic properties of few-
particle scattering amplitudes in three-space dimensions
has revealed the existence of unique and strange effects,
such as the Thomas and Efimov effects [12,13]. In two-
space dimensions the absence of these effects follows from
a consideration of the above-mentioned analytic proper-
ties [4].

Although the study of such analytic properties at low
energies in two-space dimensions is not expected to di-
rectly yield the experimental results, there are implica-
tions for physically relevant quantities that one can ex-
tract from such study. The low-energy behavior of con-
nected few-particle scattering amplitudes can be used to
find the low-temperature behavior of cluster coefficients
in quantum-statistical mechanics [14—16]. This could
provide a useful check on recent calculations of cluster co-
efficients for anyons [11]. Such studies are also expected
to find applications in other areas in understanding or
modeling physical processes in two-space dimensions, an
important example being surface recombination of spin-
polarized hydrogen atoms.

Reasonably complete discussions of these analytic
properties at low energies have appeared for few-particle
systems in thr=-space dimensions [17—20]. Virtually
nothing is known about these properties at low energies
in two-space dimensions for the m-particle system with
m & 2. In the present work, we give a systematic ac-
count of these analytic properties in two dimensions for
the two- and the three-particle system and provide some
general arguments, wherever possible, regarding vrhat to
expect for systems involving more particles.

We present a discussion of the low-energy behavior
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of the various two-particle partial-wave t-matrix ele-
ments, both on-the-energy-shell (on-shell) and off-the-
energy-shell (off-shell), in two dimensions. In contrast
to the three-dimensional case, the on-shell partial-wave
t-matrix elements in two dimensions tend to zero as the
center of mass (c.m. ) energy tends to zero. We relate the
off-shell t-matrix elements to the on-shell ones and hence
predict their low-energy behavior as the energy and mo-
mentum variables tend to zero; a significant feature is
that the two-particle t matrix has a logarithmic singu-
larity as the c.m. energy tends to zero. We also present
a discussion of the effective-range expansion for various
partial waves.

Next, we study the low-energy behavior of the con-
nected three-particle scattering amplitude from a con-
sideration of its multiple-scattering (MS) series. Similar
use has been made of the MS series to study the ana-
lytic properties of the few-particle amplitudes in three
dimensions [12]. Such an analysis does not rely on the
convergence of the MS series, but only on the very plau-
sible assumption that the singularities present in the in-
dividual terms of this series are also present in the full
amplitude. As the c.m. energy E of the three-particle
system tends to zero, we find that the connected three-
to-three scattering amplitv, de has the divergent behavior
given by Eq. (46) below. 'I'his has consequences for the
low-temperature behavior ot the third quantum virial co-
eEcient in two dimensions.

We also study the low-energy behavior of the two-to-
two and the two-to-three scattering amplitudes of the m
particle system, using the unitarity relations satisfied by
these amplitudes. Such studies have already appeared
for the three-dimensional case [12]. Unlike the connected
three-particle scattering amplitude, these amplitudes are
finite as the c.m. energy E tends to zero, but they do
have branch-cut singularities as E tends to zero. For
example, the two-particle scattering amplitude tends to
zero at low energies, but it has a logarithmic singularity
under these conditions. The two-to-two amplitude de-
velops specific logarithmic singularities at the m-particle
threshold. The two-to-three amplitude is shown to pos-
sess an infinite number of branch points at E=O of the
form ln "(—E), n = 1, 2, 3, . . . . Finally, we study the
subenergy singularity in the two-to-three scattering am-
plitude using the subenergy unitarity [12]. This is of
interest in the study of the breakup spectrum in two di-

mensions.
The plan of the paper is as follows. In Sec. II we

study the low-energy behavior of the two-particle ampli-
tudes. We present a description of the basic equations, a
parametrization of the partial-wave t matrix using phase
shifts, a description of unitarity and the optical theo-
rern, and an account of the effective-range expansion and
the low-energy behavior of the on-shell t matrix. We also
study the off-shell t matrix in some detail, again with em-

phasis on its low-energy behavior. In Sec. III we study
the behavior of three-particle amplitudes, showing that
at low energies the connected three-to-three amplitude
diverges. In Sec. IV some interesting low-energy singu-
larities in the two-to-two and two-to-three amplitudes are
studied. Finally, in Sec. V we present a brief summary.

II. TWO-PARTICLE AMPLITUDES

A. Basic equations

t(E) = vu)(E),

which then satisfies

~(E) = 1+gp(E)v~(E).

