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Coupled-channels optical calculation of electron-hydrogen resonances
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An application of the coupled-channels optical method to energy-dependent phenomena, electron-
hydrogen resonances for n = 1 and 2, is given. The equivalent local approximation is made for the
optical potential. The calculation includes nine explicitly coupled channels. The optical potential
accounts for the target continuum. The good agreement with experiment shows the role played
by the optical potential in the coupled-channels calculation. Some additional resonances have been

found.
PACS number(s): 34.80.Bm, 34.80.Dp

I. INTRODUCTION

The coupled-channels optical (CCO) method given by
McCarthy and Stelbovics [1] is applied to describing ex-
periments with rapid energy variation. It has been our
practice in introducing developments in the method to
start with the equivalent local approximation to the op-
tical potential [2]. This is done here in the case of electron
scattering on hydrogen to the n = 1 and n = 2 states.
For n =1 and n = 2 the energy ranges are, respectively,
9.4-10.2 and 11.66-12.06 eV.

The energy dependence in elastic electron-hydrogen
scattering has been investigated by, for example, Tay-
lor and Burke [3] with the close-coupling method; Seiler,
Oberoi, and Callaway [4] with the algebraic close-
coupling method; and Pathak, Kingston, and Berring-
ton [5] with the R-matrix method. The investigation
for n = 2 has been made by, for example, Morgan,
McDowell, and Callaway [6] with the algebraic varia-
tional method; Callaway [7] with the variational pseu-
dostates method; Pathak, Kingston, and Berrington [5);
and Fon, Ratnavelu, and Aggarwal [8] with the R-matrix
method. A complete list of references is given by Pathak,
Kingston, and Berrington [5].

In the present calculation nine states (1, 2, 3, 4s; 2,
3, 4p; 3, 4d) are explicitly coupled (P space) and only
the target continuum is included in the optical potential
(Q space). Optical potentials are used in the couplings
1s — 1s, 1s — 2s, 1s — 2p. Optical potentials in other
couplings have a small effect on the 1s, 2s, and 2p cross
sections.

Section II discusses the computational developments
that enable fast computations of energy variation to be
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done in setting up and solving the coupled Lippmann-
Schwinger equations. It also discusses the methods used
to extract Breit-Wigner resonance parameters from the
partial-wave T-matrix elements.

II. FORMALISM AND CALCULATION DETAILS

The coupled integral equations are represented in mo-
mentum space:
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where 3,7 represent target states, P projects a finite set of
target states including the ground state 0, and Q projects
the continuum and the remaining discrete states. The
subscript S indicates the total spin. VS(Q) has two parts,
the electron-target potential Vg and the complex, nonlo-
cal polarization potential Wéo),

Vi = vs + WP, (2)

where the basic approximation for the matrix element of
wid is
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Here g« and ¢ represent the lesser and greater of g and
q , respectively, and ¥(7)(q) is a Coulomb wave orthog-
onalized to the P space target orbital involved in the
same matrix element. For computational feasibility it is
necessary to use the equivalent local exchange amplitude
in (3) and to make the angular momentum projection
approximation

i | WP k) = S & O ™ Ui (K) Vi (K),
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(4)
where Im and I'm’/ are the orbital angular momentum
quantum numbers of the states i and j, respectively, and

K=k-k. (5)
The half-on-shell approximation
1

J

(Ki|Ts|jk)= 3

L,M,L'M' J K

where
(k | LM) = Yrp (k) (9)

and CMT* is a Clebsch-Gordan coefficient. The defini-
tion of

IAN E. McCARTHY AND BO SHANG 46

is made for the amplitudes (3), reducing the computation
of the optical potential to the function Uj»;j( K) obtained
by inverting (4). Details of the calculation are given in
Ref. [9] and references therein.

The present calculation was carried out by using the
same quadrature points for solving the integral equation
(1) over a range of energies, thus making the off-shell po-
tential matrices energy independent. We calculated the
slowly varying optical potentials at a few energy points
instead of the whole energy range. For computation we
make a partial-wave expansion of the T's and Vs(vQ) matrix
elements, defining the partial matrix elements

(K'n'VL" || Tys || Link) (M

for total orbital angular momentum quantum number J
by

(K| I'M\CH K (k' VL || Tys || Link)CMPE (LM | K), (8)

r

is analogous to (7) with VéQ) substituted for Ts.

The energies and widths of resonances for particular
values of J and S have been found by fitting the Breit-
Wigner form with a linear background

c+id
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TABLE I. Resonance energies and widths in elastic electron-hydrogen scattering.
Experiments Calculations
State Williams Warner Risley, Taylor and Seiler, Pathak, Present
[10] et al. [11] Edward, and Burke [3] Oberoi, and Kingston, and work
Geballe [13] Callaway [4] Berrington (5]
Energies (eV)
g 9.557(10) 9.549(13) 9.59(3) 9.560 9.574 9.557 9.553
9.875
10.178 10.178 10.177 10.172
33 10.150 10.151 10.147
'p 9.531
10.177 10.185 10.176 10.177
3p 9.735(10) 9.736(13) 9.76(3) 9.74 9.768 9.741 9.743
D 10.115(13) 10.125 10.160 10.126 10.144
Widths (meV)
s 45.0(5) 63.0(8) 47.0 54.0 52.0 48.0
8.9
2.2 2.3 2.6 2.4
s 0.02 0.02
ip 9.1
0.04 0.02 0.04
sp 6.0(5) 5.0(2) 5.9 8.0 7.1 4.5
1)) 6.0(2) 8.8 7.7 8.8 6.9
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[10] for the elastic integrated cross sections and the present
calculation at 30° and 90°. The solid lines are the CCO cal-
culations.

to the partial cross section o g for each resonance over the
resonant energy range, where E is the incident energy,
and Eg, I'g, a, b, ¢, and d are the fitting parameters.
Er is the resonant energy and I'p the width.