(2)

We take as a basis the free-particle momentum eigen-
states

I
k & whose space representation is

1
(r I

k) = —exp(ik r).2'
The free-particle Green's function is then

(4)

(r'
I gp(E) I r) = —4&p" (Ir' —r

I ~&),

where Hp is a Hankel function of the first kind.
We need the following partial-wave expansions [21,22]:

l(r I k) = —) a~i'cos(t8) Jt(kr),
t=o

(6)

1 - t(r
I
u)(E) I k) = —) c(i' cos(l8)u)i(r, k; E),2r =

(k'
I t(E) I k} = —) Eti c s(ol8) (tkt', k; E),

2~ =

(r'
I gp(E) I r)

OO

= ——) et cos(t8) Ji(v Er()H|i'l(V Er)), (9)

where et = 2 for l g 0 and ep = 1; 8 is the angle between

the two vectors and r& (r&) is the smaller (larger) of r
and r'. From Eq. (3) we have

(—hp + E —v)~(E) = E —hp. (10)

If we take a representation of Eq. (10) between (r I
and

I k) and expand the relevant quantities in partial waves

we obtain the following differential equation for the

We consider the scattering of a particle of mass p in two
dimensions by a short-range central potential v(r). We
use units where h /2p = 1, and assume that the phase of
E is chosen so that Im ~E & 0. The two-particle t oper-
ator at (complex) energy E is defined by the Lippmann-
Schwinger equation

t(E) = v+ vgp(E)t(E), (1)

where gp(E)—:(E—hp+i0) is the free Green's function
and hp is the free Hamiltonian. In the physical region of
interest E is assumed to contain a small positive imagi-

nary part. It is convenient to introduce the wave operator
~(E) defined by
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partial-wave components cubi (r, k; E):

18(01 lz
——

~

r —
~

——+ E —v(r) uri(r, k; E)re ( Br) rz

behavior. The basic quantities are the phase shifts bi(k),
and their form at low energies has been the subject of
a number of recent investigations [23—25]. A fundamen-
tal result, first emphasized by Bolle and Gesztesy [23], is
that the efFective-range expression

= (E —k )Ji(kr). (11) k '[(7r/2) cot bi —ln k] (18)
This equation shows that uq(r, k;E) can be looked
upon as an off-shell radial wave function [17,18], with
~~(r, k;kz) just the usual radial wave function. From
Eq. (3) one can also obtain an integral representation for
u)i(r, k; E),

7rl
pi~(r, k; E) = Ji(kr) —— r'dr'Ji(u Er&)

2 p

xHii'1(WEr&)ti(r', k; E).
(12)

Examining the form of Eq. (12) as r ~ oo, and using
the relation

t~(k', k; E) = r'dr'Ji(k'r')t~(r', k; E),
p

we obtain

Ai(E) = n(E '++i iE '+ + (20)

This enables us to find low-energy expansions for the on-
shell t-matrix elements. Rewriting Eq. (16) in the form

has an expansion in powers of k~ which is convergent or
asymptotic, depending on the potential. The noteworthy
feature is the occurrence of the logarithmic term in Eq.
(18). In three dimensions this logarithmic term is absent
and the effective-range expression is k'cot 6~. In fact,
such a logarithmic term is present only for even space
dimensions (2, 4, . . .). In terms of the energy E = kz, we
have [21]

cot 6i = Ai(E) + (1/s') ln E,

where A~(E) contains no logarithmic terms, and pos-
sesses an expansion

cu~(r, k; E) ~ Ji(kr) ——H& (v Er)ti(y E, k; E),

as r ~ oo. (14)

t((E)—:t((k, k; k ) = (2/s—)(cot 6( —i)

we have, from Eq. (19),

(21)

If we take the radial wave function to have the standard
asymptotic form [17,22]

W

u)((r, k, k ) e's' cos kr ——(l + -') + 6(
mkr 2

as T ~oo)

ti(k, k; k ) = ——e' ' sin 6'i.
7r

(16)

This expression for the partial-wave t matrix satisfies the
following on-shell unitarity relation

Imti(k, k;k ) = ——~ti(k, k;k )] .
2

A complete account of ofF-shell unitarity relations for the
partial-wave t matrix and the relation of this partial-
wave t matrix to the physical scattering amplitude has
appeared elsewhere [21].

B. On-sheil behavior

We are interested in the low-energy behavior of scat-
tering quantities, and start by investigating their on-shell

where 6i
—= 6i(k) is the phase shift for the lth partial wave,

then Eq. (14) can be used to show that the on-shell t-
matrix element has the following expression in terms of
the phase shift:

ti(E) = —(2/m) [A~ (E) + (1/n') ln( —E)] (22)

Since the analytic continuation of t~(E) to real negative
energies must be real, this relation shows that A~(E) is
a real function of E.

The low-energy expansion of the t matrix can be found
from Eqs. (20) and (22). We now investigate this in
some detail. There are two points of particular interest.
First, the expansion is qualitatively different for l = 0,
where the ln( —E) term dominates, as compared to l )
1, where E' dominates. Second, the leading coefficients
in this expansion can be given a physical interpretation,
analogous to the familiar scattering length and effective
range of three-dimensional scattering.

We first consider the l = 0 (s-wave) case. A possible
parametrization is

kl—cotbp —
~
p+ln —

~

= ——+ 2rpk +, (23)
2 2p ap

with ap the "scattering length" and rp the "efFective
range. " The constant p = 0.57721... is Euler's constant.
We note that other parametrizations are possible [23—25]
and, in particular, that in practical applications there is
good reason to introduce a further quantity R so that
the logarithmic term becomes ln(Rk/2) and ap is corre-
spondingly modified [25]. Because of the presence of the
logarithmic term in Eq. (23) the numerical value of the
scattering length, ap, depends on the dimension of en-

ergy E or of momentum k. In three dimensions this log-
arithmic term is absent and in the usual efFective-range
expansion,
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1
k cot bp ————+ &rpk,

ap
(24)

the numerical value of the scattering length a0 does not
depend on the dimension of momentum employed. Thus
there is an inherent uncertainty in defining the scattering
length in two dimensions.

If we use Eq. (23) in Eq. (21) we obtain the expansion

2b2

ln( —E) [ln( —E)] [ln( —E)]
2r((E 4br() E t' E

[»(—E)]' [ln( —E)]' &»(—E)l'& '

(25)

where b = 2(p —ln 2 —1ja()). As E ~ 0 only the terms
in the first bracket, which is simply the expansion of
—2[in( —E)+b] ~, are important. However, for E not too
small some of the other terms, which are all of the form
E'/[ln( —E)]"with i & 1 and n & 2, may be important.
Note that t()(E) k 0 as E -+ 0; this is to be contrasted
with the three-dimensional case where the zero-energy
s-wave t matrix is proportional to the scattering length.

For the / = 1 partial wave (p wave) the phase shift at
low energies can be parametrized as

where c = p —ln 2+ zrq . For small E these terms are
much smaller than the leading terms in the expansion of
the s-wave amplitude given in Eq. (25).

For general l & 1 the leading term in the expansion of
t((E) will involve E', and the first logarithmic term will

enter as Ez(ln( —E); that is, the form of the low-energy
expansion is

t((E) = P(E(+P(~)E(+ + "+p„E"ln( —E)+". .

(28)

C. OfF-shell behavior

In order to study three- and more-particle effects we

may need the two-particle t matrix ofF the energy shell. In
particular, we want the low-energy behavior of the fully
off-shell t-matrix elements t((k', k; E), where k', k are ar-
bitrary real quantities and, as usual, E is considered to
be complex with Im E & 0. We start by deriving a gen-
eral relation between this quantity and the half-off-shell

t matrix, t((~E, k; E). Similar relations have appeared
in the three-dimensional case [15,18].

Let us start by defining the quantity

( kl
k —cotbi —

l p+» —
l

= ——+ 2rik +
.2 i

(d((r, k; E) = J((kr) ——H( (VEr)t((v E, k; E).l (29)

(26)

where aq and rq are the p-wave scattering length and
efFective range, respectively. Equation (26) yields the
following low-energy expansion for the p-wave t matrix:

t((E) = aqE+&a(E ln( —E)+a&cE +O(E [ln( —E)] ),
(27)

I

From Eq. (14) we see that (d((r, k; E) is the asymptotic
form of the off-shell wave function (d((r, k; E). From Eqs.
(2) and (3) we have

t( )=[A( )1 [( )

If we consider the matrix representation of Eq. (30) be-

tween the plane-wave states (k'
]

and
~
k), we obtain

(k'
} f(E) ) k) = (E —k'~} f d2r(k'

) r)((r
~
td(E)

~
k) —(r ( k)). (31)

If we use the partial-wave expansions, Eqs. (6)—(9), in Eq. (31) we immediately obtain the following integral
representation of the off-shell partial-wave t-matrix elements:

t((k', k;E) = (E —k' ) rdr J((k'r) [ur((r, k;E) —J((kr)]. (32)
0

Using Eq. (29), if we substitute for J((kr) in terms of U(, Eq. (32) can be rewritten as

t((k', k; E) = (E —k' ) r dr J((k'r) [~((r, k; E) —~((r, k; E)]
0

OO

(E —k' ) r d—r J((k'r) —H(~ l (V Er)t((V E, k; E).
0

l

The second of the integrals in this equation can be evaluated using the following standard result:

f

�24
1 p l

r dr J~(pr)E& (sr) = ——
z z (

—),
which is valid for l & 0 and Im s & 0. Using Eq. (34), Eq. (33) can be rewritten as

(34)

k' OO

t((k', k;E) =
~ ~

t((v E, k;E)+ (E —k' ) rdr J((k'r)[u((r, k;E) —ur((r, k;E)].
I E) ''

0
(35)
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This is the required relation between the fully-off-shell and the half-off-shell t-matrix elements. Using the partial-wave
expansions Eqs. (6)—(8) in the fully off-shell matrix element of Eq. (2) we obtain the following relation, after some
straightforward algebra:

tt(k', k; E) = r dr v(r) Jt (k'r)~~ (r, k; E).
p

(36)

If we put k = ~E in Eq. (35), we obtain the following relation between the half-off-shell t-matrix elements and the
on-shell t-matrix elements:

k' OO

t~(k', v E;E) =
~ ~

t~(E)+ (E —k' ) rdrJ~(k'r)[u~(r, V E;E) —V~(r, VE;E)].
p

(37)

Here, ur~(r, ~E; E) is just the usual radial wave function
with asymptotic form given by Eq. (15).