III. RESULTS AND DISCUSSION

A table of calculated and observed resonances below
the first inelastic threshold has been given in Ref. [10].
However, there is little theoretical work on the angular
behavior of the cross sections in the resonance region.
The present work has calculated electron-hydrogen res-
onances in elastic scattering over the energy range 9.4-
10.2 eV at angles of 30° and 90°. Figure 1 shows the
comparison of the experiment [10] for the energy depen-
dence of the differential cross section at 30° and 90° and
the present calculation folded with the experimental res-
olution, 0.012 and 0.02 eV. The resonances found in the
present calculation are compared with experiment and
with earlier calculations in Table I. Two possible reso-

nances, which have not been reported before, have been
found at 9.531 and 9.875 eV, belonging to the symme-
try manifolds ! P and 1S with widths 0.0091 and 0.0089
eV, respectively. The first one is very close to the 1.9
resonance at 9.553 eV with width 0.0048 eV. The lat-
est two experiments [10, 11] observed resonances at 9.557
and 9.549 eV, with energy resolutions 0.02 and 0.025 eV.
Therefore it is possible that the experimental cross sec-
tion here is due to two resonances, 1P at 9.531 eV and
18 at 9.553 eV. For the other new resonance at 9.875
eV there is a very weak sign of resonance in the vicinity
of this energy in the experiment [11]. It still needs the
confirmation of further experiments. Some other calcu-
lations mentioned in Table I found a 3S resonance near
10.150 eV. However, we cannot find it. We have done the
calculation from 10.14991 to 10.150 10 eV at intervals of
0.01 meV. From 10.14700 eV to 10.151 00 eV, intervals
were 0.03 meV. The width quoted by other authors is
0.02 meV [5]. Note that the P resonance at 10.177 eV,
which has a comparable width, was found by the present
calculation.

Figure 2 shows the comparison between the experi-

TABLE II. Resonance energies and widths below the n=3 threshold for electron-hydrogen scattering.

Experiment [12] Present work Callaway [7] Pathak, Kingston,
2p 2s 2p 23 and Berrington [5]

State Er T'r Er Tr Er Tr Egr Tr Er Tr Er Tr
(eV (meV) (eV) (meV) (eV) (meV) (eV) (meV) (eV) (meV) (eV) (meV)
lg 11.722(9) 45(9) 11.724(12) 37(8) 11.726 39.01 11.726 37.03 11.7218 38.89 11.7218 40.93
3p 11.751 46.10 11.753 45.8 11.7513 44.74 11.7515 46.64
1p 11.807(9)  45(8) 11.803(9) 37(8) 11.805  49.41  11.803  47.80  11.8048  44.46  11.8049  43.52
ip 11.902(6) 33(10) 11.892 29.70 11.891 30.92 11.8929 32.50 11.8930 34.13
3p 11.925(2) 4(2) 11.926(2) 4(2) 11.927 3.74 11.927 3.51 11.9255 2.96 11.9258 3.10
3s 11.993 0.24 11.994 0.24 11.9943 0.24 11.9944 0.23
3D 11.997(5) 10(3) 12.00(5) 15(10) 11.996 10.00 11.996 12.01 11.9949 10.20 11.9952 10.50
lg 12.029(5) 9(3) 12.024(5) 9(3) 12.028 9.50 12.030 9.80 12.0272 8.31 12.0273 7.89
3D 12.024 0.23 12.024 0.23 12.0283 0.23 12.0286 0.22
3p 12.040(6)  10(4) 12.036(4) 10(4) 12.037  12.65  12.028  13.00  12.0369 8.31 12.0370 8.25
p 12.049(4) 7(3) 12.048(4) 7(3) 12.047 7.9 12.046 7.9 12.0532 6.57  12.0534 5.82
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ment [12] for the 2s and 2p integrated cross sections in
the energy range 11.66-12.06 eV and the present calcula-
tion with and without the optical potential, folded with
experimental resolution, 9 meV. We can see clearly that
the continuum plays a role in the scattering, especially in
the higher energy range. Its effect on the background in-
creases with increasing energy. The energies and widths
of the calculated resonances below the n = 3 threshold
are presented in Table II. They are compared with exper-
iment and other calculations. There is a good agreement
among them.

IV. CONCLUSION

An application of the CCO method to energy-
dependent phenomena, electron-hydrogen resonances,
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gives good agreement with experiments and other cal-
culations. It shows that the continuum plays a role in
the relevant energy region. Resonances have been found
that are yet to be obtained experimentally.
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