We now wish to investigate the behavior of t~(k', k; E)
as all the quantities k', k, and E tend to zero. Again,
the s-wave case turns out to be somewhat different from
the l & 1 cases, and first we treat this case separately.
We start by considering Eq. (37) as E ~ 0. It fol-

lows from Eqs. (12) and (29) that both up(r, ~E; E)
and cup(r, ~E; E) behave like (lnE) as E -+ 0. This
leads us to define

yp = lim r dr ln( —E)[up(r, v E;E) —Up(r, v E; E)].E~p p

(38)

Then taking the low-energy-momentum limit of Eq. (37)
we obtain

tp(k, v E;E) tp(E) + (E —k' )

as k', E ~ 0. (39)

Similarly, the low-energy-momentum limit of Eq. (35)
yields

tp(k', k; E) tp(v E, k; E) + (E —k' )

as k, k', E ~ 0. (40)

From Eqs. (39) and (40) we obtain

tp(k', k; E) tp(E) + (2E —k'z —kz) yp

as k, k', E~0. (41)

The expansion given in Eq. (25) for tp(E) then gives

tp(k', k; E) = 2 2b

ln( —E) [ln( —E)]z
2hz (2E —k'2 —kz)yp

[ln( —E)]s ln( —E) (42)

It is interesting to note that the off-shell parameter gp
occurs before the effective-range parameter rp—the latter
only enters with the E/[ln( —E)] term. The constant yp
can be calculated given the potential v(r); for example,
for hard disks of diameter a it is —az/2.

A similar analysis can be performed for l & 1. In this
case, the appropriate off-shell parameter is

l+1
y~ = lim, ,

r'+ drk [~~(r, k;E) —V~(r, k;E)]
t Q

tq(k', k; E) = k'k[aq + 2a~Eln( —E) + a~cE

+(2E —k'z —k2)yg + ],

andforl &2,

(44)

t)(k', k; E) = (k'k)'[P)+P(+gE+(2E —k' —k )y)+ ].
(45)

as k, E ~ 0. (43)

Then, following the exactly same steps used to derive Eq.
(42), we obtain for l = 1,

III. THREE- TO-THREE AMPLITUDES

In this section we shall discuss the low-energy be-
havior of the connected three-particle scattering ampli-
tude. Such a study is important for investigating the low-

temperature behavior of quantum cluster coefficients, as
we have emphasized in the Introduction. We shall in
particular show that as the three-particle center-of-mass
energy E tends to zero, the on-shell connected three-
particle amplitude T3 3 diverges like

A B t
rs s-E ~, +, + 4 +".~,

(ln (—E) ln (—E) ln (—E) )
(46)

where A, B,C, . . . are constants which are completely
determined by the low-energy behavior of the on-shell
two-particle s-wave amplitude tp(E) which we studied in
Sec. II. We present a systematic way of calculating the
coefficients of all the divergent terms of Eq. (46).

As in Refs. [12] and [19] we find the divergent parts
of the connected three-particle amplitude T3 3 from a
study of the lower-order diagrams of the multiple scat-
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There cannot be, in general, a cancellation between the
various terms and hence the analytic properties obtained
from the study of a specific term of the MS series will be
present in the full physical amplitude.

We study the case of three particles with momenta
k1, kq, k3 in the c.m. frame going to momenta k'„k2, k3
after elastic scattering. The particles are considered to
have mass p, and we use units 5 = 2p = 1 throughout
the rest of the paper. Though the particles are consid-
ered to be of equal mass, we assume that they are distin-
guishable. These restrictions are imposed to simplify the
discussion, which can easily be extended to other cases.
We have for the total c.m. energy

3 3

E = ) k,' = ) k", . (47)

Also, our working in the c.m. system implies

3 3

) k, =) k', =O. (48)

It is advantageous to work in terms of dimensionless mo-
mentum variables y, and y', defined by

k, = ~Ey, , A,", = WEy', , i = 1, 2, 3. (49)
FIG. 1. Typical (a) second-, (b) third-, and (c) fourth-

order MS graphs in the c.m. frame. The circles indicate
two-particle t my, trices.

tering (MS) series, as shown in Fig. i. Although we
base our study on the MS series, our conclusion does not
rely on the convergence properties of this series. (In fact,
at low energies this series is usually a divergent one. )

I

We shall assume that at low energies k, k', etc. go to
zero linearly with v E.

The lower order diagrams in the MS series, as shown

in Fig. 1, will contribute to the divergent terms in Eq.
(46). The contribution of Fig. 1(a), a typical second-

order rescattering diagram, expressed in terms of y's,
1S

(2'v&(y1 -y2) It»[E(1 —2ys)] I ~E(y1+ 2 3)) (~E( + ) l,„[E(, 3
)] l vE(y, y, ))

E[1—y'1 —ys —(y1+ ys)'
(50)

where (k l t;~ (e) l
k') is the off-shell two-particle t matrix

of the pair ij from relative momentum k to relative mo-

mentum k' at c.m. energy e. At low energies the off-shell

two-particle t matrices t12 and t23 tend to zero, as we have

seen in Sec. II. But, as the leading low-energy behavior
of t12 and t23 is of the form ln "(—E), n & 1, at low

energies (E —+ 0) the expression (50) diverges because of
its energy denominator. It is easy to see that expression

(50) will contribute to all the constants A, B,C, . . ., of
Eq. (46). We shall not attempt to calculate the contri-
bution of Eq. (50) to various coefficients in Eq. (46). But
it is interesting to note that these contributions can be

I

I

calculated from the on-shell behavior of the two-particle
t matrix. The lowest-order correction to the off-shell two-
particle t matrix, as we have found in Sec. II, will not
contribute to the divergent terms of Eq. (46). We should
also remember that we shall have to consider all possible
permutations of particles in expression (50). Though we
shall not explicitly carry out such permutations in this
paper, they will be implied.

Next, let us consider the typical third-order rescatter-
ing diagram of Fig. 1(b), whose contribution to the con-
nected three-particle amplitude is given by

1 t12[E(1 2y3)]t23(E 2Q )t12[E(1—2y'3)]

(2n ) (E —2k —2q —2ks q) (E —2k'3 —2q2 —2ks q)
(51)
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The momentum levels of the two-particle t matrices in expression (51) are suppressed to save space. As it is reasonable
to assume that for a well-behaved short-range potential the middle t matrix tzs decays sufficiently rapidly to zero for
large q, the integral (51) is perfectly finite at the upper limit. So in order to find the divergent part of integral (51)
as E ~ 0 we introduce a cutoff parameter A in q. In order to get the most divergent part of integral (51) we employ
the lowest-order terms of the two-particle t matrices, given by Eq. (25), in Eq. (51) and we get as E ~ 0,

—8 A/~Z 1 1

(2x)2Eln (—E) p
dO xd2 2 2(1 —2ys —2z —2ys . x) (1 —2y's —2zz —2y is x) ln[(-z —1)E]g2 Q I 3 ) (52)

where dA represents integrations over angles of x de-
fined by x~E = q. As E -+ 0 and z ~ A/~E, the
(in[(szz2 —1)E]) i term of (52) tends to zero as A —+ 0,
and expression (52) diverges like E i ln (—E), as the
remaining z integral remains finite as E ~ 0.

Now, it is easy to realize that if we had kept higher-
order terms in the low-energy expansion of the two-
particle t matrices in expression (51) we would have found
terms divergent as E iln "(—E), n & 2 as E -+ 0,
which would have contributed to the coefficients of dif-
ferent terms in expression (46). It is also clear that the

I

higher order terms in the low-energy expansion of the off-
shell t matrix —the terms which are not contained in the
first square bracket of Eq. (42)—when substituted in ex-
pression (51) will not lead to any divergent terms. So the
third-order rescattering diagram of Fig. 1(b) contributes
to coefficients of all the divergent terms of expression
(46).

Next, the contribution of Fig. 1(c), a typical fourth-
order rescattering diagram, to the connected three-
particle scattering amplitude is

1 I t'~~t'~3t'i~~3i 1
(2~)4 (E —2ks2 —2q2 —2ks q)(E —2qz —2q' —2q q') (E —2q' —2k' —2q ki)

where both the energy and momentum variables of the t matrices have again been suppressed to save space. As
in the case of the third order rescattering diagram, the most divergent part of expression (53) can be calculated by
considering the lowest-order terms in the two-particle t matrices in expression (53). As before, both the q and q
integrations will be finite at the upper limit and one can introduce a cutoff A in q and q' as E ~ 0. The most
divergent part of expression (53) as E -+ 0 can be obtained by considering the lowest-order terms of the two-particle
t matrices and separating the radial and angular integrals as follows:

16 x=y=A/~E 1
dA dAy zdzydy

(2m) Eln (—E) ri. ii„" p (1 —2ysz —2z2 —2ys x) (1 —2z2 —2yz —2x y)

1

(1 —2y —2y'i —2y y ~i) ln[(-z —1)E]ln[(-y —l)E]2 /2 I 3 3 (54)

where dA~ and dAz represent integrations over the angles
of x and y defined by x~E = q, y~E = q', respectively.
As before, we shall be concerned with the upper limit of
z and y integrations as E ~ 0. Again the logarithmic
terms ln [(zz2 —1)E] and ln [(Iyz —1)E] under the
integral sign in expression (54) remain finite as E ~ 0
and z, y ~ A/~E. Hence, in the appropriate limit as
E ~ 0, the whole integral in expression (54) is finite
and this expression diverges as E ln (—E). It is now
easy to realize that if we had kept higher-order terms in
the low-energy expansions of the two-particle t matrices
in expression (53), we would have found terms divergent
as E ln (—E), n & 2 as E ~ 0 which would have
contributed to the coeKcients of difFerent terms in Eq.
(46). As in Eq. (51), if we keep the off-shell terms of
Eq. (42) in the two middle t matrices of expression (53),
we would find that this expression does not lead to any
divergent term at low energies.

In a similar way one can study the connected nth or-
der (n & 3) three-particle rescattering diagrams at low
energies. As we increase the order of multiple scattering
by one, we introduce one integration over an interme-
diate momentum, one energy denominator, and a two-
particle t matrix, which is clear from expressions (51)
and (53), when we go from second- to third-order rescat-
tering. By dimensional argument the two-dimensional
integration compensates for the energy denominator and
no new type of divergent term emerges as the new two-
particle t matrix does not diverge under appropriate lim-
its. Hence each of the nth order thr""-particle rescatter-
ing diagrams behaves as E ln "(—E), n & 2 as E —+ 0.

This rule seems to be true in general. The connected
m-particle scattering amplitude will also diverge as the
m,-particle c.m. energy E ~ 0. Prom a dimensional
argument it can be realized that the divergent terms will
behave as E &~ ~l ln "(—E), n & 2 as E ~ 0. The
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coefficients of these divergent terms can be calculated,
in principle, from the leading low-energy behavior of the
on-shell two-particle t matrix in two dimensions.

The divergent behavior of the connected three-particle
amplitude was conjectured by Gibson [16] in his study of
quantum cluster coeKcients in two dimensions.

We have seen before [12,19] that in three dimensions
also the connected few-particle amplitude diverges as the
c.m. energy E ~ 0. This behavior was crucial in pre-
dicting the low-temperature behavior of quantum cluster
coefficients. There are two crucial difFerences between
the low-energy behavior of few-particle scattering am-
plitudes in two and three dimensions. First, in three
dimensions the higher-order rescattering diagrams may
lead to new types of divergent terms not contained in the
lowest-order term. Second, in three dimensions there are
only a finite number of lower-order rescattering diagrams
that diverge at low energies. In two-dimensional systems
these two properties do not hold. In two dimensions con-
sideration of higher-order rescattering diagrams does not
lead, at low energies, to new types of singularities which
are not contained in the lowest-order diagram. Also, in
two dimensions all the terms in the m-particle multiple-
scattering series diverge at low energies for m & 2. This
latter fact will make any attempt to calculate the coeffi-
cients of the series (46), for example, practically impos-
sible, though such a calculation is possible in principle
from a knowledge of the leading low-energy behavior of
the two-particle amplitude.

IV. TWO-TO-TWO AND TWO-TO-THREE
AMPLITUDES

A. Introductory remarks

In view of the recent studies [1—10] of exact three-
particle calculations and of the efFect of three-particle
correlations in surface three-particle recombination in
spin-polarized atomic hydrogen [5], it is interesting to
study the singularity structure of other multiparticle am-
plitudes in two dimensions. A knowledge of this singu-
larity structure is essential for a correct parametrization
of these amplitudes and this is important for an approx-
imate treatment of three-particle processes.

One important question is what is the behavior of a
two-to-two amplitude at the m-particle breakup thresh-
old in two dimensions. The simplest relevant threshold
is the three-particle breakup threshold. The process we
are addressing is of the general type

[E —k —k'i —(k+ ki) ] (56)

as in Eq. (50). For the two-to-two scattering amplitude,
the energy-conservation condition is now

E+n = 2k =-ki,2 3 2 3 /2
(57)

where nz is the two-particle binding energy, while for the
two-to-three scattering amplitude we have

and

E+a = ~~k,

E = k', + k', + k', .

(58)

With these conditions we see that, unlike Eq. (50), the
energy denominator above does not necessarily vanish as
E -+ 0, because k tends to a nonvanishing constant
unless o.z is zero. Hence the amplitudes of Fig. 2 do not
diverge as E ~ 0, nor do the corresponding higher-order
diagrams.

Although these amplitudes are finite, they have a
branch-cut singularity as E —+ 0 arising from the scat-
tering threshold. For example, the two-particle t matrix
is finite as E ~ 0, but it does have a logarithmic branch
cut at E=O.

Finally, another singularity of interest in the three-

is the time-reversed form of the three-to-one amplitude
which describes the three-particle recombination process
in spin-polarized atomic hydrogen. Again, these analytic
behaviors are important for a correct parametrization of
these amplitudes. We shall study this singularity in Sec.
IV C.

An analysis similar to that of Sec. III reveals that both
the two-to-two and the two-to-three amplitudes approach
constants in the low-energy limit. In order to see this,
we consider the lowest-order terms of the MS series, as
shown in Figs. 2(a) and 2(b), for the two-to-two and the
two-to-three scattering amplitudes of the three-particle
system. Apart from the vertex functions and two-particle
t matrix elements, both of which tend to constants as
E ~ 0, these two terms contain the energy denominator

i+(jk) ~ k+(ij), (55)

where (jk) represents the bound state of particles j and
k, i g j g k P i. Here each of i, j, k runs from 1 to 3.
At the breakup threshold the "two-particle" amplitude
described above develops a particular singularity, which
we shall study in Sec. IV B.

Other important amplitudes of interest are the two-to-
three and the one-to-three amplitudes and their singu-
larity behaviors at the three-particle threshold. Of these,
the one-to-three amplitude is of particular interest as it

(b)

FIG. 2. Typical two-to-two and two-to-three amplitudes
of lowest order.
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particle breakup process is the subenergy singularity.
This is the singularity in the two-particle subenergy vari-
able in the final state. This singularity is of relevance
in the final-state interaction of the three-particle system
and should be considered in breakup processes repre-
sented schematically as

i + (jk) ~ 1+2+ 3. (60)

It will be treated in Sec. IVD.
In contrast to Sec. III, where we studied the analytic

properties of the few-particle amplitudes from a consid-
eration of the MS series, we base the study of analytic
properties in this section on a consideration of various
unitarity relations. Unitarity implies that scattering am-
plitudes should have singular behavior and an associated
branch cut in the complex energy plane at various phys-
ical thresholds, with well-determined discontinuities. A
knowledge of these discontinuities often allows one to pre-
dict the related singularities. Unitarity imposes specific
constraints in the analytic behavior of different scattering
amplitudes, which should be incorporated when model-
ing and parametrizing the scattering amplitudes. These
constraints have been proved to be of relevance in three
dimensions [12,26].

B. Singularity of the two-to-two amplitude
at the m-particle threshold

A discussion of these singularities in three dimensions
has appeared in Refs. [12] and [20]. In general, the uni-
tarity relation yields the contribution of each scattering
threshold to the imaginary part of the scattering ampli-
tude. We shall follow the diagrammatic representation
of Refs. [12], [20], and [27] in multiparticle processes in-
volving potentials.

We start this section by studying the behavior of two-
to-two amplitude of the rn-particle system as E -+ 0. The
singularity we are interested in comes from the unitarity
relation shown schematically in Fig. 3, where the dashed
vertical line represents on-shell propagation of m parti-
cles given by the 6-function part of the propagator, or the
free rn-particle Green's function, and the star represents
complex conjugation. As we know that the amplitudes
of Fig. 3 are finite as the total m-particle energy E 6 0,
the contribution to the discontinuity of the two-to-two
amplitude arising from the m-particle threshold is given
by

12(T3 2) 24 f dk, dk2 dk 6(E —k,' —k3 . . . k' )

X6(kl + k2 + + k666) ~T2~666] 3 (61)

x6(kg + k2+ ks)]TQ 3~ (62)

We would like to find the total thr==-particle energy de-
pendence of 17(Ts q), from which we can find the energy
dependence of the singular part of Tq g. In order to find
the energy dependence of expression (62), we define the
hypermomentum k by

k' = k,'+ k,'+ k,', (63)

in terms of which Eq. (62) can essentially be rewritten

&(T3-2) 24 f k'dkd&6(E —k')lT2-3(', (64)

where dA is the angular integral subject to kq+kq+ks ——

0. Remembering that at the thr==particle threshold
given by E = 0, T2 s tends to a constant, we have
17(Tq 2) (x E, which implies a singular part of the type

8 (Tq q) E ln( —E) (65)

at the three-particle threshold. The two-to-two ampli-
tude Tq 2 is finite at the thr""=particle threshold E = 0,
but has a branch point there of the form E ln( —E).

The above idea can essentially be extended to the more
complicated case of the m-particle threshold. For exam-
ple, at the four-particle threshold,

13(T2 2) 24 f dk3dk2dk2dk46(E —k2 —k2 —k3 —k4)

X6(ky+kg+ks+k4)~T2 4~ 3 (66)

where E.is now the four-particle c.m. energy. Again, in
terms of the hypermomentum k defined by (t(:~ = k~ +
Ikz+ ks + k4, Eq. (66) can be rewritten as

where V denotes the discontinuity across the unitarity
cut starting at the m-particle threshold, k, is the mo-
mentum of particle i in the intermediate state of Fig. 3,
and T2 is the t matrix for the two-to-m process.

The simplest case of Eq. (61) is given by m = 3 in
two-space dimensions. In this case

13(T2 2) 24 f d kid k2d k36(E —kl k2 k3)

13(T2-2) 24 f k'dkd&6(E —k')IT2-4l', (67)

where dA is the angular integral subject to k~+kq+ks+
k4 = 0. Remembering that at the four-particle threshold
E = 0 and T~ 4 tends to a constant, we have

'D(T2 2) oc E, (68)
FIG. 3. Unitarity relation satisfied by the two-to-two am-

plitude of the m-particle system. The vertical line denotes
free on-shell propagation in the intermediate state. The sum-
mation extends over the index i which represents the number
of particles in the intermediate state.

which implies a singular part of the type

S(T, ,) -E'ln(-E) (69)

at the four-particle threshold. The variable E in Eq (65).
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C. Singularity of the one-to-three and two-to-three
amplitudes

A discussion of these singularities in three dimensions
has appeared in Refs. [12] and [28]. Again, we shall use
relevant unitarity relations to find the discontinuity of
the scattering amplitudes, from which we shall extract
the singular parts. We follow the diagrammatic repre-
sentation of Ref. [12], as we did in Sec IV B. The unitar-
ity relation of interest for the two-to-three amplitude is
shown diagrammatically in Fig. 4. The two-to-three am-
plitude has two types of singularities, given by the last
two terms on the right-hand sides of Fig. 4. The sec-
ond term on the right-hand-side of Fig. 4 involves the
connected three-to-three amplitudes and contributes to
certain singularities. The last term of Fig. 4 contributes
to a subenergy singularity and depends on the momen-
tum of particle i in final states and is summed over i,

The first term on the right-hand side of Fig. 4 will
contribute to the singularity in total three-particle c.m.
energy E. The discontinuity we are interested in is given
by

'D(T2 s) oc dki dk2 dks 6(E —k, —'k2 —ks )

xb(ki + k2 + ks)T2~3T3 3 (71)

We have seen in Sec. III that as E ~ 0 the ampli-
tude Ts 3 of Eq. (71) is singular and divergent and is
given by Eq. (46). The amplitude T2 s is finite in this
limit. The phase-space integral of Eq. (71), involving
only the b functions, will have the same behavior as in
Eq. (62). Though the t matrices T2 s and Ts s, which
appear on the right-hand side of Eq. (71), involve the
momenta ki, k2, ks, in general, at low energies (E ~ 0),
the energy-dependent singular part of Ts s is given by
Eq. (46) and in the same limit Tq s tends to a con-
stant. Hence in the E ~ 0 limit the phase-space integral
of Eq. (71) can be evaluated treating Tq s and Ts 3

is the total three-particle energy (E = 0 is the three-
particle threshold); in Eq. (69), E = 0 denotes the four-
particle threshold. The two-to-two amplitude T2 2 is
finite at the four-particle threshold E = 0, but has a
branch point there of the form E2 ln( —E).

In general, the singular part of T2 2 at the m-particle
threshold is given by

8(T2 2) E ln( —E).

as constants. We have seen in our discussion related to
(62) that essentially the phase-space integral of Eq. (71)
yields a singular part E ln( —E). This singularity, when
multiplied by the low-energy behavior of T3 3 as given
by Eq. (46), yields the following singular parts of T2 3
via Eq. (71): ln "(—E), n = 1,2, 3, . . . . As powers
of a logarithm yield a new singularity, we have an infi-
nite number of branch points at E = 0 in T2 3, e.g. ,

ln "(—E), n = 1, 2, 3, . . .. By similar arguments, essen-
tially this same singularity will appear in the one-to-three
amplitude Ti s in two dimensions [12]. This is of partic-
ular interest, as this amplitude is the time-reversed form
of the three-to-one recombination amplitude Ts i stud-
ied recently [5]. The three-to-one amplitude Ts i in two
dimensions will have the same singularities as Ti

D. Subenergy singularity in the two-to-three
amplitude

The singularities in the subenergy variables in the
breakup amplitude Tq s are essential for a correct de-
scription of final-state interactions. Usually, in breakup
processes, one measures the spectrum of a single particle.
Then one requires the proper singularity structure of this
amplitude as a function of the energy of this particle in
order to make a correct parametrization. The nature of
this singularity can be obtained from the last term of the
unitarity relation in Fig. 4.

In Fig. 4 it is desirable to introduce the following mo-
menta in the intermediate state of the last term. Let the
particle labeled i have momentum p and the other two
particles have momenta —p/2+ q and —p/2 —q. Then
it is easy to see that the contribution to D(Tq s) from
the last term of Fig. 4 is given by

'D(T2 s) ) dq b(E —s2p —q )T~~~ st'(q ),

(72)

where the energy argument of the two-particle t matrix
t~—:t,f„i g j P k g i, is explicitly shown. Equation
(25) when substituted into Eq. (72) yields the following

complicated expression for the discontinuity of T2 s in

the branch cut in subenergy:

2

1 (—E+ 3p'/2)

Im

2b+
ln ( E+3p~/2)— (73)

FIG. 4. Unitarity relation satisfied by the two-to-three
amplitude of the three-particle system. The summation ex-
tends over i which represents the noninteracting particle.
Again the vertical line denotes free on-shell propagation in
the intermediate state.

and it is difficult to write an exact form for this singular-

ity.
The singularity of Eq. (73) lies at the boundary of

the physical region because the allowed values of p~ are
from 0 to 2E/3. This singularity leads to rapid variations

in the final-state amplitude and is crucial to the phe-

nomenological treatment of the final-state interaction.
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V'. SUMMARY

We have presented a discussion of analytic behavior
in the complex energy plane of the various few-particle
scattering amplitudes in two dimensions. A knowledge
of these analytic behaviors is relevant for a complete un-
derstanding of difFerent few-particle processes. We have
based our discussion on distinct methods for different
amplitudes. A consideration of the full set of dynami-
cal equations for the few-particle system [12,29] should
always reveal these analytic properties. However, this ap-
proach is not always the most convenient one. Depend-
ing on a specific amplitude, we have adopted a specific
method.

In Sec. II we based our discussion of the low-energy
on- and off-shell two-particle t matrix on the dynamical
equations. We showed that in the low-energy-momentum
limit both the on- and the off-shell two-particle t matrices
tend to zero and have an infinite number of logarithmic
branch points at E = 0.

In Sec. III we based our discussion of the low-energy
behavior of the connected three-particle (three-to-three)

amplitude on a consideration of the MS series. %"e
showed that in the low-energy limit this amplitude is di-
vergent and possesses an infinite number of logarithmic
branch points at E = 0. We concluded that the con-
nected m-particle amplitude also diverges in this limit
and possesses similar branch points.

In Sec. IV we based our discussion of the low-energy
behavior of the two-to-three and the two-to-two ampli-
tudes on a consideration of unitarity. The constraints of
unitarity impose specific analytic properties on these am-
plitudes. We showed that, unlike the case of the three-to-
three amplitude, these amplitudes are finite in this limit.
However, these amplitudes possess specific logarithmic
singularities.
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